# **BMJ Open**

#### THE RELATIONSHIP BETWEEN BICYCLE COMMUTING AND PERCEIVED STRESS: A CROSS-SECTIONAL STUDY

| Journal:                             | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                        | bmjopen-2016-013542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Article Type:                        | Research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Date Submitted by the Author:        | 19-Jul-2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Complete List of Authors:            | Avila-Palencia, Ione; ISGlobal, Centre for Research in Environmental<br>Epidemiology (CREAL),<br>de Nazelle, Audrey; Centre for Environmental Policy, Imperial College of<br>London<br>Cole-Hunter, Tom; ISGlobal, Centre for Research in Environmental<br>Epidemiology (CREAL). Barcelona, Spain<br>Donaire-Gonzalez, David; 1ISGlobal, Centre for Research in Environmental<br>Epidemiology (CREAL)<br>Jerrett, Michael; University of California Los Angeles, Department of<br>Environmental Health Sciences<br>Rodriguez, Daniel; University of North Carolina, City and Regional Planning<br>Nieuwenhuijsen, Mark; ISGlobal, Centre for Research in Environmental<br>Epidemiology (CREAL) |
| <b>Primary Subject<br/>Heading</b> : | Epidemiology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Secondary Subject Heading:           | Mental health, Public health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Keywords:                            | EPIDEMIOLOGY, MENTAL HEALTH, PUBLIC HEALTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

SCHOLARONE<sup>™</sup> Manuscripts

2/

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

#### **BMJ Open**

## THE RELATIONSHIP BETWEEN BICYCLE COMMUTING AND PERCEIVED STRESS: A CROSS-SECTIONAL STUDY

Ione Avila-Palencia, MPH<sup>1, 2, 3</sup>; Audrey de Nazelle, PhD<sup>4</sup>; Tom Cole-Hunter, PhD<sup>1,2,3</sup>; David Donaire-Gonzalez, PhD<sup>1,3,5</sup>; Michael Jerrett, PhD<sup>6</sup>; Daniel A. Rodriguez, PhD<sup>7</sup>; Mark J Nieuwenhuijsen, PhD<sup>1,2,3</sup>

#### Author's affiliations:

<sup>1</sup>ISGlobal, Centre for Research in Environmental Epidemiology (CREAL). Barcelona, Spain. <sup>2</sup>Universitat Pompeu Fabra (UPF). Barcelona, Spain.

<sup>3</sup>CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.

<sup>4</sup>Centre for Environmental Policy, Imperial College of London, London, United Kingdom.

<sup>5</sup>Physical Activity and Sports Sciences Department, Fundació Blanquerna, Ramon Llull

University. Barcelona, Spain.

<sup>6</sup>Department of Environmental Health Sciences, University of California, Los Angeles,

California, United States of America.

<sup>7</sup>Department of City and Regional Planning, University of North Carolina at Chapel Hill.

Chapel Hill, North Carolina, United States of America.

#### **Corresponding author information:**

Ione Avila-Palencia, ISGlobal, Centre for Research in Environmental Epidemiology

(CREAL), Doctor Aiguader, 88, 08003 Barcelona, Spain. Telephone (+34) 93 2147337; Fax

(+34) 93 2147302; E-mail: ione.avila@isglobal.org

**Keywords**: Environmental epidemiology, Physical activity, Stress, Urbanisation, Self-rated health

Word count of main text: 2919

#### ABSTRACT

**Introduction:** Active commuting –walking and bicycling for travel to and from work or educational addresses– may facilitate daily routine physical activity. Several studies have investigated the relationship between active commuting and commuting stress, but there is no literature studying the relationship between bicycle commuting and perceived stress, nor taking into account environmental determinants. The current study evaluated the relationship between bicycle use for commuting among working or studying adults in Barcelona (Spain) and perceived stress.

**Methods:** A cross-sectional study was performed with 788 adults who regularly travelled to work or study locations in Barcelona. Participants responded to a comprehensive telephone survey concerning their travel behaviour from June 2011 through to May 2012. Participants were categorised as either bicycle commuters or non-bicycle commuters, and based on the Perceived Stress Scale (PSS-4) as stressed or non-stressed. Multivariate logistic regression models of stress status based on bicycling exposure, adjusting for potential confounders, were estimated. The data was analyzed between May and October 2015.

**Results:** Bicycle commuters had significantly lower odds of being stressed [OR (95%CI) = 0.61 (0.46, 0.83)]. Bicycle commuters who bicycled four or more days per week had lower perceived stress than those who bicycled less than that. This relationship remained significant when adjusting by individual and environmental determinants, and when using a different cut-off of perceived stress (P50, P75, P90).

**Conclusions:** Stress reduction may be an important consequence of routine bicycle use and may need to be considered by decision makers as another potential benefit of bicycle use.

## STRENGHTS AND LIMITATIONS OF THIS STUDY

- The study had high internal validity, with a good representation of bicycle commuters.
- The study was conducted in Barcelona (a southern European city), adding evidence in a different context than the current literature on these issues.
- The TAPAS Travel Survey sample is representative of Barcelona's population, taking into account deprivation index and home and work population density.
- The study used a cross-sectional design, which is not well-suited to assess the direction of causation.
- Using questionnaire data we could have misclassification error (information bias) of bicycle commuting and PA because of the data being self-reported.

#### INTRODUCTION

Increasing physical activity (PA) is one of the key approaches to reduce non-communicable diseases. In 2010, physical inactivity and low PA accounted globally for approximately three million premature deaths, and 2.8% (2.4–3.2) of DALYs.(1) Active commuting – walking and bicycling for travel to and from work or educational addresses – seems to be well suited to increase physical activity levels in general population,(2,3) as it needs less time and motivation. Emerging literature is exploring the health benefits of active commuting. It has been suggested that greater time spent actively commuting is associated with higher levels of physical and mental well-being(4,5) and better mental health in men.(6) Specifically bicycle commuting has been shown as inversely associated with all-cause mortality among both men and women in all age groups(7) and it seems to be likely to improve the health-related quality of life in previously untrained healthy adults.(8)

Perceived stress presents a global and comprehensive stress construct that refers to the interaction between the individual and the environment when a stressor occurs.(9) The perception of an event as stressful can result in a range of physiological, behavioural, and psychological changes, such as cardiovascular disease, increased negative affect, lowered self-esteem, and lowered feelings of control. Hence, anxiety disorders and depression can be manifestations of chronic (perceived) stress.(10) It has been suggested that moderate-intensity physical activity may reduce stress and anxiety on a daily basis while improving self-perception and mood.(11,12) Some literature recognise commuting as a potential source of stress,(13) but recent qualitative research suggests that commuting is often perceived as a relaxing or transitional time between home and work life, which can also be about enjoying pleasant landscape, nature and wildlife.(14) Active commuters have shown higher levels of satisfaction, less stress, relaxation and a sense of freedom than car drivers.(15–17) The use of

#### **BMJ Open**

a bicycle for commuting has been also considered a fast transport mode and associated with a sense of freedom too.(18) Reinforcing the argument of pleasantness and practicality for bicycle commuting, objective measurements found that the quantity of public bicycle (*Bicing*) stations within the home area, and amount of greenness within the work/study area were positive determinants of propensity for bicycle commuting.(19)

Several studies have investigated the relationship between active commuting and commuting stress (stress directly related with the fact of commuting),(16,17,20,21) a few studies have investigated the relationship between active commuting and well-being,(4–6) but none of them have studied the relationship between adult bicycle commuters and perceived stress, nor taking into account environmental determinants. Moreover, most studies of active commuting benefits on mental health have been conducted in North America or Northwest Europe.(4–6,16,21,22) Consequently, there is a need to better understand the relationship between bicycle commuting and perceived stress, and specifically in a sample of residents in a Southern European city.

The current study aimed to evaluate the relationship between bicycle commuting among the working or studying adult population of Barcelona (Spain) and perceived stress.

#### **MATERIALS AND METHODS**

#### **Study population**

This cross-sectional study was based on participants from the Transportation, Air Pollution and Physical ActivitieS (TAPAS) Travel Survey. TAPAS was a large study that investigated the risks and benefits of active commuting. Adult bicycle commuters and non-bicycle

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

commuters who fulfilled the inclusion criteria (being older than 18 years of age; living in Barcelona city since 2006 or earlier; working or going to school in Barcelona city; being healthy enough to ride a bicycle for 20 minutes; having at least 10 minutes of walking commute; and using at least one mode of transport other than walking to commute) were recruited between June 2011 and May 2012. Participants were recruited from four randomlyselected locations within each of the ten city districts across Barcelona (for a total of 40 locations) to ensure adequate geographic coverage. In the recruitment process, pedestrians were excluded from the non-bicycle commuters as the main interest was in the contrast of motorized modes (private and public transportation) and the bicycle. Further details of the recruitment are given in Donaire-Gonzalez et al 2015.(3)

The study protocol was approved by the Clinical Research Ethical Committee of the Parc de Salut Mar (CEIC-Parc de Salut Mar), and written informed consent was obtained from all participants.

#### **Bicycle commuters**

The TAPAS Travel Survey assessed the common use of transport modes(23) and the bicycle use.(24) Participants who indicated use bicycle (private or from public bike sharing system) as transport at least once the week prior to survey administration were classified as "bicycle commuters". Participants who indicated use bicycle (private or from public bike sharing system) as transport and did not commute by bicycle in the week prior to survey administration were classified as "non-bicycle commuters".

#### **BMJ Open**

As part of the sensitivity analyses, the commuting behaviour was also classified by three different bicycle commuting levels taking into account the frequencies of bicycle commuting use and by bicycle commuting propensity.(19)

Regarding bicycle commuting levels, "Bicycle commuters" were further classified as "low bicycle commuters", "medium bicycle commuters" and "high bicycle commuters". "Bicycle commuters" who commuted by bicycle on five or more days in the week prior to survey administration were classified as "high bicycle commuting". Those who had commuted by bicycle on four days in the week prior to survey administration were classified as "medium bicycle commuting". Finally, those who commuted by bicycle on three days or fewer in the week prior to survey administration were classified as "low bicycle commuting".

Regarding bicycle commuting propensity, details of the classification are given in Cole-Hunter et al 2015.(19)

#### **Perceived stress**

The last four questions of the TAPAS Travel Survey were the short version of Perceived Stress Scale (PSS-4),(9) which is an economical and simple psychological instrument to administer, comprehend, and score. PSS-4 measures the degree to which situations in one's life over the past month are appraised as stressful. The instrument contains four statements, which measure how unpredictable, uncontrollable, and overloaded respondents feel that their lives are (Table S1). The higher the score on the PSS-4 (from 0 to 16), the greater the respondent perceives that their demands exceed their ability to cope. There are no cut-off scores. Instead, an individual's score is compared to a normative value.(25) In the TAPAS Travel Survey the 5-point Likert scale was modified to a 4-point Likert scale, removing the

midpoint option for consistency across the survey, because all of other questions from the survey were on a 4-point Likert scale. Participants assigned a PSS-4 score higher than 3 (median of the total sample) were classified as "stressed", and those equal or lower than 3 were classified as "non-stressed".

As part of the sensitivity analyses, the PSS-4 score was also classified separately by percentile 75 (P75) and percentile 90 (P90): participants assigned a PSS-4 score higher than 4 (P75) and 6 (P90) were classified as "stressed", and those who got a PSS-4 score equal or lower than 4 and 6 were classified as "non-stressed" in respective, separate analyses.

#### **Other explanatory measures**

Individual determinants such as physical activity levels,(26) socio-demographic variables, and work or school addresses were also derived from the TAPAS Travel Survey. In addition, the MEDEA Index was used as an area deprivation indicator assigned to each respondent's address. MEDEA measures deprivation at the census tract level based on five domains including percentage of manual workers, temporary workers, total population with low education, young population with low education, and unemployment.(27)

Environmental determinants within a 400m buffer surrounding home and work/study addresses, and a Route-By-Area (RBA) surrounding predicted commute routes, were calculated.(19) Greenness was calculated as a mean and percentiles in Normalized Difference Vegetation Index (NDVI) via satellite imagery (LANDSAT 4 and 5, NASA). NO2 levels were estimated as a mean and percentiles using a land-use regression model developed for a previous project.(28) Noise was calculated as a mean and percentiles in dB(A) level equivalent (LAeq) modeled using measured noise and transit data from Barcelona's strategic

#### **BMJ Open**

noise map developed in the year 2007(29) based upon previous work.(30) The noise variable used for analyses was the proportion of street length above a 55 dB(A) threshold.(31) Also measured were bicycle parking and lanes digitized from existing maps.(32) A bikeability index was calculated taking into account five factors shown to influence bicycling: bicycle facility availability, bicycle facility quality, street connectivity, topography, and land use.(33) Further details of the environmental determinants calculation are given in Cole-Hunter et al 2015.(19)

#### Statistical analyses

A GAM was used to test linearity between bicycle commuters and perceived stress. Multivariate logistic regression models were used to assess the relationship between bicycle commuters and perceived stress. Possible mediation by different levels of PA between bicycle commuters and perceived stress, and any interaction between sex and bicycle commuters were also tested with logistic regression models. All regression models were conducted with a complete case analysis and included potential confounders that showed a p-value <0.05 in the bivariate analysis as well as those found to be statistically-significant within previous literature. All statistical analyses were conducted in Stata version SE 12 (StataCorp LP, Texas USA) between May and October 2015.

#### RESULTS

The TAPAS database consisted of 789 subjects. After excluding one PA outlier (total of all walking, moderate and vigorous time variables >960 minutes/day) 788 remained. The included sample had an equal distribution of sexes and the median age (interquartile range, IQR) was 36 (14) years (Table 1). The majority of subjects were non-stressed (had a stress score equal or lower than 3), Spanish, possessing university studies completed or equivalent-

 level education, living with their family or partner, living with at least 2 employed people and not with children (64.34%). Among those living with children, 8.12% had children younger than 3 years of age. The sample had positive self-perception of health (with only <1% of subjects self-perceiving bad or very bad health), healthy weight according to BMI (71.12%), and generally no chronic disease (92.26%). Bicycle commuters were statistically-significant more likely to be non-stressed, younger (35 years), male, and non-Spanish; to possess university studies completed or equivalent-level education; to live alone and/or with flat mates, with 0-1 employed people, and no children; and to have higher levels of PA, better self-perception of health, and healthy weight, but more chronic diseases than non-bicycle commuters. The majority of subjects considered that they could release stress when riding a bicycle and that they enjoyed their trip more if they used a bicycle. Related to environmental determinants, bicycle commuters had shorter commutes, more public bicycle stations around the home and work/study address, lower average greenness around the home address, and higher levels of bikeability at home and work/study address compared with non-bicycle commuters.

Females and non-Spanish and those living with less than 2 employed people were more likely to be stressed (Table 2). Related to environmental determinants, participants who had more public bicycle stations around their work/study area and higher levels of bikeability in the work/study address area and on the commute route were less likely to be stressed. There was no statistically-significant relationship between commute distance, greenness, NO<sub>2</sub> and noise, and perceived stress. The possible mediation of PA was not further explored as there was no statistically-significant relationship between levels of PA (Total PA, MVPA and VPA) and perceived stress [OR: 1.00; 95% CI: (0.99, 1.00)] for the three different classifications of perceived stress (P50, P75, P90) (Table 2, Table S3).

#### **BMJ Open**

#### Table 1. Perceived stress and determinants of participants and according to bicycle

#### commuting status.

|                                                                              | Trailer   | (799)      |                | Bicycl         | e commuting sta | atus         |                      |
|------------------------------------------------------------------------------|-----------|------------|----------------|----------------|-----------------|--------------|----------------------|
| Variables                                                                    | l otal sa | mple (788) | Non-bicycle co | ommuters (390) | Bicycle com     | muters (398) | n valua <sup>a</sup> |
|                                                                              | n         | %          | n              | %              | n               | %            | p-value              |
| 0.4                                                                          |           |            |                |                |                 |              |                      |
| Outcome                                                                      | 280       | 25 52      | 162            | 41.07          | 118             | 20.22        | 0.001                |
| Stressed (median) (Yes)                                                      | 280       | 55.55      | 102            | 41.97          | 118             | 50.55        | 0.001                |
| Individual determinants                                                      |           |            |                |                |                 |              |                      |
| Age (median; IQR)                                                            | 36        | 14         | 37             | 15             | 35              | 12           | 0.025                |
| Total PA – min/week (median;IQR)                                             | 424.99    | 430.00     | 374.99         | 415.00         | 484.98          | 405.00       | < 0.001              |
| MVPA – min/week (median;IQR)                                                 | 197.49    | 302.49     | 90.00          | 240.00         | 299.99          | 305.00       | < 0.001              |
| VPA – min/week (median;IQR)                                                  | 72.50     | 180.00     | 35.00          | 134.99         | 105.00          | 225.00       | < 0.001              |
| Sex (Female)                                                                 | 410       | 52.03      | 234            | 60.00          | 176             | 44.22        | < 0.001              |
| Country of birth (non-Spanish)                                               | 97        | 12.31      | 41             | 10.51          | 56              | 14.11        | 0.125                |
| Working status (Student)                                                     | 104       | 13.20      | 347            | 87.19          | 51              | 12.81        | 0.748                |
| Education level (University studies completed or equivalent-level education) | 551       | 69.92      | 247            | 63.33          | 304             | 76.38        | < 0.001              |
| Living with family/partner                                                   | 635       | 80.58      | 327            | 83.85          | 308             | 77.58        | 0.026                |
| Employed people in household (>2)                                            | 510       | 64.72      | 261            | 67.27          | 249             | 62.88        | 0.198                |
| MEDEA index                                                                  |           |            |                |                |                 |              | 0.355                |
| 1st tertile (least deprived)                                                 | 263       | 33.38      | 130            | 33.33          | 133             | 33.42        |                      |
| 2nd tertile                                                                  | 263       | 33.38      | 122            | 31.28          | 141             | 35.43        |                      |
| 3rd tertile (most deprived)                                                  | 262       | 33.25      | 138            | 35.38          | 124             | 31.16        |                      |
| Children in household (Yes)                                                  | 279       | 35.41      | 151            | 38.82          | 128             | 32.24        | 0.054                |
| Children <3 years in household (Yes)                                         | 64        | 8.12       | 36             | 9.25           | 28              | 7.07         | 0.264                |
| Self-perceived health (Very good/Excellent)                                  | 323       | 40.99      | 140            | 35.90          | 183             | 45.98        | 0.004                |
| BMI (Overweight/Obese)                                                       | 212       | 26.9       | 124            | 31.96          | 88              | 22.11        | 0.002                |
| Chronic disease (Yes)                                                        | 61        | 7.74       | 25             | 6.41           | 36              | 9.05         | 0.166                |
| Stress releasing (Agreement)                                                 | 658       | 83.50      | 302            | /9.4/          | 350             | 90.59        | < 0.001              |
| Bicycle trip enjoyment (Agreement)                                           | 029       | 19.02      | 249            | 05.55          | 380             | 90.20        | <0.001               |
| Environmental determinants                                                   |           |            |                |                |                 |              |                      |
| Commute distance, estimated (km) (median;IRQ)                                | 3.52      | 2.56       | 3.93           | 2.77           | 3.08            | 2.29         | < 0.001              |
| Public bicycle stations (median;IQR)                                         |           |            |                |                |                 |              |                      |
| Home, count in 400m buffer                                                   | 4         | 3          | 4              | 3              | 4               | 3            | < 0.001              |
| Work/study, count in 400m buffer                                             | 5         | 4          | 4              | 4              | 5               | 4            | < 0.001              |
| Greenness, NDVI [IOR, (median; IOR)]                                         |           |            |                |                |                 |              |                      |
| Home average of 400m buffer                                                  | 0.52      | 1.00       | 0.65           | 1.06           | 0.47            | 0.84         | < 0.001              |
| Work/study average of 400m buffer                                            | 0.35      | 1.00       | 0.38           | 1.06           | 0.33            | 0.89         | 0.086                |
| Commute route average of RBA                                                 | 0.69      | 1.00       | 0.72           | 1.20           | 0.67            | 0.87         | 0.062                |
| NO <sub>2</sub> , ppb (median;IQR)                                           |           |            |                |                |                 |              |                      |
| Home, concentration in 400m buffer                                           | 76.70     | 25.82      | 74.60          | 25.33          | 78.44           | 25.76        | 0.058                |
| Work/study, concentration in 400m buffer                                     | 81.36     | 33.73      | 80.98          | 35.97          | 81.91           | 31.01        | 0.843                |
| Commute route, concentration in RBA                                          | 85.21     | 22.65      | 85.54          | 22.56          | 84.89           | 22.64        | 0.987                |
| Noise, >55dB (%) (median;IQR)                                                |           |            |                |                |                 |              |                      |
| Home, proportion in 400m buffer                                              | 79.41     | 14.24      | 79.05          | 12.96          | 79.53           | 15.14        | 0.823                |
| Work/study, proportion in 400m buffer                                        | 80.89     | 22.99      | 80.51          | 23.54          | 81.40           | 22.67        | 0.369                |
| Commute route proportion in RBA                                              | 77.15     | 11.66      | 77.06          | 10.86          | 77.34           | 12.51        | 0.924                |
| Bikeability (median:IOR)                                                     |           |            |                |                |                 |              |                      |
| Home concentration in 400m huffer                                            | 6 34      | 2 25       | 77.06          | 10.86          | 77 34           | 12.51        | 0 924                |
| Home, concentration in 400m buffer                                           | 6.07      | 2.23       | 5.04           | 2 25           | 6.60            | 1.87         | <0.001               |
| Work/study, concentration in 400m buffer                                     | 0.92      | 2.01       | 3.94           | 2.23           | 0.09            | 1.0/         | ~0.001               |
| Commute route, concentration in RBA                                          | 6.89      | 1.55       | 6.64           | 1.75           | /.10            | 1.24         | < 0.001              |

PA, Physical Activity, MVPA, Moderate-to-Vigorous Physical Activity; VPA, Vigorous Physical Activity; BMI, Body Mass Index. Data are n and %, unless otherwise noted. There are missing data in: Perceived stress (13; 1.65%), Country of birth (1; 0.13%), Living with family/partner (1; 0.13%), Employed people in household (4; 0.51), Children in household (3; 0.38), BMI (2; 0.25%); Stress releasing (15; 1.90%), Bicycle trip enjoyment (12; 1.52%), Commute distance (20; 2.54%), Greenness (20; 2.54%), NO<sub>2</sub> (20; 2.54%). \*Chi square test, instead of Age, Total PA, MVPA, VPA, and all the Environmental determinants (U Mann Whitney test).

Table 2. Relationship between perceived stress (median) and determinants of participants.

| Variable                                      |      | Perceived str                | ess     |
|-----------------------------------------------|------|------------------------------|---------|
| variable                                      | OR   | (95% CI)                     | p-value |
| Individual determinants                       |      |                              |         |
|                                               | 1.00 | (0.98, 1.01)                 | 0.493   |
| Total PA - min/week                           | 1.00 | (0.90, 1.01)                 | 0.665   |
| MVDA min/week                                 | 1.00 | (0.99, 1.00)                 | 0.005   |
| VPA min/week                                  | 1.00 | (0.99, 1.00)                 | 0.102   |
| Say (Famala)                                  | 1.00 | (0.99, 1.00)<br>(1.46, 2.67) | <0.004  |
| Country of brith (Voc)                        | 1.50 | (1.40, 2.07)<br>(1.06, 2.51) | <0.001  |
| Working status (Student)                      | 1.05 | (1.00, 2.51)<br>(0.01, 2.11) | 0.027   |
| Education level (University studies completed | 1.56 | (0.91, 2.11)                 | 0.151   |
| or Others)                                    | 0.87 | (0.64, 1.20)                 | 0.391   |
| Living with family/partner                    | 0.87 | (0.04, 1.20)                 | 0.446   |
| Employed people in household (\$2)            | 0.67 | (0.00, 1.23)<br>(0.46, 0.84) | 0.002   |
| MEDEA index                                   | 0.02 | (0.40, 0.84)                 | 0.002   |
| 1st tertile (least deprived)                  | 1.00 |                              |         |
| 2nd tertile                                   | 1.00 | (0.78, 1.61)                 | 0 537   |
| 2nd tentile (mont demnined)                   | 1.12 | (0.76, 1.01)                 | 0.337   |
| Children in household (Ves)                   | 1.29 | (0.90, 1.80)<br>(0.62, 1.17) | 0.101   |
| Children (2 mars in household (Van)           | 0.80 | (0.03, 1.17)<br>(0.47, 1.41) | 0.323   |
| Children <3 years in nousehold (Yes)          | 0.81 | (0.47, 1.41)                 | 0.461   |
| Self-perceived health (very good/Excellent)   | 0.80 | (0.59, 1.09)                 | 0.154   |
| Changing (Verweight/Obese)                    | 0.93 | (0.67, 1.30)                 | 0.666   |
| Chronic disease (Yes)                         | 1./4 | (1.02, 2.95)                 | 0.041   |
| Stress releasing (Agreement)                  | 0.80 | (0.53, 1.20)                 | 0.287   |
| Bicycle trip enjoyment (Agreement)            | 0.86 | (0.59, 1.25)                 | 0.432   |
| Environmental determinants                    |      |                              |         |
| Commute distance, estimated (km)              | 1.02 | (0.95, 1.10)                 | 0.511   |
| Public bicycle stations                       |      |                              |         |
| Home, count in 400m buffer                    | 0.98 | (0.92, 1.04)                 | 0.500   |
| Work/study, count in 400m buffer              | 0.94 | (0.90, 0.99)                 | 0.021   |
| Greenness, NDVI [IQR, (median; IQR)]          |      |                              |         |
| Home, average of 400m buff                    | 0.91 | (0.79, 1.05)                 | 0.215   |
| Work/study, average of 400m buffer            | 1.09 | (0.94, 1.27)                 | 0.260   |
| Commute route, average of RBA                 | 0.98 | (0.84, 1.15)                 | 0.837   |
| NO <sub>2</sub> ppb (median;IQR)              |      |                              |         |
| Home, concentration in 400m buffer            | 1.00 | (0.99, 1.01)                 | 0.824   |
| Work/study, concentration in 400m buffer      | 0.99 | (0.99, 1.00)                 | 0.110   |
| Commute route, concentration in RBA           | 1.00 | (0.99, 1.01)                 | 0.516   |
| Noise, >55dB (%) (median;IQR)                 |      |                              |         |
| Home, proportion in 400m buffer               | 0.99 | (0.98, 1.01)                 | 0,363   |
| Work/study, proportion in 400m buffer         | 1.01 | (0.99, 1.02)                 | 0.131   |
| Commute route proportion in RBA               | 0.99 | (0.98, 1.01)                 | 0.410   |
| Bikeability (median:IOR)                      | 0.77 | (, 0,,                       |         |
| Home concentration in 400m buffer             | 1.00 | (0.91, 1.12)                 | 0.931   |
| Work/study_concentration in 400m buffer       | 0.87 | (0.79, 0.97)                 | 0.011   |
| Commute route concentration in RBA            | 0.86 | (0.75, 0.98)                 | 0.021   |

PA, Physical Activity, MVPA, Moderate-to-Vigorous Physical Activity, VPA, Vigorous Physical Activity, BMI, Body Mass Index. There are missing data in: Perceived stress (13; 1.65%), Country of brith (1; 0.13%), People living with in household (1; 0.13%), Employed people in household (4; 0.51), Children in household (2; 0.25%), Children <3 years old in household (3; 0.38), BMI (2; 0.25%); Stress releasing (15; 1.90%), Bicycle trip enjoyment (12; 1.52%), Commute distance (20; 2.54%), Greenness (20; 2.54%), NO<sub>2</sub> (20; 2.54%).

The GAM (Figure S1) showed that there is not statistical evidence to refuse linearity between bicycling commuting frequency (days/week) and perceived stress (score from 0 to 16). Multivariate logistic regression analyses showed a statistically-significant inverse relationship between bicycle commuting and perceived stress. Bicycle commuters had lower odds of being stressed compared to non-bicycle commuters [OR (95%CI) = 0.61 (0.46, 0.83)]. This relationship was remained when adjusted for confounders (individual and environmental determinants) and in the majority of sensitivity analyses (Table 3, Table S4). There was a statistically-significant inverse relationship between medium and high levels of bicycle commuting and perceived stress using non-bicycle commuters [OR (95%CI) = 0.34 (0.17,(0.65); OR (95%CI) = (0.50, (0.34, 0.71)] and low levels of bicycle commuting [OR (95%CI) = 0.28 (0.14, 0.59); OR (95%CI) = 0.42 (0.26, 0.68)] as a reference group. This statisticallysignificant relationship was remained when adjusting for individual and environmental determinants and with perceived stress at P75 and P90. Regarding bicycle commuting propensity, there was a statistically-significant inverse relationship between frequent bicycle commuters and perceived stress, using unwilling non-bicycle commuters [OR (95% CI) = 0.37(0.25, 0.54)] and infrequent bicycle commuters [(95%CI) = 0.39 (0.24, 0.62)] as a reference group. The statistically-significant relationship remained after adjusting for individual and environmental determinants and with perceived stress at P75 and P90. Also, there was a statistically-significant inverse relationship between willing non-bicycle commuters and perceived stress, using unwilling non-bicycle commuters [OR (95%CI) = 0.58 (0.38, 0.89)]]as a reference group. This relationship remained after adjusting for individual and environmental determinants, but not for perceived stress at P75 and P90.

There was no statistically-significant interaction between sex and bicycle commuters in TAPAS Travel Survey sample.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 Table 3. Relationship between bicycle commuting and perceived stress (median) of participants.

|                                    |                           |              | Perceived stress |                                      |              |         |      |                                  |         |                                      |              |         |  |
|------------------------------------|---------------------------|--------------|------------------|--------------------------------------|--------------|---------|------|----------------------------------|---------|--------------------------------------|--------------|---------|--|
| Variable                           | OR Unadjusted<br>(95% CI) |              | p-value          | OR Adjusted <sup>a</sup><br>(95% CI) |              | p-value | OR   | Adjusted <sup>b</sup><br>95% CI) | p-value | OR Adjusted <sup>c</sup><br>(95% CI) |              | p-value |  |
| All sample (771)                   |                           |              |                  |                                      |              |         | ```  | , i                              |         |                                      | · · · · ·    |         |  |
| Bicycle commuting status           |                           |              |                  |                                      |              |         |      |                                  |         |                                      |              |         |  |
| Non-bicycle commuters              | 1.00                      |              |                  | 1.00                                 |              |         | 1.00 |                                  |         | 1.00                                 |              |         |  |
| Bicycle commuters                  | 0.61                      | (0.46, 0.83) | 0.001            | 0.62                                 | (0.46, 0.85) | 0.003   | 0.64 | (0.47, 0.89)                     | 0.007   | 0.70                                 | (0.50, 0.97) | 0.032   |  |
| Bicycle commuting levels           |                           | · · · · ·    |                  |                                      |              |         |      |                                  |         |                                      |              |         |  |
| Non-bicycle commuters (0 days)     | 1.00                      |              |                  | 1.00                                 |              |         | 1.00 |                                  |         | 1.00                                 |              |         |  |
| Low bicycle commuting (1-3 days)   | 1.18                      | (0.77, 1.82) | 0.445            | 1.22                                 | (0.78, 1.91) | 0.386   | 1.25 | (0.79, 1.98)                     | 0.332   | 1.33                                 | (0.84, 2.12) | 0.222   |  |
| Medium bicycle commuting (4 days)  | 0.34                      | (0.17, 0.65) | 0.001            | 0.30                                 | (0.15, 0.59) | < 0.001 | 0.30 | (0.15, 0.60)                     | 0.001   | 0.33                                 | (0.17, 0.66) | 0.002   |  |
| High bicycle commuting (>=5 days)  | 0.50                      | (0.34, 0.71) | < 0.001          | 0.52                                 | (0.36, 0.76) | 0.001   | 0.54 | (0.37, 0.80)                     | 0.002   | 0.58                                 | (0.39, 0.87) | 0.008   |  |
| Bicycle commuting propensity       |                           |              |                  |                                      |              |         |      |                                  |         |                                      |              |         |  |
| Unwilling Non-bicycle commuters    | 1.00                      |              |                  | 1.00                                 |              |         | 1.00 |                                  |         | 1.00                                 |              |         |  |
| Willing Non-bicycle commuters      | 0.58                      | (0.38, 0.89) | 0.012            | 0.61                                 | (0.39, 0.94) | 0.025   | 0.59 | (0.38, 0.92)                     | 0.019   | 0.61                                 | (0.39, 0.94) | 0.027   |  |
| Infrequent Bicycle commuters       | 0.96                      | (0.60, 1.51) | 0.846            | 0.99                                 | (0.61, 1.61) | 0.978   | 1.01 | (0.62, 1.64)                     | 0.978   | 1.08                                 | (0.66, 1.78) | 0.759   |  |
| Frequent Bicycle commuters         | 0.37                      | (0.25, 0.54) | < 0.001          | 0.38                                 | (0.26, 0.56) | < 0.001 | 0.39 | (0.26, 0.58)                     | < 0.001 | 0.42                                 | (0.28, 0.64) | < 0.001 |  |
| Bicycle commuters sample (387)     |                           |              |                  |                                      |              |         |      |                                  |         |                                      |              |         |  |
| Bicycle commuting levels           |                           |              |                  |                                      |              |         |      |                                  |         |                                      |              |         |  |
| Low bicycle commuting (1-3 days)   | 1.00                      |              |                  | 1.00                                 |              |         | 1.00 |                                  |         | 1.00                                 |              |         |  |
| Medium bicycle commuting (4 days)  | 0.28                      | (0.14, 0.59) | 0.001            | 0.23                                 | (0.11, 0.50) | < 0.001 | 0.23 | (0.10, 0.49)                     | < 0.001 | 0.22                                 | (0.10, 0.49) | < 0.001 |  |
| High bicycle commuting (>=5 days)  | 0.42                      | (0.26, 0.68) | < 0.001          | 0.42                                 | (0.25, 0.70) | 0.001   | 0.42 | (0.25, 0.70)                     | 0.001   | 0.42                                 | (0.25, 0.70) | 0.001   |  |
| Bicycle commuters propensity       |                           |              |                  |                                      |              |         |      |                                  |         |                                      |              |         |  |
| Infrequent (1-3 days)              | 1.00                      |              |                  | 1.00                                 |              |         | 1.00 |                                  |         | 1.00                                 |              |         |  |
| Frequent (>=4 days)                | 0.39                      | (0.24, 0.62) | < 0.001          | 0.37                                 | (0.23, 0.61) | < 0.001 | 0.37 | (0.23, 0.60)                     | < 0.001 | 0.37                                 | (0.22, 0.60) | < 0.001 |  |
| Non-bicycle commuters sample (384) |                           |              |                  |                                      |              |         |      |                                  |         |                                      |              |         |  |
| Non-bicycle commuters              |                           |              |                  |                                      |              |         |      |                                  |         |                                      |              |         |  |
| Unwilling                          | 1.00                      |              |                  | 1.00                                 |              |         | 1.00 |                                  |         | 1.00                                 |              |         |  |
| Willing                            | 0.58                      | (0.38, 0.89) | 0.012            | 0.59                                 | (0.38, 0.91) | 0.017   | 0.56 | (0.36, 0.88)                     | 0.011   | 0.58                                 | (0.37, 0.91) | 0.017   |  |

<sup>\*</sup>Adjusted by Sex, Country of birth, Employed people in household, Chronic disease, <sup>b</sup>Adjusted by Sex, Country of birth, Employed people in household, Chronic disease, Self-perceived health, Moderate-to-Vigorous Physical Activity (MVPA). <sup>c</sup>Adjusted by Sex, Country of birth, Employed people in household, Chronic disease, Self-perceived health, MVPA, Public bicycle stations at work/study, Bikeability at work/study, Bikeability at commute route.

#### DISCUSSION

#### **Summary of results**

There was a statistically-significant inverse relationship between bicycle commuting and perceived stress. Bicyclist commuters who bicycled four or more days per week had lower odds of being stressed, and this relationship remained statistically-significant with sensitivity analyses.

#### **Comparison with previous studies**

To our knowledge, this study is the first to assess if there is a relationship between bicycle commuting and perceived stress. A few studies have focused on the relationship between active commuting and mental health,(4–6) but the relationship is still quite unclear. One study found a positive association between active commuting (walking and cycling) and well-being(4), and another with better mental health in men.(6) Moreover, Humphreys(5) found a positive relationship between time spent actively commuting and levels of physical well-being, but not with mental well-being. The relationship between physical activity and mental health has been studied more. It has been suggested that physical activity could reduce anxiety and improve physical self-perceptions and global self-esteem,(11) and it has been associated with lower depressive symptomatology and greater emotional well-being. (34) Our results are consistent with the general idea that active commuting is associated with better mental health, but does not support physical activity as a mediator in this relationship. Our analyses did not show a statistically-significant relationship between reported levels of PA and perceived stress.

Qualitative research suggested that choice of travel mode may affect well-being.(14) The quantity of public bicycle (*Bicing*) stations and the amount of greenness has been related to bicycle commuting propensity,(19) which seems to be related with the idea of commuting on a bicycle is more likely to give people the opportunity to "enjoy" or "experience" greenness than commuting on public transport or a car. At the same time, the availability of green space close to one's home has been shown to be related to better perceived general health.(35) Therefore, it seems that perceptual and environmental factors related to bicycle commuting could affect perceived stress, rather than the physical activity levels. This general idea is consistent with our results which show an inverse relationship between perceived stress and bicycle-friendly environments (public bicycle and bikeability levels) in work/study address area and the commute route. Also, our results showed that general attitude might have a role in this relationship, as we have seen that those willing non-bicycle commuters, compared to unwilling non-bicycle commuters, were less stressed. But this remained quite unclear as the relationship disappears in the sensitivity analyses.

#### Limitations and strengths

Our study had some limitations. Firstly, our study used a cross-sectional design, which is not well-suited to assess the direction of causation and we cannot exclude reverse causality or residual confounding. Secondly, our measurement method may be prone to information bias. With the questionnaire data we could have misclassification error of bicycle commuting and PA because of the data being self-reported. Because of that, the potential mediation by PA could be under-estimated.(36) The TAPAS Travel Survey only measured levels of PA without differentiating between types of PA (work, travel, recreational). Furthermore, the modification of the 5-point PSS-4 Likert scale into a 4-point Likert scale could incorrectly-estimate the perceived stress.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

#### **BMJ Open**

This study had several strengths, too. The study had high internal validity, with a good representation of bicycle commuters. Related to subjects' characteristics, the TAPAS Travel Survey sample is representative of Barcelona's population from the socio-demographic point of view. It was compared with data from the Catalan government's Barcelona Active Population Survey (Statistics and information service, Catalan government 2011) and no statistically-significant differences between subjects' deprivation index and home and work population density in both surveys were found.(3,19) Finally, our study in a southern European city has added evidence in a different context than the current literature on these issues.

#### **Future research**

Our findings underscored the need for future research. There is a need to obtain a clear understanding of the relationship between the bicycle commuting and perceived stress in longitudinal studies. It is likely that other factors could mediate the relationship between these two variables, especially those related to environmental determinants and personal attitudes. Further work related to determinants of bicycle commuting and perceived stress is needed.

## CONCLUSIONS

We found that healthy, adult bicycle commuters had lower stress than commuters of other transport modes. Also, bicycle commuters who bicycled four or more days per week had lower stress than those who bicycled less than that. Environmental determinants such as the number of public bicycle stations and bikeability, and also personal attitudes seem to have an influence on this relationship. Our findings should be considered by decision-makers when

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

promoting bicycle commuting as a daily routine, to reduce stress levels and improve public health and well-being.

to beer to view only

#### **BMJ Open**

## ACKNOWLEDGEMENTS

The authors are grateful to the participants of TAPAS Travel Survey and the CREAL technicians who recruited them and created geographical variables. We would like to acknowledge the ESCAPE project and its contributors for air quality and noise model data of Barcelona, as well as the Ajuntament de Barcelona, Departament de Mobilitat for street map information.

## FUNDING

This study was performed as part of the TAPAS project < <u>http://www.tapas-program.org/</u>>, funded by the Coca-Cola Foundation, the Agència de Gestió d'ajuts Universitaris i de Recerca (AGAUR) and CREAL internal funding.

## **COMPETING INTERESTS**

No conflicts of interest were reported by the authors of this paper.

## **AUTHOR'S CONTRIBUTION**

IAP drafted this version of the paper and received input from all the authors. All authors read and commented on the paper and agreed with the final version.

## **DATA SHARING**

Extra data is available by emailing the corresponding author (Ione Avila-Palencia:

ione.avila@isglobal.org).

### REFERENCES

 Lim SS, Vos T, Flaxman AD, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: A systematic analysis for the Global Burden of Disease Study 2010. *Lancet* 2012;380(9859):2224–60.

 Faulkner GEJ, Buliung RN, Flora PK, et al. Active school transport, physical activity levels and body weight of children and youth: A systematic review. *Prev Med* 2009;48(1):3–
 8.

3. Donaire-Gonzalez D, Nazelle A De, Cole-Hunter T, et al. The Added Benefit of Bicycle Commuting on the Regular Amount of Physical Activity Performed. *Am J Prev Med* 2015;49(6):842–9.

4. Martin A, Goryakin Y, Suhrcke M. Does active commuting improve psychological wellbeing? Longitudinal evidence from eighteen waves of the British Household Panel Survey. *Prev Med* 2014;69:296–303.

5. Humphreys DK, Goodman A, Ogilvie D. Associations between active commuting and physical and mental wellbeing. *Prev Med* 2013;57(2):135–9.

6. Ohta M, Mizoue T, Mishima N, et al. Effect of the physical activities in leisure time and commuting to work on mental health. *J Occup Health* 2007;49(1):46–52.

 Andersen LB, Schnohr P, Schroll M, et al. All-Cause Mortality Associated With Physical Activity During Leisure Time, Work, Sports, and Cycling to Work. *Arch Intern Med* 2000;160(11):1621.

8. de Geus B, Van Hoof E, Aerts I, et al. Cycling to work: influence on indexes of health in untrained men and women in Flanders. Coronary heart disease and quality of life. *Scand J Med Sci Sports* 2008;18(4):498–510.

#### **BMJ Open**

| 9.     | Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. J Health        |
|--------|------------------------------------------------------------------------------------------|
| Soc B  | <i>Pehav</i> 1983;24(4):385–96.                                                          |
| 10.    | Katsarou AL, Triposkiadis F, Panagiotakos D. Perceived stress and vascular disease:      |
| where  | e are we now? Angiology 2013;64(7):529–34.                                               |
| 11.    | Fox KR. The influence of physical activity on mental well-being. Public Health Nutr      |
| 1999;  | 2(3A):411–8.                                                                             |
| 12.    | Peluso MA, Guerra de Andrade LH. Physical activity and mental health: the                |
| assoc  | iation between exercise and mood. Clinics (Sao Paulo) 2005;60(1):61-70.                  |
| 13.    | Koslowsky M. Commuting Stress: Problems of Definition and Variable Identification.       |
| Appli  | ed Psychology: An International Review 1997;46(2):153–73.                                |
| 14.    | Guell C, Ogilvie D. Picturing commuting: photovoice and seeking well-being in            |
| every  | day travel. Qual Res 2015;15(2)201-218.                                                  |
| 15.    | St-Louis E, Manaugh K, van Lierop D, et al. The happy commuter: A comparison of          |
| comn   | nuter satisfaction across modes. Transportation research. Part F, Traffic psychology and |
| behav  | viour 2014;26:160–70.                                                                    |
| 16.    | Lajeunesse S, Rodríguez D a. Mindfulness, time affluence, and journey-based affect:      |
| Explo  | oring relationships. Transportation research. Part F, Traffic psychology and behaviour   |
| 2012;  | 15(2):196–205.                                                                           |
| 17.    | Anable J, Gatersleben B. All work and no play? The role of instrumental and affective    |
| factor | rs in work and leisure journeys by different travel modes. Transportation research. Part |
| A, Po  | <i>licy and practice</i> 2005;39(2-3):163–81.                                            |
| 18.    | Simons D, Clarys P, De Bourdeaudhuij I, et al. Factors influencing mode of transport     |
|        | ler adolescents: A qualitative study <i>BMC Public Health</i> 2013:13:323                |

19. Cole-Hunter T, Donaire-Gonzalez D, Curto A, et al. Objective correlates and determinants of bicycle commuting propensity in an urban environment. *Transportation research. Part D Transport and environment* 2015;40(2):132–43.

20. Olsson LE, Gärling T, Ettema D, et al. Happiness and Satisfaction with Work Commute. *Soc Indic Res* 2013;111(1):255–63.

21. Gottholmseder G, Nowotny K, Pruckner GJ, et al. Stress perception and commuting. *Health Econ* 2009;18(5):559–76.

22. Hansson E, Mattisson K, Björk J, et al. Relationship between commuting and health outcomes in a cross-sectional population survey in southern Sweden. *BMC Public Health* 2011;11:834.

23. Institut d'Estudis Regionals i Metropolitans de Barcelona. La Mobilitat quotidiana a Catalunya. *Papers. Regió Metropolitana de Barcelona* 2008.

24. Forsyth A, Krizek KJ, Agrawal AW, et al. Reliability testing of the Pedestrian and Bicycling Survey (PABS) method. *J Phys Act Health* 2012;9(5):677–88.

25. Warttig SL, Forshaw MJ, South J, et al. New, normative, English-sample data for the Short Form Perceived Stress Scale (PSS-4). *J Health Psychol* 2013;18(12):1617–28.

26. Craig CL, Marshall AL, Sjostrom M, et al. International physical activity questionnaire: 12-country reliability and validity. *Med Sci Sports Exerc* 2003;35(8):1381–95.

27. Domínguez-Berjón MF, Borrell C, Cano-Serral G, et al. Constructing a deprivation index based on census data in large Spanish cities (the MEDEA project). *Gac Sanit*2008;22(3):179–87.

28. Beelen R, Hoek G, Vienneau D, et al. Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe – The ESCAPE project. *Atmospheric Environment* 2013;72(2):10–23.

#### **BMJ Open**

| 29.     | Ajuntament de Barcelona. Pla d'acció per a la minoració de la contaminació acústica      |
|---------|------------------------------------------------------------------------------------------|
| de la c | ciutat de Barcelona. 2010. http://sima.gencat.cat/Visors/Soroll/ Inici.html (accessed 10 |
| April   | 2015)                                                                                    |
| 30.     | Ministere de L'Environnement. Prevision des Niveaux Sonores. 1980.                       |
| http:// | temis.documentation.developpement-                                                       |
| durab   | le.gouv.fr/documents/temis/4859/4859_1980.pdf (accessed 10 April 2015).                  |
| 31.     | World Health Organisation. Guideline for Community Noise. 2011.                          |
| http:// | /www.who.int/docstore/peh/noise/Commnoise4.htm (accessed 10 April 2015).                 |
| 32.     | Ajuntament de Barcelona. Public map of private bicycle parking. 2011.                    |
| http:// | w3.bcn.cat/fitxers/mobilitat/bici/20100227reservesbicicletesokversio.417. pdf (accessed  |
| 10 Ap   | oril 2015).                                                                              |
| 33.     | Winters M, Brauer M, Setton EM, et al. Mapping bikeability: A spatial tool to support    |
| sustai  | nable travel. <i>Environ Plan B Plan Des</i> 2013;40(5):865–83.                          |
| 34.     | Galper DI, Trivedi MH, Barlow CE, Dunn AL, Kampert JB. Inverse association               |
| betwe   | en physical inactivity and mental health in men and women. Med Sci Sports Exerc          |
| 2006;   | 38(1):173–8.                                                                             |
| 35.     | Maas J, Verheij RA, Groenewegen PP, et al. Green space, urbanity, and health: how        |
| strong  | g is the relation? J Epidemiol Community Health 2006;60(7):587–92.                       |
| 36.     | Baron RM, Kenny D a. The moderator-mediator variable distinction in social               |
| psych   | ological research: conceptual, strategic, and statistical considerations. J Pers Soc     |
| Psych   | ol 1986;51(6):1173–82.                                                                   |
|         |                                                                                          |
|         |                                                                                          |
|         |                                                                                          |
|         |                                                                                          |
|         |                                                                                          |

### SUPPLEMENTARY MATERIAL

Table S1. PSS4 questions used in TAPAS Travel Survey

*Q218.* In the last month, ¿how many times have you feel you can't control important things in your life?

| 0   | Never            |
|-----|------------------|
| 1   | Nearly never     |
| 2   | Often            |
| 3   | Ever             |
| 997 | Don't Know       |
| 998 | Refuse to Answer |

*Q219.* In the last month, ¿how many times have you feel safety in your cleverness of take care of your own personal problems?

| 0   | Never            |
|-----|------------------|
| 1   | Nearly never     |
| 2   | Often            |
| 3   | Ever             |
| 997 | Don't Know       |
| 998 | Refuse to Answer |

- Q220. In the last month, ; how many times have you feel that around things go in harmony you're your life?
  - Never
     Nearly never
     Often
     Ever
     Don't Know
     Refuse to Answer
- *Q221.* In the last month, ¿how many times have you feel that difficulties are bigger than become impossible of overcome?
  - 0 Never
  - 1 Nearly never
  - 2 Often
  - 3 Ever
  - 997 Don't Know
  - 998 Refuse to Answer

#### **BMJ Open**

#### Table S2. Description of the individual and environmental determinants in TAPAS sample

for Bicycle commuting levels and Bicycle commuting propensity.

|                                                                                 |        |             | ысусіе    | commutir   | ig ievels |           |         |             |                |           | Dicycle c    | omnutin     | ig propei      | nsity      |               |       |  |  |  |
|---------------------------------------------------------------------------------|--------|-------------|-----------|------------|-----------|-----------|---------|-------------|----------------|-----------|--------------|-------------|----------------|------------|---------------|-------|--|--|--|
| Variables                                                                       | (1     | .ow<br>109) | Med<br>(6 | lium<br>5) | (22       | gh<br>(4) | p-value | Unwi<br>(23 | illing<br>30)  | Wil<br>(1 | lling<br>60) | Infre<br>(1 | equent<br>.09) | Free<br>(2 | quent<br>(89) | p-val |  |  |  |
|                                                                                 | n      | %           | n         | %          | n         | %         |         | n           | %              | n         | %            | n           | %              | n          | %             |       |  |  |  |
| Outcome                                                                         |        |             |           |            |           |           |         |             |                |           |              |             |                |            |               |       |  |  |  |
| Stressed (median)(Yes)                                                          | 49     | 45.37       | 12        | 19.05      | 57        | 26.15     | < 0.001 | 107         | 46.93          | 55        | 34.81        | 49          | 45.37          | 69         | 24.56         |       |  |  |  |
| Individual determinants                                                         |        |             |           |            |           |           |         |             |                |           |              |             |                |            |               |       |  |  |  |
| Age (median; IQR)                                                               | 36     | 14          | 36        | 17         | 35        | 12        | 0.777   | 37          | 16             | 36        | 16           | 36          | 14             | 35         | 12            |       |  |  |  |
| Total PA – min/week (median;IQR)                                                | 494.99 | 435.00      | 454.99    | 330.01     | 484.99    | 440.00    | 0.567   | 364.99      | 390.01         | 404.99    | 420.00       | 494.99      | 435.00         | 480.00     | 405.01        |       |  |  |  |
| MVPA – min/week (median;IQR)                                                    | 240.00 | 345.01      | 294.99    | 200.00     | 300.00    | 302.50    | 0.092   | 90.00       | 244.99         | 90.00     | 240.00       | 240.00      | 345.01         | 300.00     | 270.00        |       |  |  |  |
| VPA – min/week (median;IQR)                                                     | 120.00 | 224.99      | 90.00     | 199.99     | 102.50    | 240.00    | 0.386   | 45.00       | 150.00         | 0.00      | 127.50       | 120.00      | 224.99         | 90.00      | 225.00        |       |  |  |  |
| Sex (Female)                                                                    | 49     | 44.95       | 33        | 50.77      | 94        | 41.96     | 0.446   | 151         | 65.65          | 83        | 51.88        | 49          | 44.95          | 127        | 43.94         |       |  |  |  |
| Country of birth (non-Spanish)                                                  | 19     | 17.59       | 7         | 10.77      | 30        | 13.39     | 0.412   | 16          | 6.96           | 25        | 15.63        | 19          | 17.59          | 37         | 12.80         |       |  |  |  |
| Working status (Student)                                                        | 17     | 15.60       | 10        | 15.38      | 24        | 10.71     | 0.364   | 24          | 10.43          | 29        | 18.13        | 17          | 15.60          | 34         | 11.76         |       |  |  |  |
| Education level (University studies completed or<br>equivalent level education) | r 81   | 74.31       | 50        | 76.92      | 173       | 77.23     | 0.836   | 161         | 70.00          | 86        | 53.75        | 81          | 74.31          | 223        | 77.16         |       |  |  |  |
| Living with family/partner                                                      | 88     | 80.73       | 48        | 75.00      | 172       | 76 79     | 0.622   | 192         | 92.49          | 135       | 84 38        | 88          | 80.73          | 220        | 76 39         |       |  |  |  |
| Employed people in household (>2)                                               | 69     | 63 30       | 35        | 55 56      | 145       | 64 73     | 0.410   | 152         | 66 09          | 109       | 68 99        | 69          | 63 30          | 180        | 62.72         |       |  |  |  |
| MEDEA index                                                                     |        |             |           |            |           |           | 0.627   |             |                |           |              |             |                |            |               |       |  |  |  |
| MEDEA Index                                                                     | 35     | 32.11       | 23        | 35 38      | 75        | 33.48     | 0.027   | 81          | 35.22          | 49        | 30.63        | 35          | 32 11          | 98         | 33.91         |       |  |  |  |
| 1 st tertile (least deprived)                                                   | 38     | 34.86       | 23        | 41 54      | 76        | 33.93     |         | 66          | 28.70          | 56        | 35.00        | 38          | 34.86          | 103        | 35.64         |       |  |  |  |
|                                                                                 | 36     | 33.03       | 15        | 23.08      | 73        | 32.50     |         | 83          | 36.00          | 55        | 34.38        | 36          | 33.03          | 88         | 30.45         |       |  |  |  |
| 3rd tertile (most deprived)                                                     | 31     | 28.44       | 18        | 29.08      | 70        | 35.27     | 0.340   | 0/          | 40.87          | 57        | 35.85        | 31          | 28.44          | 07         | 33.68         |       |  |  |  |
| Children in household (Yes)                                                     | 2      | 20.44       | 5         | 7.04       | 20        | 8 02      | 0.114   | 20          | 9 72           | 16        | 10.00        | 2           | 20.44          | 25         | 9 71          |       |  |  |  |
| Children <3 years in household (Yes)                                            | 42     | 2.75        | 27        | 1.54       | 112       | 50.45     | 0.122   | 20          | 0.75<br>20.12  | 50        | 21.25        | 43          | 2.75           | 140        | 0.71          |       |  |  |  |
| Self-perceived health (Very good/Excellent)                                     | 43     | 39.43       | 27        | 41.54      | 115       | 50.45     | 0.125   | 90          | 39.13          | 50        | 51.25        | 45          | 39.45          | 62         | 40.44         |       |  |  |  |
| BMI (Overweight/Obese)                                                          | 25     | 22.94       | 14        | 21.54      | 49        | 21.88     | 0.969   | 73          | 31.88          | 51        | 32.08        | 25          | 22.94          | 05         | 21.8          |       |  |  |  |
| Chronic disease (Yes)                                                           | 11     | 10.09       | 8         | 12.51      | 17        | 1.39      | 0.438   | 18          | 7.85           | 120       | 4.38         | 11          | 10.09          | 23         | 8.05          |       |  |  |  |
| Stress releasing (Agreement)                                                    | 95     | 87.10       | 62        | 98.41      | 199       | 90.03     | 0.047   | 105         | 72.44<br>51.70 | 139       | 89.08        | 95          | 87.10          | 201        | 91.90         |       |  |  |  |
| Bicycle trip enjoyment (Agreement)                                              | 103    | 94.50       | 05        | 100.00     | 212       | 93.93     | 0.175   | 110         | 51.79          | 155       | 04./1        | 105         | 94.50          | 277        | 90.85         |       |  |  |  |
| Environmental determinants<br>Commute distance, estimated (km)<br>(median;IRQ)  | 3.36   | 2.81        | 3.14      | 2.14       | 2.86      | 1.99      | 0.044   | 3.89        | 2.88           | 3.93      | 2.70         | 3.36        | 2.81           | 2.98       | 2.12          |       |  |  |  |
| Public bicycle stations (median;IQR)                                            |        |             |           |            |           |           |         |             |                |           |              |             |                |            |               |       |  |  |  |
| Home, count in 400m buff                                                        | 4      | 3           | 5         | 3          | 5         | 3         | 0.492   | 4           | 3              | 3         | 3            | 4           | 3              | 5          | 3             |       |  |  |  |
| Work/study, count in 400m buff                                                  | 5      | 4           | 6         | 3          | 5         | 4         | 0.124   | 4           | 4              | 5         | 5            | 5           | 4              | 5          | 3             |       |  |  |  |
| Greenness, NDVI [IQR, (median; IQR)]                                            |        |             |           |            |           |           |         |             |                |           |              |             |                |            |               |       |  |  |  |
| Home, average of 400m buff                                                      | 0.50   | 1.07        | 0.48      | 1.13       | 0.41      | 0.70      | 0.635   | 0.63        | 1.19           | 0.76      | 1.01         | 0.50        | 1.07           | 0.44       | 0.75          |       |  |  |  |
| Work/study, average of 400m buffer                                              | 0.35   | 1.02        | 0.27      | 0.57       | 0.35      | 0.98      | 0.136   | 0.38        | 1.05           | 0.41      | 1.08         | 0.35        | 1.02           | 0.32       | 0.87          |       |  |  |  |
| Commute route, average of RBA                                                   | 0.69   | 1.12        | 0.54      | 0.56       | 0.68      | 0.88      | 0.322   | 0.72        | 1.28           | 0.70      | 1.16         | 0.69        | 1.12           | 0.66       | 0.83          |       |  |  |  |
| NO2, ppb (median;IQR)                                                           |        |             |           |            |           |           |         |             |                |           |              |             |                |            |               |       |  |  |  |
| Home, concentration in 400m buffer                                              | 74.75  | 29.71       | 79.15     | 24.02      | 80.11     | 24.36     | 0.186   | 76.56       | 26.10          | 73.47     | 25.00        | 74.75       | 29.71          | 80.11      | 24.40         |       |  |  |  |
| Work/study, concentration in 400m buffer                                        | 77.60  | 33.01       | 86.23     | 27.41      | 80.70     | 30.12     | 0.091   | 82.21       | 34.12          | 79.23     | 38.33        | 77.60       | 33.01          | 82.61      | 30.00         |       |  |  |  |
| Commute route, concentration in RBA                                             | 82.49  | 18.19       | 87.19     | 23.04      | 85.51     | 24.29     | 0.127   | 86.61       | 23.03          | 82.05     | 20.99        | 82.49       | 18.19          | 85.75      | 24.56         |       |  |  |  |
| Noise, >55dB (%) (median;IQR)                                                   |        |             |           |            |           |           |         |             |                |           |              |             |                |            |               |       |  |  |  |
| Home, proportion in 400m buffer                                                 | 79.95  | 15.23       | 79.09     | 11.59      | 79.62     | 15.47     | 0.554   | 79.39       | 13.89          | 78.79     | 12.69        | 79.95       | 15.23          | 79.46      | 14.84         |       |  |  |  |
| Work/study, proportion in 400m buffer                                           | 83.92  | 23.69       | 81.36     | 21.45      | 80.83     | 22.22     | 0.468   | 80.14       | 22.52          | 80.85     | 24.54        | 83.92       | 23.69          | 80.90      | 21.94         |       |  |  |  |
| Commute route, proportion in RBA                                                | 78.54  | 11.93       | 73.15     | 12.48      | 77.31     | 13.02     | 0.057   | 76.78       | 10.84          | 77.57     | 10.63        | 78.54       | 11.93          | 76.50      | 13.37         |       |  |  |  |
| Bikeability (median;IQR)                                                        |        |             |           |            |           |           |         |             |                |           |              |             |                |            |               |       |  |  |  |
| Home, concentration in 400m buffer                                              | 6.63   | 2.30        | 6.73      | 1.66       | 6.70      | 1.67      | 0.330   | 5.97        | 2.30           | 5.92      | 2.35         | 6.63        | 2.30           | 6.72       | 1.72          |       |  |  |  |
| Work/study, concentration in 400m buffer                                        | 7.15   | 2.08        | 7.01      | 1.20       | 7.02      | 1.86      | 0.638   | 6.64        | 2.56           | 6.89      | 1.89         | 7.15        | 2.08           | 7.01       | 1.69          |       |  |  |  |
| Commute and a concentration in DDA                                              | 6.86   | 1 38        | 7 23      | 0.99       | 7 1 5     | 1 29      | 0.236   | 6 59        | 1.83           | 6 77      | 1 54         | 6.86        | 1 38           | 716        | 1 23          |       |  |  |  |

ter oute, concentration in RBA 0.00 1.30 1.25 0.27 1.13 1.27 0.20 0.37 1.83 0.71 1.34 0.80 1.38 7.16 1.23 (0) PA, Physical Activity; MVPA, Moderate-to-Vigorous Physical Activity; VPA, Vigorous Physical Activity; BMI, Body Mass Index. Data are n and %, unless otherwise noted. There are missing data in: Perceived stress (13; 1.65%), Country of birth (1; 0.13%), Living with family/partner (1; 0.13%), Employed people in household (4; 0.51), Children in household (2; 0.25%), Children <3years old in household (3; 0.38), BMI (2; 0.25%); Stress releasing (15; 1.90%), Bicycle trip enjoyment (12; 1.52%), Commute distance (20; 2.54%), Greenness (20; 2.54%), NO<sub>2</sub>(20; 2.54%). <sup>a</sup>Chi square test, instead of Age, Total PA, MVPA, VPA, and all the Environmental determinants (U Mann Whitney test).

#### Table S3. Sensitivity analyses looking the relationship between perceived stress (P75, P90)

and all the covariates.

| Tailable         OR (95% CI)         p-value         OR (95% CI)           Individual determinants         Age         1.00         (0.98, 1.02)         0.783         0.99         (0.97, 1.02)           Total PA - min/week         1.00         (0.99, 1.00)         0.057         1.00         (0.99, 1.00)           MVPA - min/week         1.00         (0.99, 1.00)         0.057         1.00         (0.99, 1.00)           Sex (Female)         1.51         (1.04, 2.21)         0.031         1.78         (1.05, 2.43)           Country of birth (non-Spanish)         1.19         (0.72, 0.5)         0.520         1.16         (0.52, 2.43)           Education level (University studies completed or quivalent-level education)         0.74         (0.50, 1.09)         0.122         0.78         (0.46, 1.34)           Living with familypartner         1.00         (0.62, 1.60)         0.987         0.94         (0.50, 1.77)           Employed people in household (>2)         0.62         (0.42, 0.90)         0.012         0.73         (0.43, 1.22)           MEDEA index         1.55         (0.97, 2.49)         0.065         1.85         (0.94, 3.66)           Children in household (Yes)         0.56         0.56         0.52         0.51         0.57                                                                                                                                          | Perceived stress (P90) |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|--|--|--|--|
| Individual determinants           Age         1.00 $(0.98, 1.02)$ $0.783$ $0.99$ $(0.97, 1.02)$ Total PA - min/week         1.00 $(0.99, 1.00)$ $0.057$ 1.00 $(0.99, 1.00)$ MVPA - min/week         1.00 $(0.99, 1.00)$ $0.57$ 1.00 $(0.99, 1.00)$ Sex (Female)         1.51 $(1.04, 2.21)$ $0.031$ $1.78$ $(1.05, 3.01)$ Country of birth (non-Spanish)         1.19 $(0.70, 2.05)$ $0.520$ $1.16$ $(0.55, 2.43)$ Working status (Student)         1.61 $(0.98, 2.64)$ $0.060$ $1.05$ $(0.50, 1.09)$ Education level (University studies completed or equivalent-level education) $0.74$ $(0.50, 1.09)$ $0.122$ $0.78$ $(0.46, 1.34)$ Living with family/partner         1.00 $0.62$ $(0.42, 0.90)$ $0.012$ $0.73$ $(0.43, 1.22)$ MEDEA index         1.00         1.00         1.00         1.00         1.00         1.00         1.01         1.01         1.02         1.03 $(0.95, 2.44)$ $0.079$ 1.95 $(0.93, 3.85)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | p-value                |  |  |  |  |  |
| Individual determinants           Age         1.00 $(0.98, 1.02)$ $0.783$ $0.99$ $(0.97, 1.02)$ Total PA - min/week         1.00 $(0.99, 1.00)$ $0.057$ 1.00 $(0.99, 1.00)$ VPA - min/week         1.00 $(0.99, 1.00)$ $0.367$ 1.00 $(0.99, 1.00)$ VPA - min/week         1.00 $(0.99, 1.00)$ $0.367$ 1.00 $(0.99, 1.00)$ Sex (Female)         1.51 $(1.04, 2.21)$ $0.031$ 1.78 $(1.05, 3.01)$ Country of birth (non-Spanish)         1.19 $(0.70, 2.05)$ $0.520$ 1.16 $(0.55, 2.43)$ Working status (Student)         1.61 $(0.98, 2.64)$ $0.060$ $1.05$ $(5.5, 2.43)$ Living with finally/partner         1.00 $0.62$ $(0.42, 0.90)$ $0.112$ $0.78$ $(0.44, 1.34)$ Living with finally/partner         1.00 $0.62$ $(0.42, 0.90)$ $0.012$ $0.73$ $(0.43, 1.22)$ MEDEA index         1.00 $1.55$ $0.778$ $0.91$ $(0.53, 1.56)$ Children 'a years in household (Yes) <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |  |  |  |  |  |
| Age1.00 $0.98$ , $1.02$ ) $0.783$ $0.99$ $(0.99, 1.00)$ MVPA - min/week1.00 $(0.99, 1.00)$ $0.057$ 1.00 $(0.99, 1.00)$ MVPA - min/week1.00 $(0.99, 1.00)$ $0.367$ 1.00 $(0.99, 1.00)$ VPA - min/week1.00 $(0.99, 1.00)$ $0.367$ 1.00 $(0.99, 1.00)$ Sex (Female)1.51 $(1.04, 2.21)$ $0.031$ 1.78 $(1.05, 3.01)$ Country of birth (non-Spanish)1.19 $(0.70, 2.05)$ $0.520$ 1.16 $(0.55, 2.43)$ Working status (Student)1.61 $(0.98, 2.64)$ $0.060$ 1.05 $(0.50, 2.19)$ Education level (University studies completed or equivalent-level education) $0.74$ $(0.50, 1.09)$ $0.122$ $0.78$ $(0.46, 1.34)$ Employed people in household (>2) $0.62$ $(0.42, 0.90)$ $0.012$ $0.73$ $(0.43, 1.22)$ MEDEA index1.001.001.001.001.002nd tertile (nost deprived)1.56 $(0.97, 2.49)$ $0.065$ 1.85 $(0.94, 3.66)$ Children in household (Yes)1.06 $(0.25, 1.27)$ $0.166$ 1.03 $(0.52, 1.47)$ BMI (Overweight/Obes)1.10 $(0.3, 1.55)$ $0.778$ $0.91$ $(0.52, 1.47)$ BMI (Overweight/Obes)1.09 $(0.99, 3.28)$ $0.059$ $1.77$ $(0.80, 3.90)$ Stress releasing (Agreement) $0.68$ $0.44, 1.06$ $0.092$ $0.78$ $(0.42, 1.42)$ Pavis model distance, estimated (km) $1.09$ $(0.99, 1.18)$ $0.061$                                                                                                                                                                                                                                                                    | 0.774                  |  |  |  |  |  |
| Total PA - mm/week       1.00 $(0.99, 1.00)$ $0.057$ 1.00 $(0.99, 1.00)$ VPA - min/week       1.00 $(0.99, 1.00)$ $0.115$ 1.00 $(0.99, 1.00)$ VPA - min/week       1.00 $(0.99, 1.00)$ $0.367$ 1.00 $(0.99, 1.00)$ Sex (Female)       1.51 $(1.04, 2.21)$ $0.031$ 1.78 $(1.05, 3.01)$ Country of birth (non-Spanish)       1.19 $(0.70, 2.05)$ $0.520$ 1.16 $(0.55, 2.43)$ Working status (Student)       1.61 $(0.98, 2.64)$ $0.060$ $1.05$ $(0.50, 2.19)$ Education level (University studies completed or equivalent-level education) $0.74$ $(0.50, 1.09)$ $0.122$ $0.78$ $(0.46, 1.34)$ Living with family/partner       1.00 $0.62$ $(0.42, 0.90)$ $0.012$ $0.73$ $(0.43, 1.22)$ MEDEA index       1.35 $(0.97, 2.49)$ $0.065$ 1.85 $(0.94, 3.66)$ Children in household (Yes)       1.06 $0.72, 1.55$ $0.778$ $0.91$ $(0.53, 1.47)$ Self-proceived health (Very good/Excellent)       0.60 $(0.40, 0.89)$ $0.056$ $1.03$ <t< td=""><td>0.674</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.674                  |  |  |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.775                  |  |  |  |  |  |
| VPA - min/week       1.00 $(0.99, 1.00)$ $0.367$ 1.00 $(0.99, 1.00)$ Sex (Female)       1.51 $(1.04, 2.21)$ $0.031$ $1.78$ $(1.05, 3.01)$ Country of birth (non-Spanish) $1.91$ $(0.70, 2.05)$ $0.520$ $1.16$ $(0.55, 2.43)$ Working status (Student) $1.61$ $(0.98, 2.64)$ $0.060$ $1.05$ $(0.50, 1.29)$ Education level (University studies completed or equivalent-level education) $0.74$ $(0.50, 1.09)$ $0.122$ $0.78$ $(0.44, 1.34)$ Living with family/partner $1.00$ $(0.62, 1.60)$ $0.987$ $0.94$ $(0.50, 1.77)$ Employed people in household (>2) $0.62$ $(0.42, 0.90)$ $0.012$ $0.73$ $(0.43, 1.22)$ MEDEA index       1.53 $(0.95, 2.44)$ $0.079$ $1.95$ $(0.99, 3.82)$ 3rd tertile (nost deprived) $1.56$ $(0.97, 2.49)$ $0.65$ $1.85$ $(0.94, 3.66)$ Children in household (Yes) $0.56$ $(0.25, 1.27)$ $0.166$ $0.52$ $(0.47, 1.70)$ Ser/perceived health (Very good/Excellent) $0.60$ $(0.40, 0.89)$ $0.010$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.673                  |  |  |  |  |  |
| Sex (Female)       1.51 $(1.04, 2.21)$ $0.031$ $1.78$ $(1.05, 3.01)$ Country of birth (non-Spanish) $1.19$ $(0.70, 2.05)$ $0.520$ $1.16$ $(0.55, 2.43)$ Working status (Student) $1.61$ $(0.98, 2.64)$ $0.060$ $1.05$ $(0.50, 2.19)$ Education level (University studies completed or equivalent-level education) $0.74$ $(0.50, 1.09)$ $0.122$ $0.78$ $(0.46, 1.34)$ Living with family/partner $1.00$ $(0.62, 1.60)$ $0.987$ $0.94$ $(0.50, 1.77)$ Employed people in household ( $\geq 2$ ) $0.62$ $(0.42, 0.90)$ $0.012$ $0.73$ $(0.43, 1.22)$ MEDEA index       1.53 $(0.95, 2.44)$ $0.079$ $1.95$ $(0.99, 3.82)$ 3rd tertile (nost deprived) $1.56$ $(0.72, 1.55)$ $0.778$ $0.911$ $(0.53, 1.56)$ Children '3 years in household (Yes) $0.56$ $(0.25, 1.27)$ $0.166$ $0.52$ $(1.61, 70)$ Sters releasing (Agreement) $0.68$ $(0.49, 1.35)$ $0.651$ $1.03$ $(0.58, 1.82)$ Chronic disease (Yes) $1.77$ $(0.98, 3.28)$ $0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.728                  |  |  |  |  |  |
| Country of birth (non-Spanish)         1.19 $0.70, 2.05$ ) $0.520$ $1.16$ $(0.55, 2.43)$ Working status (Student)         1.61 $(0.98, 2.64)$ $0.060$ $1.05$ $(0.50, 2.19)$ Education level (University studies completed or<br>equivalent-level education) $0.74$ $(0.50, 1.09)$ $0.122$ $0.78$ $(0.46, 1.34)$ Living with family/partner         1.00 $0.62, 1.60)$ $0.987$ $0.944$ $(0.50, 1.77)$ Employed people in household (>2) $0.62$ $(0.42, 0.90)$ $0.012$ $0.73$ $(0.43, 1.22)$ MEDEA index         1.00         1.00         1.00         1.00         1.00         2.03 $(0.53, 1.56)$ $(0.77, 2.49)$ $0.065$ 1.85 $(0.99, 3.82)$ 3rd tertile (most deprived)         1.56 $(0.97, 2.49)$ $0.065$ 1.85 $(0.94, 3.66)$ Children in household (Yes)         1.06 $(0.72, 1.55)$ $0.778$ $0.911$ $(0.52, 1.47)$ BMI (Overweight/Obese)         1.10 $(0.73, 1.65)$ $0.665$ $1.03$ $(0.52, 1.47)$ BMI (Overweight/Obese)         1.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.034                  |  |  |  |  |  |
| Working status (Student)         1.61 $(0.98, 2.64)$ $0.060$ 1.55 $(0.50, 2.19)$ equivalent-level education) $0.74$ $(0.50, 1.09)$ $0.122$ $0.78$ $(0.46, 1.34)$ Employed people in household (>2) $0.62$ $(0.42, 0.90)$ $0.012$ $0.78$ $(0.46, 1.34)$ Ist ertile (least deprived) $0.62$ $(0.42, 0.90)$ $0.012$ $0.73$ $(0.43, 1.22)$ MEDEA index         1.00 $1.00$ $1.00$ $1.00$ $1.00$ 2nd tertile (nost deprived) $1.56$ $(0.97, 2.49)$ $0.065$ $1.85$ $(0.94, 3.66)$ Children in bousehold (Yes) $1.66$ $0.72, 1.55$ $0.778$ $0.91$ $(0.53, 1.56)$ Children in bousehold (Yes) $0.56$ $(0.25, 1.27)$ $0.166$ $0.52$ $(0.41, 1.09)$ Self-perceived health (Very good/Excellent) $0.60$ $0.40, 0.89$ $0.010$ $0.87$ $(0.52, 1.47)$ BMI (Overweight/Obese) $1.10$ $0.73, 1.65$ $0.655$ $1.03$ $(0.52, 1.47)$ Bicycle trip enjoyment (Agreement)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.696                  |  |  |  |  |  |
| Education Evel (burlet sity studies completed of quivalent-level education) $0.74$ $(0.50, 1.09)$ $0.122$ $0.78$ $(0.46, 1.34)$ Living with family/partner $1.00$ $(0.62, 1.60)$ $0.987$ $0.94$ $(0.50, 1.77)$ Employed people in household (>2) $0.62$ $(0.42, 0.90)$ $0.012$ $0.73$ $(0.43, 1.22)$ MEDEA index       1.00       1.00       1.00       1.00       1.00         2nd tertile (least deprived)       1.56 $(0.97, 2.49)$ $0.065$ 1.85 $(0.94, 3.66)$ Children in household (Yes)       1.56 $(0.97, 2.49)$ $0.166$ $0.52$ $(0.16, 1.70)$ Self-perceived health (Very good/Excellent) $0.60$ $(0.40, 0.89)$ $0.016$ $0.77$ $(0.80, 3.90)$ Stress releasing (Agreement) $0.82$ $(0.49, 1.35)$ $0.428$ $0.93$ $(0.46, 1.89)$ Bicycle trip enjoyment (Agreement) $0.68$ $0.44, 1.06$ $0.092$ $0.78$ $(0.42, 1.42)$ Environmental determinants       Commute distance, estimated (km) $1.09$ $0.99, 1.18$ $0.61$ $1.03$ $(0.81, 1.04)$ Work/study, count in 400m buffer $0.95$                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.904                  |  |  |  |  |  |
| Living with family/partner         1.00 $(0.62, 1.60)$ $0.987$ $0.94$ $(0.50, 1.77)$ Employed people in household (>2) $0.62$ $(0.42, 0.90)$ $0.012$ $0.73$ $(0.43, 1.22)$ MEDEA index         1.00         1.00         1.00         1.00           2nd tertile (least deprived)         1.53 $(0.95, 2.44)$ $0.079$ 1.95 $(0.99, 3.82)$ 3rd tertile (most deprived)         1.56 $(0.97, 2.49)$ $0.065$ 1.85 $(0.94, 3.66)$ Children in household (Yes)         0.56 $(0.25, 1.27)$ $0.166$ $0.52$ $(0.16, 1.70)$ Self-percived health (Very good/Excellent) $0.60$ $(0.72, 1.55)$ $0.778$ $0.91$ $(0.53, 1.66)$ Chronic disease (Yes)         1.10 $(0.73, 1.65)$ $0.665$ $1.03$ $(0.58, 1.82)$ Chronic disease (Yes)         0.79 $0.98, 3.28$ $0.059$ $1.77$ $(0.80, 3.90)$ Sters releasing (Agreement)         0.68 $0.44, 1.06$ $0.092$ $0.78$ $(0.42, 1.42)$ Environmental determinants         Intermineas         Intermin 400m buf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.370                  |  |  |  |  |  |
| Employed people in household (>2) $0.62$ $(0.42, 0.90)$ $0.012$ $0.73$ $(0.43, 1.22)$ MEDEA index         1.00         1.00         1.00         1.00           2nd tertile (last deprived)         1.53 $(0.95, 2.44)$ $0.079$ $1.95$ $(0.99, 3.82)$ 3rd tertile (most deprived)         1.56 $(0.97, 2.49)$ $0.065$ $1.85$ $(0.94, 3.66)$ Children in household (Yes)         0.66 $(0.25, 1.27)$ $0.166$ $0.52$ $(0.16, 1.70)$ Self-perceived health (Very good/Excellent) $0.60$ $(0.40, 0.89)$ $0.010$ $0.87$ $(0.52, 1.47)$ BMI (Overweight/Obese)         1.10 $(0.73, 1.65)$ $0.665$ $1.03$ $(0.58, 1.82)$ Chronic disease (Yes)         1.79 $(0.98, 3.28)$ $0.059$ $1.77$ $(0.80, 3.90)$ Stress releasing (Agreement) $0.82$ $(0.49, 1.35)$ $0.428$ $0.93$ $(0.42, 1.42)$ Environmental determinants         1.09 $(0.99, 1.18)$ $0.061$ $1.03$ $(0.91, 1.16)$ Public bicycle stations         1.09 $(0.92, 1.06)$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.841                  |  |  |  |  |  |
| MEDEA index       1.00       1.00         1st tertile (least deprived)       1.53 $(0.95, 2.44)$ $0.079$ $1.95$ $(0.99, 3.82)$ 3rd tertile (most deprived)       1.56 $(0.97, 2.49)$ $0.065$ $1.85$ $(0.94, 3.66)$ Children in household (Yes)       1.06 $(0.72, 1.55)$ $0.778$ $0.91$ $(0.53, 1.56)$ Children        syears in household (Yes) $0.56$ $(0.25, 1.27)$ $0.166$ $0.52$ $(0.16, 1.70)$ Self-perceived health (Very good/Excellent) $0.60$ $(0.40, 0.89)$ $0.010$ $0.87$ $(0.52, 1.47)$ BMI (Overweight/Obese) $1.10$ $(0.73, 1.65)$ $0.665$ $1.03$ $(0.52, 1.47)$ BMI (Overweight/Obese) $1.09$ $(0.93, 1.25)$ $0.428$ $0.93$ $(0.46, 1.89)$ Bicycle trip enjoyment (Agreement) $0.82$ $(0.49, 1.35)$ $0.428$ $0.93$ $(0.42, 1.42)$ Environmental determinants       Image: trip enjoyment (Agreement) $0.68$ $0.94$ $0.761$ $0.33$ $(0.84, 1.04)$ Work/study, count in 400m buffer $0.99$ $0.92, 1.06$ $0.761$ $0.33$ $(0.84, 1.04)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.232                  |  |  |  |  |  |
| 1st tertile (least deprived)       1.00       1.00         2nd tertile       1.53 $(0.95, 2.44)$ $0.079$ 1.95 $(0.99, 3.82)$ 3rd tertile (most deprived)       1.56 $(0.97, 2.49)$ $0.065$ 1.85 $(0.94, 3.66)$ Children in household (Yes)       1.06 $(0.72, 1.55)$ $0.778$ $0.91$ $(0.53, 1.56)$ Children in household (Yes)       0.56 $(0.25, 1.27)$ $0.166$ $0.52$ $(0.16, 1.70)$ Self-perceived health (Very good/Excellent) $0.60$ $(0.40, 0.89)$ $0.010$ $0.87$ $(0.52, 1.47)$ BMI (Overweight/Obese) $1.10$ $(0.73, 1.65)$ $0.665$ $1.03$ $(0.58, 1.82)$ Chronic disease (Yes) $1.79$ $(0.98, 3.28)$ $0.059$ $1.77$ $(0.80, 3.90)$ Stress releasing (Agreement) $0.82$ $(0.49, 1.35)$ $0.428$ $0.93$ $(0.42, 1.42)$ Environmental determinants       Commute distance, estimated (km) $1.09$ $0.99, 1.18$ $0.061$ $1.03$ $(0.91, 1.16)$ Public bicycle stations       Home, count in 400m buffer $0.95$ $0.89, 1.01$ $0.088$ $0.95$ $(0.87, 1.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |  |  |  |  |  |
| 2nd tertile       1.53 $(0.95, 2.44)$ $0.079$ $1.95$ $(0.94, 3.66)$ 3rd tertile (most deprived)       1.56 $(0.97, 2.49)$ $0.065$ $1.85$ $(0.94, 3.66)$ Children in household (Yes)       0.56 $(0.25, 1.27)$ $0.166$ $0.52$ $(0.17, 0.52)$ Self-perceived health (Very good/Excellent) $0.60$ $(0.40, 0.89)$ $0.010$ $0.87$ $(0.52, 1.47)$ BMI (Overweight/Obese)       1.10 $(0.73, 1.55)$ $0.665$ $1.03$ $(0.58, 1.82)$ Chronic disease (Yes)       1.79 $(0.98, 3.28)$ $0.059$ $1.77$ $(0.80, 3.90)$ Stress releasing (Agreement) $0.82$ $(0.44, 1.06)$ $0.92$ $0.78$ $(0.42, 1.42)$ Environmental determinants       Commute distance, estimated (km) $1.09$ $(0.99, 1.18)$ $0.061$ $1.03$ $(0.91, 1.16)$ Public bicycle stations       Home, count in 400m buffer $0.99$ $0.92, 1.06)$ $0.761$ $0.93$ $(0.84, 1.04)$ Work/study, acunt in 400m buffer $0.95$ $0.89, 1.01)$ $0.088$ $0.95$ $(0.81, 1.31)$ Home, count in 400m buffer $0.94$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |  |  |  |  |  |
| 3rd tertile (most deprived)       1.56 $(0.97, 2.49)$ 0.065       1.85 $(0.94, 3.66)$ Children in household (Yes)       1.06 $(0.72, 1.55)$ 0.778       0.91 $(0.53, 1.56)$ Children '3 years in household (Yes)       0.56 $(0.25, 1.27)$ 0.166       0.52 $(0.16, 1.70)$ Self-perceived health (Very good/Excellent)       0.60 $(0.40, 0.89)$ 0.010       0.87 $(0.52, 1.47)$ BMI (Overweight/Obese)       1.10 $(0.73, 1.65)$ 0.665       1.03 $(0.58, 1.82)$ Chronic disease (Yes)       1.79 $(0.98, 3.28)$ 0.059       1.77 $(0.80, 3.90)$ Stress releasing (Agreement)       0.82 $(0.49, 1.35)$ 0.428       0.93 $(0.46, 1.89)$ Bicycle trip enjoyment (Agreement)       0.68 $(0.44, 1.06)$ 0.092       0.78 $(0.42, 1.42)$ Environmental determinants $(0.99, 1.18)$ 0.061       1.03 $(0.91, 1.16)$ Public bicycle stations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.053                  |  |  |  |  |  |
| Children in household (Yes)       1.06 $(0.72, 1.55)$ $0.778$ $0.91$ $(0.53, 1.56)$ Children <3 years in household (Yes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.074                  |  |  |  |  |  |
| Children <3 years in household (Yes) $0.56$ $(0.25, 1.27)$ $0.166$ $0.52$ $(0.16, 1.70)$ Self-perceived health (Very good/Excellent) $0.60$ $0.40, 0.89$ $0.010$ $0.87$ $(0.52, 1.47)$ BMI (Overweight/Obese) $1.10$ $(0.73, 1.65)$ $0.665$ $1.03$ $(0.58, 1.82)$ Chronic disease (Yes) $1.79$ $(0.98, 3.28)$ $0.059$ $1.77$ $(0.80, 3.90)$ Stress releasing (Agreement) $0.82$ $(0.49, 1.35)$ $0.428$ $0.93$ $(0.44, 1.42)$ Environmental determinants $0.99$ $(0.99, 1.18)$ $0.061$ $1.03$ $(0.91, 1.16)$ Public bicycle stations $0.99$ $(0.92, 1.06)$ $0.761$ $0.93$ $(0.88, 1.04)$ Work/study, count in 400m buffer $0.99$ $(0.92, 1.06)$ $0.761$ $0.93$ $(0.81, 1.31)$ Greenness, NDVI [IQR, (median; IQR)] $0.94$ $(0.78, 1.13)$ $0.487$ $1.04$ $(0.83, 1.31)$ Work/study, count in 400m buffer $0.94$ $(0.78, 1.13)$ $0.487$ $1.04$ $(0.83, 1.31)$ <t< td=""><td>0.743</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.743                  |  |  |  |  |  |
| Self-perceived health (Very good/Excellent)       0.60 $(0.40, 0.89)$ $0.010$ $0.87$ $(0.52, 1.47)$ BMI (Overweight/Obese)       1.10 $(0.73, 1.65)$ $0.665$ 1.03 $(0.58, 1.82)$ Chronic disease (Yes)       1.79 $(0.98, 3.28)$ $0.059$ 1.77 $(0.80, 3.90)$ Stress releasing (Agreement) $0.82$ $(0.49, 1.55)$ $0.428$ $0.93$ $(0.46, 1.89)$ Bicycle trip enjoyment (Agreement) $0.68$ $(0.44, 1.06)$ $0.092$ $0.78$ $(0.42, 1.42)$ Environmental determinants       Commute distance, estimated (km) $1.09$ $(0.99, 1.18)$ $0.061$ $1.03$ $(0.91, 1.16)$ Public bicycle stations       Home, count in 400m buffer $0.99$ $(0.92, 1.06)$ $0.761$ $0.93$ $(0.84, 1.04)$ Work/study, count in 400m buffer $0.95$ $(0.89, 1.01)$ $0.088$ $0.95$ $(0.87, 1.04)$ Greenness, NDVI [IQR, (median;IQR)]       Home, average of 400m buffer $1.11$ $(0.93, 1.31)$ $0.487$ $1.04$ $(0.83, 1.31)$ Noz, pp (median;IQR)       Home, concentration in 400m buffer $1.00$ $(0.98, 1.01)$ $0.379$ $(0.98,$                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.280                  |  |  |  |  |  |
| BMI (Overweight/Obese)       1.10 $(0.73, 1.65)$ $0.665$ 1.03 $(0.58, 1.82)$ Chronic disease (Yes)       1.79 $(0.98, 3.28)$ $0.059$ $1.77$ $(0.80, 3.90)$ Stress releasing (Agreement) $0.82$ $(0.49, 1.35)$ $0.428$ $0.93$ $(0.46, 1.89)$ Bicycle trip enjoyment (Agreement) $0.68$ $0.444, 1.06$ $0.092$ $0.78$ $(0.42, 1.42)$ <b>Environmental determinants</b> Commute distance, estimated (km) $1.09$ $(0.99, 1.18)$ $0.061$ $1.03$ $(0.91, 1.16)$ Public bicycle stations       Home, count in 400m buffer $0.99$ $(0.92, 1.06)$ $0.761$ $0.93$ $(0.84, 1.04)$ Work/study, count in 400m buffer $0.95$ $(0.89, 1.01)$ $0.088$ $0.95$ $(0.87, 1.13)$ Home, average of 400m buffer $0.94$ $(0.78, 1.13)$ $0.487$ $1.04$ $(0.83, 1.31)$ Work/study, average of 400m buffer $1.10$ $(0.98, 1.01)$ $0.254$ $0.99$ $(0.95, 1.52)$ NO2, ppb (median; IQR)       Home, concentration in 400m buffer $1.00$ $(0.98, 1.01)$ $0.379$ $(0.09, 1.01)$ $0.98, 1.01)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.603                  |  |  |  |  |  |
| Chronic disease (Yes)         1.79 $(0.98, 3.28)$ $0.059$ $1.77$ $(0.80, 3.90)$ Stress releasing (Agreement) $0.82$ $(0.49, 1.35)$ $0.428$ $0.93$ $(0.46, 1.89)$ Bicycle trip enjoyment (Agreement) $0.68$ $(0.44, 1.06)$ $0.092$ $0.78$ $(0.42, 1.42)$ Environmental determinants         Commute distance, estimated (km) $1.09$ $(0.99, 1.18)$ $0.061$ $1.03$ $(0.91, 1.16)$ Public bicycle stations         Home, count in 400m buffer $0.99$ $(0.92, 1.06)$ $0.761$ $0.93$ $(0.84, 1.04)$ Work/study, count in 400m buffer $0.99$ $(0.92, 1.06)$ $0.761$ $0.93$ $(0.84, 1.04)$ Work/study, average of 400m buffer $0.95$ $(0.89, 1.01)$ $0.088$ $0.95$ $(0.87, 1.29)$ Commute route, average of RBA $1.05$ $(0.86, 1.27)$ $0.643$ $1.20$ $(0.98, 1.01)$ NO2, ppb (median; IQR)         Home, concentration in 400m buffer $1.00$ $(0.98, 1.01)$ $0.379$ $1.00$ $(0.98, 1.01)$ Nose, >55dB (%) (median; IQR)         Home, proportion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.922                  |  |  |  |  |  |
| Stress releasing (Agreement) $0.82$ $(0.49, 1.35)$ $0.428$ $0.93$ $(0.46, 1.89)$ Bicycle trip enjoyment (Agreement) $0.68$ $(0.44, 1.06)$ $0.092$ $0.78$ $(0.42, 1.42)$ Environmental determinants         Commute distance, estimated (km) $1.09$ $(0.99, 1.18)$ $0.061$ $1.03$ $(0.91, 1.16)$ Public bicycle stations       Home, count in 400m buffer $0.99$ $(0.92, 1.06)$ $0.761$ $0.93$ $(0.84, 1.04)$ Work/study, count in 400m buffer $0.99$ $(0.92, 1.06)$ $0.761$ $0.93$ $(0.84, 1.04)$ Greenness, NDVI [IQR, (median;IQR)]       Home, average of 400m buffer $1.11$ $(0.93, 1.34)$ $0.254$ $0.99$ $(0.75, 1.29)$ Commute route, average of RBA $1.05$ $(0.86, 1.27)$ $0.643$ $1.20$ $(0.95, 1.52)$ NO2, ppb (median;IQR)       Home, concentration in 400m buffer $1.00$ $(0.98, 1.01)$ $0.379$ $1.00$ $(0.98, 1.00)$ Commute route, concentration in RBA $1.00$ $(0.98, 1.01)$ $0.447$ $0.99$ $(0.98, 1.01)$ Nois, >55dB (%) (median;IQR)       Home, proportion in 400m buffer <td< td=""><td>0.160</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.160                  |  |  |  |  |  |
| Bicycle trip enjoyment (Agreement) $0.68$ $(0.44, 1.06)$ $0.092$ $0.78$ $(0.42, 1.42)$ Environmental determinants       Commute distance, estimated (km) $1.09$ $(0.99, 1.18)$ $0.061$ $1.03$ $(0.91, 1.16)$ Public bicycle stations       Home, count in 400m buffer $0.99$ $0.92, 1.06$ $0.761$ $0.93$ $(0.84, 1.04)$ Work/study, count in 400m buffer $0.99$ $0.92, 1.06$ $0.761$ $0.93$ $(0.84, 1.04)$ Home, average of 400m buffer $0.95$ $(0.89, 1.01)$ $0.088$ $0.95$ $(0.87, 1.04)$ Greenness, NDVI [IQR, (median;IQR)]       Home, average of 400m buffer $1.11$ $(0.93, 1.34)$ $0.254$ $0.99$ $(0.75, 1.29)$ Commute route, average of 8BA $1.05$ $(0.86, 1.27)$ $0.643$ $1.20$ $(0.98, 1.01)$ NO <sub>2</sub> , pp (median;IQR)       Home, concentration in 400m buffer $1.09$ $(0.98, 1.01)$ $0.379$ $(0.09, 1.00)$ Noise, >55dB (%) (median;IQR)       Home, proportion in 400m buffer $1.01$ $(0.99, 1.02)$ $0.417$ $1.00$ $(0.98, 1.03)$ Nork/study, concentration in RBA $1.00$ $0.99, 1.02$                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.850                  |  |  |  |  |  |
| Environmental determinants           Commute distance, estimated (km)         1.09         (0.99, 1.18)         0.061         1.03         (0.91, 1.16)           Public bicycle stations         0.99         (0.92, 1.06)         0.761         0.93         (0.84, 1.04)           Work/study, count in 400m buffer         0.95         (0.89, 1.01)         0.088         0.95         (0.87, 1.04)           Greenness, NDVI [IQR, (median;IQR)]         Home, average of 400m buffer         0.94         (0.78, 1.13)         0.487         1.04         (0.83, 1.31)           Work/study, average of 400m buffer         1.11         (0.93, 1.34)         0.254         0.99         (0.95, 1.52)           Commute route, average of RBA         1.05         (0.86, 1.27)         0.643         1.20         (0.98, 1.01)           More, concentration in 400m buffer         1.00         (0.98, 1.01)         0.379         1.00         (0.98, 1.01)           Home, concentration in 400m buffer         0.99         (0.98, 1.01)         0.447         0.99         (0.98, 1.00)           Commute route, concentration in RBA         1.00         (0.98, 1.01)         0.447         0.99         (0.98, 1.03)           Noise, >55dB (%) (median;IQR)         Home, proportion in 400m buffer         1.01         (0.99,                                                                                                    | 0.412                  |  |  |  |  |  |
| Commute distance, estimated (km)       1.09 $(0.99, 1.18)$ $0.061$ 1.03 $(0.91, 1.16)$ Public bicycle stations       Home, count in 400m buffer $0.99$ $(0.92, 1.06)$ $0.761$ $0.93$ $(0.84, 1.04)$ Work/study, count in 400m buffer $0.95$ $(0.89, 1.01)$ $0.088$ $0.95$ $(0.87, 1.04)$ Greenness, NDVI [IQR, (median;IQR)]       Home, average of 400m buffer $0.94$ $(0.78, 1.13)$ $0.487$ $1.04$ $(0.83, 1.31)$ Work/study, average of 400m buffer $1.11$ $(0.93, 1.34)$ $0.254$ $0.99$ $(0.75, 1.29)$ Commute route, average of RBA $1.05$ $(0.86, 1.27)$ $0.643$ $1.20$ $(0.98, 1.01)$ More, concentration in 400m buffer $1.00$ $(0.98, 1.01)$ $0.379$ $1.00$ $(0.98, 1.01)$ Morek/study, concentration in 400m buffer $0.99$ $(0.98, 1.01)$ $0.447$ $0.99$ $(0.97, 1.00)$ Noise, >55dB (%) (median;IQR)       Home, proportion in 400m buffer $1.01$ $(0.99, 1.02)$ $0.417$ $1.00$ $(0.98, 1.03)$ Work/study, noncentration in 400m buffer $1.00$ $(0.99, 1.02)$ $0.417$ $1.00$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |  |  |  |  |  |
| Commute classifier       0.99       (0.92, 1.06)       0.761       0.93       (0.84, 1.04)         Work/study, count in 400m buffer       0.95       (0.89, 1.01)       0.088       0.95       (0.87, 1.04)         Greenness, NDVI [IQR, (median;IQR)]       Home, average of 400m buffer       0.94       (0.78, 1.13)       0.487       1.04       (0.83, 1.31)         Work/study, average of 400m buffer       1.11       (0.93, 1.34)       0.254       0.99       (0.95, 1.52)         Commute route, average of 8BA       1.05       (0.86, 1.27)       0.643       1.20       (0.98, 1.01)         Work/study, concentration in 400m buffer       1.00       (0.98, 1.01)       0.379       1.00       (0.98, 1.01)         Work/study, concentration in 400m buffer       1.00       (0.98, 1.01)       0.447       0.99       (0.97, 1.00)         Noise, >55dB (%) (median;IQR)       Home, proportion in 400m buffer       1.01       (0.99, 1.02)       0.417       1.00       (0.98, 1.03)         Work/study, nonportion in 400m buffer       1.01       0.099, 1.02)       0.539       1.00       (0.98, 1.02)                                                                                                                                                                                                                                                                                                                     | 0.621                  |  |  |  |  |  |
| Indication         Indication <thindication< th="">         Indication         Indicati</thindication<> |                        |  |  |  |  |  |
| Initial         Control         Control <t< td=""><td>0 204</td></t<>                                                                               | 0 204                  |  |  |  |  |  |
| Work/study, concentration in 400m buffer       1.01 $(0.93, 1.01)$ 0.487       1.04 $(0.83, 1.31)$ Home, average of 400m buffer       0.94 $(0.78, 1.13)$ 0.487       1.04 $(0.83, 1.31)$ Work/study, average of 400m buffer       1.11 $(0.93, 1.34)$ 0.254       0.99 $(0.75, 1.29)$ Commute route, average of RBA       1.05 $(0.86, 1.27)$ 0.643       1.20 $(0.95, 1.52)$ NO <sub>2</sub> ppb (median;IQR)       Home, concentration in 400m buffer       1.00 $(0.98, 1.01)$ 0.379       1.00 $(0.98, 1.01)$ Work/study, concentration in 400m buffer       0.99 $(0.98, 1.01)$ 0.447       0.99 $(0.97, 1.00)$ Noise, >55dB (%) (median;IQR)       Home, proportion in 400m buffer       1.01 $(0.99, 1.02)$ 0.417       1.00 $(0.98, 1.03)$ Work/study, nonpertion in 400m buffer       1.00 $(0.99, 1.02)$ 0.539       1.00 $(0.98, 1.02)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.254                  |  |  |  |  |  |
| Ordermiss, for Orling, (inclusing, etc.)       0.94 $(0.78, 1.13)$ 0.487       1.04 $(0.83, 1.31)$ Work/study, average of 400m buffer       1.11 $(0.93, 1.34)$ 0.254       0.99 $(0.75, 1.29)$ Commute route, average of RBA       1.05 $(0.86, 1.27)$ 0.643       1.20 $(0.98, 1.01)$ NO2, ppb (median; IQR)       Home, concentration in 400m buffer       1.00 $(0.98, 1.01)$ 0.379       1.00 $(0.98, 1.01)$ Work/study, concentration in 400m buffer       0.99 $(0.98, 1.01)$ 0.379       1.00 $(0.98, 1.00)$ Commute route, concentration in RBA       1.00 $(0.98, 1.01)$ 0.447 $0.99$ $(0.97, 1.00)$ Noise, >55dB (%) (median; IQR)       Home, proportion in 400m buffer       1.01 $(0.99, 1.02)$ $0.417$ $1.00$ $(0.98, 1.03)$ Work/study, noncrition in 400m buffer       1.00 $(0.99, 1.02)$ $0.539$ 1.00 $(0.98, 1.02)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |  |  |  |  |  |
| Home, average of woon bulk!       0.93       0.95       1.05       0.09       (0.75, 1.29)         Commute route, average of RBA       1.05       (0.38, 1.01)       0.254       0.99       (0.75, 1.29)         Commute route, average of RBA       1.05       (0.86, 1.27)       0.643       1.20       (0.95, 1.52)         NO <sub>2</sub> ppb (median;IQR)       Home, concentration in 400m buffer       1.00       (0.98, 1.01)       0.379       1.00       (0.98, 1.01)         Work/study, concentration in 400m buffer       0.99       (0.98, 1.00)       0.048       0.99       (0.98, 1.00)         Commute route, concentration in RBA       1.00       (0.98, 1.01)       0.447       0.99       (0.97, 1.00)         Noise, >55dB (%) (median;IQR)       Home, proportion in 400m buffer       1.01       (0.99, 1.02)       0.417       1.00       (0.98, 1.03)         Work/study, proportion in 400m buffer       1.00       (0.99, 1.02)       0.539       1.00       (0.98, 1.02)                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 726                  |  |  |  |  |  |
| Work/study, actuage of Rom bind         1111         (1025, 1.57)         0.5251         0.59         (1025, 1.57)           Commute route, average of RBA         1.05         (0.86, 1.27)         0.643         1.20         (0.95, 1.52)           NO2, ppb (median;IQR)         1.00         (0.98, 1.01)         0.379         1.00         (0.98, 1.01)           Work/study, concentration in 400m buffer         0.99         (0.98, 1.01)         0.379         1.00         (0.98, 1.01)           Commute route, concentration in RBA         1.00         (0.98, 1.01)         0.447         0.99         (0.98, 1.00)           Noise, >55dB (%) (median;IQR)         1.01         (0.99, 1.02)         0.417         1.00         (0.98, 1.03)           Work/study, reproprion in 400m buffer         1.00         (0.99, 1.02)         0.539         1.00         (0.98, 1.02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.924                  |  |  |  |  |  |
| Commute route, average of KDA         1.00         (0.90, 1.27)         0.045         1.20         (0.92, 1.22)           NO2, ppb (median;IQR)         1.00         (0.98, 1.01)         0.379         1.00         (0.98, 1.01)           Home, concentration in 400m buffer         0.99         (0.98, 1.01)         0.379         1.00         (0.98, 1.01)           Work/study, concentration in 400m buffer         0.99         (0.98, 1.01)         0.447         0.99         (0.98, 1.00)           Noise, >55dB (%) (median;IQR)         Home, proportion in 400m buffer         1.01         (0.99, 1.02)         0.417         1.00         (0.98, 1.03)           Work/study proportion in 400m buffer         1.00         (0.99, 1.02)         0.539         1.00         (0.98, 1.02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.119                  |  |  |  |  |  |
| No.2 pp0 (inclusing(x))       1.00 (0.98, 1.01)       0.379       1.00 (0.98, 1.01)         Home, concentration in 400m buffer       1.00 (0.98, 1.01)       0.379       1.00 (0.98, 1.01)         Work/study, concentration in 400m buffer       0.99 (0.98, 1.00)       0.048       0.99 (0.98, 1.00)         Commute route, concentration in RBA       1.00 (0.98, 1.01)       0.447       0.99 (0.97, 1.00)         Noise, >55dB (%) (median;IQR)       Home, proportion in 400m buffer       1.01 (0.99, 1.02)       0.417       1.00 (0.98, 1.03)         Work/study proportion in 400m buffer       1.00 (0.99, 1.02)       0.539       1.00 (0.98, 1.02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.11)                  |  |  |  |  |  |
| Home, concentration in 400m buffer       1.09 $(0.53, 1.01)$ $0.575$ 1.09 $(0.98, 1.01)$ Work/study, concentration in 400m buffer $0.99$ $(0.98, 1.00)$ $0.048$ $0.99$ $(0.98, 1.00)$ Commute route, concentration in RBA $1.00$ $(0.98, 1.01)$ $0.447$ $0.99$ $(0.98, 1.00)$ Noise, >55dB (%) (median;IQR)       Home, proportion in 400m buffer $1.01$ $(0.99, 1.02)$ $0.417$ $1.00$ $(0.98, 1.03)$ Work/study, proportion in 400m buffer $1.00$ $(0.99, 1.02)$ $0.539$ $1.00$ $(0.98, 1.02)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 738                  |  |  |  |  |  |
| Work/study, concentration in 400m buffer         0.99         (0.93, 1.00)         0.99         (0.97, 1.00)           Commute route, concentration in RBA         1.00         (0.98, 1.01)         0.447         0.99         (0.97, 1.00)           Noise, >55dB (%) (median;IQR)         1.01         (0.99, 1.02)         0.417         1.00         (0.98, 1.03)           Work/study proportion in 400m buffer         1.01         (0.99, 1.02)         0.417         1.00         (0.98, 1.03)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.087                  |  |  |  |  |  |
| Commute route; concentration in RSA         1.00         (0.93, 1.01)         0.447         0.97         (0.97, 1.00)           Noise, >55dB (%) (median; IQR)         1.01         (0.99, 1.02)         0.417         1.00         (0.98, 1.03)           Home, proportion in 400m buffer         1.01         (0.99, 1.02)         0.417         1.00         (0.98, 1.03)           Work/study, proportion in 400m buffer         1.00         (0.99, 1.02)         0.539         1.00         (0.98, 1.02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.077                  |  |  |  |  |  |
| Noise         -530B (%) (inclusing New)           Home, proportion in 400m buffer         1.01 (0.99, 1.02)         0.417         1.00 (0.98, 1.03)           Work/study, proportion in 400m buffer         1.00 (0.99, 1.02)         0.539         1.00 (0.98, 1.02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.077                  |  |  |  |  |  |
| Work/study, proportion in 400m buffer 1.00 (0.99, 1.02) 0.539 1.00 (0.98, 1.02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 8 1 4                |  |  |  |  |  |
| WORKSHRY INDODUDING DITLEF 1.00 10.77, 1.021 0.007 100 10 76 1021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.829                  |  |  |  |  |  |
| Commute south responsible in PDA $100(0.98102) = 0.854 = 101(0.08104)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.422                  |  |  |  |  |  |
| Commute route, proportion in KBA 1.00 (0.26, 1.02) 0.034 1.01 (0.26, 1.04)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.422                  |  |  |  |  |  |
| Bikeability (median; $IQK$ )<br>$II = 0.05 (0.24 \pm 1.0) = 0.528 = 0.02 (0.77 \pm 0.0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 225                  |  |  |  |  |  |
| $ \begin{array}{cccccc} \text{nome, concentration in 400m buffer} & 0.70 & (0.64, 1.10) & 0.326 & 0.92 & (0.74, 1.09) \\ \text{Weak/study, concentration in 400m buffer} & 0.90 & (0.70, 1.02) & 0.007 & 0.92 & (0.74, 1.05) \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.525                  |  |  |  |  |  |
| work/study, concentration in 400m putter $0.70 (0.77, 1.02) = 0.057 = 0.86 (0.74, 1.03)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.020                  |  |  |  |  |  |

PA, Physical Activity; MVPA, Moderate-to-Vigorous Physical Activity; VPA, Vigorous Physical Activity; BMI, Body Mass Index. There are missing data in: Perceived stress (13; 1.65%), Country of birth (1; 0.13%), People living with in household (1; 0.13%), Employed people in household (4; 0.51), Children in household (2; 0.25%), Children <3 years old in household (3; 0.38), BMI (2; 0.25%); Stress releasing (15; 1.90%), Bicycle trip enjoyment (12; 1.52%), Commute distance (20; 2.54%), Greenness (20; 2.54%), NO<sub>2</sub> (20; 2.54%).

#### **BMJ Open**

**Figure S1.** GAM assessing linearity between bicycle commuting (days/week) and perceived stress (score from 0 to 16). p-value= 0.3304.



## Table S4. Sensitivity analyses looking the relationship between bicycle commuting (Bicycle commuting status, Bicycle commuting

levels, Bicycle commuting propensity) and perceived stress (P75, P90).

|                                                                                                            | 0.0                                       | Unadinated                                      |                                   | 0                                     | D A dimeta d <sup>a</sup>                        | Perceived                                          | stress (P75                       | 5)<br>A dimetad <sup>b</sup>                      |                                     | 01                                  | Adimated                                          |                                        | 0.0                                         | Unadinated                                        |                                        | 0.0                                    | Adimated                                         | rerceived s                             | ress (P9                              | U)<br>D. A dimoto d <sup>b</sup>                          |                                     | CP.                            | A dimetad <sup>c</sup> |    |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------|-----------------------------------|---------------------------------------|--------------------------------------------------|----------------------------------------------------|-----------------------------------|---------------------------------------------------|-------------------------------------|-------------------------------------|---------------------------------------------------|----------------------------------------|---------------------------------------------|---------------------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------------------------------|-------------------------------------|--------------------------------|------------------------|----|
| arrabic                                                                                                    | OR (                                      | Unadjusted<br>95% CI)                           | p-value                           | UI OI                                 | (95% CI)                                         | p-value                                            | 06                                | Adjusted<br>95% CI)                               | p-value                             | OR<br>(                             | Adjusted<br>95% CI)                               | p-value                                | OR (                                        | Unadjusted<br>95% CI)                             | p-value                                | (9<br>(9                               | 95% CI)                                          | p-value                                 | 01                                    | 95% CI)                                                   | p-value                             | ок<br>(9                       | Adjusted<br>95% CI)    | p- |
| All sample (771)                                                                                           | Ì                                         |                                                 |                                   |                                       |                                                  |                                                    | ```                               |                                                   |                                     | ```                                 |                                                   |                                        |                                             |                                                   |                                        |                                        |                                                  |                                         |                                       |                                                           |                                     |                                |                        |    |
| Bicycle commuting status                                                                                   |                                           |                                                 |                                   |                                       |                                                  |                                                    |                                   |                                                   |                                     |                                     |                                                   |                                        |                                             |                                                   |                                        |                                        |                                                  |                                         |                                       |                                                           |                                     |                                |                        |    |
| Non-bicycle commuters                                                                                      | 1.00                                      |                                                 |                                   | 1.00                                  |                                                  |                                                    | 1.00                              |                                                   |                                     | 1.00                                |                                                   |                                        | 1.00                                        |                                                   |                                        | 1.00                                   |                                                  |                                         | 1.00                                  |                                                           |                                     | 1.00                           |                        |    |
| Bicycle commuters                                                                                          | 0.51                                      | (0.35, 0.75)                                    | 0.001                             | 0.50                                  | (0.34, 0.75)                                     | 0.001                                              | 0.54                              | (0.36, 0.82)                                      | 0.004                               | 0.58                                | (0.38, 0.88)                                      | 0.011                                  | 0.51                                        | (0.30, 0.87)                                      | 0.014                                  | 0.53                                   | (0.31, 0.91)                                     | 0.020                                   | 0.49                                  | (0.28, 0.85)                                              | 0.012                               | 0.53                           | (0.30, 0.95)           |    |
| Bicycle commuting levels                                                                                   |                                           |                                                 |                                   |                                       |                                                  |                                                    |                                   |                                                   |                                     |                                     |                                                   |                                        |                                             |                                                   |                                        |                                        |                                                  |                                         |                                       |                                                           |                                     |                                |                        |    |
| Non-bicycle commuters (0 days)                                                                             | 1.00                                      |                                                 |                                   | 1.00                                  |                                                  |                                                    | 1.00                              |                                                   |                                     | 1.00                                |                                                   |                                        | 1.00                                        |                                                   |                                        | 1.00                                   |                                                  |                                         | 1.00                                  |                                                           |                                     | 1.00                           |                        |    |
| Low bicycle commuting (1-3 days)                                                                           | 1.06                                      | (0.64, 1.76)                                    | 0.832                             | 1.04                                  | (0.62, 1.76)                                     | 0.869                                              | 1.10                              | (0.65, 1.87)                                      | 0.730                               | 1.14                                | (0.66, 1.95)                                      | 0.639                                  | 1.23                                        | (0.64, 2.34)                                      | 0.537                                  | 1.26                                   | (0.65, 2.44)                                     | 0.493                                   | 1.17                                  | (0.60, 2.29)                                              | 0.650                               | 1.22                           | (0.61, 2.41)           |    |
| Medium bicycle commuting (4 days)                                                                          | 0.18                                      | (0.05, 0.58)                                    | 0.004                             | 0.16                                  | (0.05, 0.52)                                     | 0.002                                              | 0.16                              | (0.05, 0.54)                                      | 0.003                               | 0.18                                | (0.05, 0.59)                                      | 0.005                                  | 0.13                                        | (0.02, 0.99)                                      | 0.049                                  | 0.13                                   | (0.02, 0.93)                                     | 0.043                                   | 0.12                                  | (0.02, 0.89)                                              | 0.038                               | 0.13                           | (0.02, 0.98)           |    |
| High bioxels commuting (>=5 days)                                                                          | 0.39                                      | (0.24, 0.64)                                    | < 0.001                           | 0.39                                  | (0.24, 0.66)                                     | < 0.001                                            | 0.43                              | (0.25, 0.73)                                      | 0.002                               | 0.46                                | (0.27, 0.78)                                      | 0.004                                  | 0.31                                        | (0.14, 0.67)                                      | 0.003                                  | 0.33                                   | (0.15, 0.72)                                     | 0.005                                   | 0.30                                  | (0.13, 0.66)                                              | 0.003                               | 0.32                           | (0.14, 0.73)           |    |
| Biovele commuting propensity                                                                               |                                           |                                                 |                                   |                                       |                                                  |                                                    |                                   |                                                   |                                     |                                     |                                                   |                                        |                                             |                                                   |                                        |                                        |                                                  |                                         |                                       |                                                           |                                     |                                |                        |    |
| Unwilling Non-biovale commuters                                                                            | 1.00                                      |                                                 |                                   | 1.00                                  |                                                  |                                                    | 1.00                              |                                                   |                                     | 1.00                                |                                                   |                                        | 1.00                                        |                                                   |                                        | 1.00                                   |                                                  |                                         | 1.00                                  |                                                           |                                     | 1.00                           |                        |    |
| Willing Non-biovele commuters                                                                              | 0.64                                      | (0.39,1.06)                                     | 0.085                             | 0.67                                  | (0.40, 1.13)                                     | 0 132                                              | 0.64                              | (0.38-1.08)                                       | 0.095                               | 0.66                                | (0.39, 1.10)                                      | 0.113                                  | 0.62                                        | (0.31, 1.24)                                      | 0 179                                  | 0.67                                   | (0 33 1 34)                                      | 0.258                                   | 0.66                                  | (0.33, 1.34)                                              | 0 254                               | 0.68                           | (0.34 1.38)            |    |
| winning Non-bicycle commuters                                                                              | 0.89                                      | (0.52, 1.53)                                    | 0.682                             | 0.89                                  | (0.51, 1.56)                                     | 0.691                                              | 0.97                              | (0.52, 1.62)                                      | 0.773                               | 0.00                                | (0.54, 1.70)                                      | 0.881                                  | 1.03                                        | (0.52, 2.05)                                      | 0.926                                  | 1.08                                   | (0.53, 2.19)                                     | 0.825                                   | 1.00                                  | (0.49, 2.04)                                              | 0.997                               | 1.05                           | (0.51, 2.17)           |    |
| Infrequent Bicycle commuters                                                                               | 0.29                                      | (0.17, 0.48)                                    | <0.001                            | 0.29                                  | (0.17, 0.48)                                     | <0.001                                             | 0.31                              | (0.18, 0.52)                                      | <0.001                              | 0.32                                | (0.19, 0.56)                                      | <0.001                                 | 0.23                                        | (0.11.0.49)                                       | <0.001                                 | 0.24                                   | (0.11, 0.52)                                     | <0.001                                  | 0.22                                  | (0.10, 0.49)                                              | <0.001                              | 0.24                           | (0.11, 0.54)           |    |
| Frequent Bicycle commuters                                                                                 | 0.29                                      | (0.17, 0.48)                                    | ~0.001                            | 0.29                                  | (0.17, 0.48)                                     | ~0.001                                             | 0.51                              | (0.18, 0.52)                                      | ~0.001                              | 0.52                                | (0.19, 0.50)                                      | ~0.001                                 | 0.25                                        | (0.11, 0.49)                                      | ~0.001                                 | 0.24                                   | (0.11, 0.52)                                     | ~0.001                                  | 0.22                                  | (0.10, 0.49)                                              | ~0.001                              | 0.24                           | (0.11, 0.54)           |    |
| Sicycle commuters sample (387)                                                                             |                                           |                                                 |                                   |                                       |                                                  |                                                    |                                   |                                                   |                                     |                                     |                                                   |                                        |                                             |                                                   |                                        |                                        |                                                  |                                         |                                       |                                                           |                                     |                                |                        |    |
| Bicycle commuting levels                                                                                   | 1.00                                      |                                                 |                                   | 1.00                                  |                                                  |                                                    | 1.00                              |                                                   |                                     | 1.00                                |                                                   |                                        | 1.00                                        |                                                   |                                        | 1.00                                   |                                                  |                                         | 1.00                                  |                                                           |                                     | 1.00                           |                        |    |
| Low bicycle commuting (1-3 days)                                                                           | 0.17                                      | (0.05, 0.59)                                    | 0.005                             | 0.15                                  | (0.04.0.51)                                      | 0.002                                              | 0.15                              | (0.04.0.51)                                       | 0.002                               | 0.14                                | (0.04.0.51)                                       | 0.002                                  | 1.00                                        | (0.01.0.95)                                       | 0.024                                  | 0.10                                   | (0.01.0.79)                                      | 0.020                                   | 0.10                                  | (0.01.0.78)                                               | 0.020                               | 0.00                           | (0.01.0.75)            |    |
| Medium bicycle commuting (4 days)                                                                          | 0.17                                      | (0.05, 0.58)                                    | 0.005                             | 0.15                                  | (0.04, 0.51)                                     | 0.003                                              | 0.15                              | (0.04, 0.51)                                      | 0.003                               | 0.14                                | (0.04, 0.51)                                      | 0.003                                  | 0.11                                        | (0.01, 0.85)                                      | 0.034                                  | 0.10                                   | (0.01, 0.78)                                     | 0.028                                   | 0.10                                  | (0.01, 0.78)                                              | 0.028                               | 0.09                           | (0.01, 0.75)           |    |
| High bicycle commuting (>=5 days)                                                                          | 0.37                                      | (0.20, 0.69)                                    | 0.002                             | 0.37                                  | (0.20, 0.70)                                     | 0.002                                              | 0.37                              | (0.19, 0.70)                                      | 0.002                               | 0.57                                | (0.19, 0.70)                                      | 0.002                                  | 0.25                                        | (0.10, 0.62)                                      | 0.005                                  | 0.25                                   | (0.10, 0.62)                                     | 0.005                                   | 0.24                                  | (0.09, 0.60)                                              | 0.002                               | 0.24                           | (0.09, 0.60)           |    |
| 3icycle commuters propensity                                                                               |                                           |                                                 |                                   |                                       |                                                  |                                                    |                                   |                                                   |                                     |                                     |                                                   |                                        |                                             |                                                   |                                        |                                        |                                                  |                                         |                                       |                                                           |                                     |                                |                        |    |
| Infrequent (1-3 days)                                                                                      | 1.00                                      |                                                 |                                   | 1.00                                  |                                                  |                                                    | 1.00                              |                                                   |                                     | 1.00                                |                                                   |                                        | 1.00                                        |                                                   |                                        | 1.00                                   |                                                  |                                         | 1.00                                  |                                                           |                                     | 1.00                           |                        |    |
| Frequent (>=4 days)                                                                                        | 0.32                                      | (0.18, 0.59)                                    | < 0.001                           | 0.31                                  | (0.17, 0.58)                                     | < 0.001                                            | 0.31                              | (0.17, 0.58)                                      | < 0.001                             | 0.31                                | (0.17, 0.58)                                      | < 0.001                                | 0.22                                        | (0.09, 0.53)                                      | 0.001                                  | 0.21                                   | (0.09, 0.52)                                     | 0.001                                   | 0.21                                  | (0.08, 0.50)                                              | 0.001                               | 0.20                           | (0.08, 0.50)           |    |
| Exposure Non-bicycle commuters sampl                                                                       | e (384)                                   |                                                 |                                   |                                       |                                                  |                                                    |                                   |                                                   |                                     |                                     |                                                   |                                        |                                             |                                                   |                                        |                                        |                                                  |                                         |                                       |                                                           |                                     |                                |                        |    |
| Ion-bicycle commuters                                                                                      |                                           |                                                 |                                   |                                       |                                                  |                                                    |                                   |                                                   |                                     |                                     |                                                   |                                        |                                             |                                                   |                                        |                                        |                                                  |                                         |                                       |                                                           |                                     |                                |                        |    |
|                                                                                                            |                                           |                                                 |                                   |                                       |                                                  |                                                    |                                   |                                                   |                                     |                                     |                                                   |                                        |                                             |                                                   |                                        |                                        |                                                  |                                         |                                       |                                                           |                                     |                                |                        |    |
| Unwilling                                                                                                  | 1.00                                      |                                                 |                                   | 1.00                                  |                                                  |                                                    | 1.00                              |                                                   |                                     | 1.00                                |                                                   |                                        | 1.00                                        |                                                   |                                        | 1.00                                   |                                                  |                                         | 1.00                                  |                                                           |                                     | 1.00                           |                        |    |
| Unwilling<br>Willing<br>*Adjusted by Sex, Countr<br>Sex, Country of birth, En<br>Spain.                    | 1.00<br>0.64<br>y of birth,<br>ployed pe  | (0.39, 1.06)<br>Employed peo<br>cople in househ | 0.085<br>ple in hou<br>old, Chror | 1.00<br>0.65<br>sehold,<br>nic disea  | (0.38, 1.09)<br>Chronic diseasuse, Self-perce    | 0.104<br>se. <sup>b</sup> Adjuste<br>ived health,  | 1.00<br>0.59<br>d by Age<br>MVPA, | (0.35, 1.00)<br>e, Sex, Country<br>Public bicycle | 0.051<br>of birth, E<br>stations at | 1.00<br>0.60<br>mployed<br>work/stu | (0.35, 1.03)<br>I people in ho<br>udy, Bikeabilit | 0.062<br>usehold, Chi<br>ty at work/st | 1.00<br>0.62<br>ronic diseas<br>udy, Bikeal | (0.31, 1.24)<br>e, Self-perceiv<br>bility at comm | 0.179<br>ed health, l<br>ute route. D  | 1.00<br>0.64<br>Moderate<br>ata were   | (0.32, 1.31)<br>e-to-Vigorous<br>e collected fro | 0.225<br>Physical A<br>m June 20        | 1.00<br>0.64<br>Activity<br>11 throu  | (0.31, 1.31)<br>(MVPA). <sup>c</sup> Ad<br>igh to May 20  | 0.223<br>justed by A<br>12 in Barce | 1.00<br>0.67<br>ge,<br>lona,   | (0.33, 1.38)           |    |
| Unwilling<br>*Adjusted by Sex, Countr<br>Sex, Country of birth, En<br>Spain.                               | 1.00<br>0.64<br>y of birth,<br>pployed pe | (0.39, 1.06)<br>Employed peo<br>eople in househ | 0.085<br>ple in hou<br>old, Chror | 1.00<br>0.65<br>sehold,<br>nic disea  | (0.38, 1.09)<br>Chronic diseas<br>se, Self-perce | 0.104<br>se. <sup>b</sup> Adjuste<br>ived health,  | 1.00<br>0.59<br>d by Age<br>MVPA, | (0.35, 1.00)<br>;, Sex, Country<br>Public bicycle | 0.051<br>of birth, E<br>stations at | 1.00<br>0.60<br>mployed<br>work/stu | (0.35, 1.03)<br>I people in ho<br>idy, Bikeabili  | 0.062<br>usehold, Chi<br>ty at work/st | 1.00<br>0.62<br>ronic diseas<br>udy, Bikeal | (0.31, 1.24)<br>e, Self-perceiv<br>bility at comm | 0.179<br>ed health, 1<br>ute route. E  | 1.00<br>0.64<br>Moderate<br>vata were  | (0.32, 1.31)<br>e-to-Vigorous<br>e collected fro | 0.225<br>Physical A<br>m June 20        | 1.00<br>0.64<br>Activity<br>11 throu  | (0.31, 1.31)<br>(MVPA). °Ad<br>igh to May 20              | 0.223<br>justed by A<br>12 in Barce | 1.00<br>0.67<br>ge,<br>Iona,   | (0.33, 1.38)           |    |
| Unwilling<br><u>Willing</u><br><u>Adjusted by Sex, Country<br/>Sex, Country of birth, En<br/>Spain.</u>    | 1.00<br>0.64<br>y of birth,<br>ployed pe  | (0.39, 1.06)<br>Employed peo<br>oople in househ | 0.085<br>ple in hou<br>old, Chror | 1.00<br>0.65<br>sehold,<br>nic disea  | (0.38, 1.09)<br>Chronic disea:<br>se, Self-perce | 0.104<br>se. <sup>b</sup> Adjustet<br>vved health, | 1.00<br>0.59<br>d by Age<br>MVPA, | (0.35, 1.00)<br>s, Sex, Country<br>Public bicycle | 0.051<br>of birth, E<br>stations at | 1.00<br>0.60<br>mployed<br>work/stu | (0.35, 1.03)<br>I people in ho<br>idy, Bikeabili  | 0.062<br>usehold, Chi<br>ty at work/st | 1.00<br>0.62<br>ronic diseas<br>udy, Bikeal | (0.31, 1.24)<br>e, Self-perceiv<br>ility at comm  | 0.179<br>ed health, 1<br>ite route. E  | 1.00<br>0.64<br>Moderate               | (0.32, 1.31)<br>e-to-Vigorous<br>e collected fro | 0.225<br>Physical A<br>m June 20        | 1.00<br>0.64<br>Activity<br>11 throu  | (0.31, 1.31)<br>(MVPA). <sup>c</sup> Ad<br>gh to May 20   | 0.223<br>justed by A<br>12 in Barce | 1.00<br>0.67<br>Age,<br>Iona,  | (0.33, 1.38)           |    |
| Unvilling<br>*Adjusted by Sex, Countr<br>Sex, Country of birth, En<br>Spain.                               | 1.00<br>0.64<br>y of birth,<br>pployed po | (0.39, 1.06)<br>Employed peo<br>oople in househ | 0.085<br>ple in hou<br>old, Chror | 1.00<br>0.65<br>sehold,<br>nic disea  | (0.38, 1.09)<br>Chronic disea:<br>se, Self-perce | 0.104<br><sup>b</sup> Adjuste<br>vved health,      | 1.00<br>0.59<br>d by Age<br>MVPA, | (0.35, 1.00)<br>s, Sex, Country<br>Public bicycle | 0.051<br>of birth, E<br>stations at | 1.00<br>0.60<br>mployed<br>work/stu | (0.35, 1.03)<br>I people in ho<br>Idy, Bikeabili  | 0.062<br>usehold, Chr<br>y at work/st  | 1.00<br>0.62<br>ronic diseas<br>udy, Bikeat | (0.31, 1.24)<br>e, Self-perceiv<br>ility at comm  | 0.179<br>ed health, 1<br>ate route. E  | 1.00<br>0.64<br>Moderate<br>ata were   | (0.32, 1.31)<br>e-to-Vigorous<br>e collected fro | 0.225<br>Physical <i>A</i><br>m June 20 | 1.00<br>0.64<br>Activity<br>11 throu  | (0.31, 1.31)<br>(MVPA). <sup>c</sup> Ad<br>gh to May 20   | 0.223<br>justed by A<br>12 in Barce | 1.00<br>0.67<br>Ige,<br>Iona,  | (0.33, 1.38)           |    |
| Unwilling<br><sup>*</sup> Adjusted by Sex, Countr<br>Sex, Country of birth, En<br>Spain.                   | 1.00<br>0.64<br>y of birth,<br>ployed pe  | (0.39, 1.06)<br>Employed peo<br>oople in househ | 0.085<br>ple in hou<br>old, Chror | 1.00<br>0.65<br>sehold,<br>nic disea  | (0.38, 1.09)<br>Chronic disea:<br>se, Self-perce | 0.104<br>se. <sup>b</sup> Adjuste<br>vved health,  | 1.00<br>0.59<br>d by Age<br>MVPA, | (0.35, 1.00)<br>c, Sex, Country<br>Public bicycle | 0.051<br>of birth, E<br>stations at | 1.00<br>0.60<br>mployed<br>work/stu | (0.35, 1.03)<br>I people in ho<br>Idy, Bikeabili  | 0.062<br>asehold, Chi<br>y at work/st  | 1.00<br>0.62<br>ronie diseas<br>udy, Bikeał | (0.31, 1.24)<br>e, Self-perceiv<br>ility at comm  | 0.179<br>eed health, 1<br>ite route. E | 1.00<br>0.64<br>Moderate<br>ata were   | (0.32, 1.31)<br>e-to-Vigorous<br>e collected fro | 0.225<br>Physical /<br>m June 20        | 1.00<br>0.64<br>Activity<br>11 throu  | (0.31, 1.31)<br>(MVPA). <sup>c</sup> Ad<br>gh to May 20   | 0.223<br>justed by A<br>12 in Barce | 1.00<br>0.67<br>Ige,<br>Iona,  | (0.33, 1.38)           |    |
| Unvilling<br>Willing<br>*Adjusted by Sex, Countr<br>Sex, Country of birth, En<br>Spain.                    | 1.00<br>0.64<br>y of birth,<br>ployed pe  | (0.39, 1.06)<br>Employed peo<br>cople in househ | 0.085<br>ple in hou<br>old, Chror | 1.00<br>0.65<br>seehold,<br>aic disea | (0.38, 1.09)<br>Chronic disea:<br>se, Self-perce | 0.104<br>se. <sup>b</sup> Adjuste<br>vved health,  | 1.00<br>0.59<br>d by Age<br>MVPA, | (0.35, 1.00)<br>c, Sex, Country<br>Public bicycle | 0.051<br>of birth, E<br>stations at | 1.00<br>0.60<br>mployed<br>work/stu | (0.35, 1.03)<br>I people in ho<br>ıdy, Bikeabili  | 0.062<br>usehold, Chi<br>yy at work/st | 1.00<br>0.62<br>ronic diseas<br>udy, Bikeat | (0.31, 1.24)<br>e, Self-perceiv<br>pility at comm | 0.179<br>ed health, 1<br>ute route. E  | 1.00<br>0.64<br>Moderate<br>bata were  | (0.32, 1.31)<br>e-to-Vigorous<br>e collected fro | 0.225<br>Physical A<br>m June 20        | 1.00<br>0.64<br>Activity<br>11 throu  | (0.31, 1.31)<br>(MVPA). <sup>c</sup> Ad<br>ggh to May 20  | 0.223<br>justed by A<br>12 in Barce | 1.00<br>0.67<br>age,<br>dona,  | (0.33, 1.38)           |    |
| Unvilling<br><sup>®</sup> Adjusted by Sex, Countr<br>Sex, Country of birth, En<br>Spain.                   | 1.00<br>0.64<br>y of birth,<br>pployed po | (0.39, 1.06)<br>Employed peo<br>oople in househ | 0.085<br>ple in hou<br>old, Chror | 1.00<br>0.65<br>seehold,<br>iic disea | (0.38, 1.09)<br>Chronic disea:<br>se, Self-perce | 0.104<br>se. <sup>b</sup> Adjuste<br>vved health,  | 1.00<br>0.59<br>d by Age<br>MVPA, | (0.35, 1.00)<br>s, Sex, Country<br>Public bicycle | 0.051<br>of birth, E<br>stations at | 1.00<br>0.60<br>mployeë<br>work/stu | (0.35, 1.03)<br>I people in ho<br>Idy, Bikeabili  | 0.062<br>usehold, Chr<br>y at work/st  | 1.00<br>0.62<br>ronic diseas<br>udy, Bikeal | (0.31, 1.24)<br>e, Self-perceiv<br>ility at comm  | 0.179<br>ed health, 1<br>ite route. E  | 1.00<br>0.64<br>Moderatata were        | (0.32, 1.31)<br>e-to-Vigorous<br>e collected fro | 0.225<br>Physical <i>I</i><br>m June 20 | 1.00<br>0.64<br>Activity<br>11 throu  | (0.31, 1.31)<br>(MVPA). <sup>c</sup> Ad<br>gh to May 20   | 0.223<br>justed by A<br>12 in Barce | 1.00<br>0.67<br>vge,<br>lona,  | (0.33, 1.38)           |    |
| Unvilling<br><sup>*</sup> Adjusted by Sex, Countr<br>Sex, Country of birth, Err<br>Spain.                  | 1.00<br>0.64<br>y of birth,<br>ployed po  | (0.39, 1.06)<br>Employed peo<br>oople in househ | 0.085<br>ple in hou<br>old, Chror | 1.00<br>0.65<br>sehold,<br>ic disea   | (0.38, 1.09)<br>Chronic disea:<br>se, Self-perce | 0.104<br>se. <sup>b</sup> Adjuste<br>vved health,  | 1.00<br>0.59<br>d by Age<br>MVPA, | (0.35, 1.00)<br>;, Sex, Country<br>Public bicycle | 0.051<br>of birth, E<br>stations at | 1.00<br>0.60<br>mployed<br>work/stu | (0.35, 1.03)<br>I people in ho<br>ıdy, Bikeabili  | 0.062<br>usehold, Chi<br>yy at work/st | 1.00<br>0.62<br>ronic diseas<br>udy, Bikeat | (0.31, 1.24)<br>e, Self-perceiv<br>pility at comm | 0.179<br>ed health, 1<br>ite route. E  | 1.00<br>0.64<br>Moderatata were        | (0.32, 1.31)<br>e-to-Vigorous<br>e collected fro | 0.225<br>Physical <i>i</i><br>m June 20 | 1.00<br>0.64<br>Acctivity<br>11 throu | (0.31, 1.31)<br>(MVPA). <sup>c</sup> Ad<br>gh to May 20   | 0.223<br>justed by A<br>12 in Barce | 1.00<br>0.67<br>gge,<br>iona,  | (0.33, 1.38)           |    |
| Unwilling<br><u>Willing</u><br><sup>*</sup> Adjusted by Sex, Countr<br>Sex, Country of birth, En<br>Spain. | 1.00<br>0.64<br>y of birth,<br>ployed po  | (0.39, 1.06)<br>Employed peo<br>cople in househ | 0.085<br>ple in hou<br>old, Chror | 1.00<br>0.65<br>sehold,<br>ic disea   | (0.38, 1.09)<br>Chronic disea:<br>se, Self-perce | 0.104<br>se. <sup>b</sup> Adjuste<br>vved health,  | 1.00<br>0.59<br>d by Age<br>MVPA, | (0.35, 1.00)<br>r, Sex, Country<br>Public bicycle | 0.051<br>of birth, E<br>stations at | 1.00<br>0.60<br>mployed<br>work/stu | (0.35, 1.03)<br>I people in ho<br>ıdy, Bikeabili  | 0.062<br>usehold, Chi<br>yy at work/st | 1.00<br>0.62<br>ronic diseas<br>udy, Bikeat | (0.31, 1.24)<br>e, Self-perceiv<br>pility at comm | 0.179<br>ed health, 1<br>ute route. E  | 1.00<br>0.64<br>Moderata<br>atata were | (0.32, 1.31)<br>e-to-Vigorous<br>e collected fro | 0.225<br>Physical <i>i</i><br>m June 20 | 1.00<br>0.64<br>Acetivity<br>11 throu | (0.31, 1.31)<br>(MVPA), <sup>c</sup> Ad<br>(gh to May 20) | 0.223<br>justed by A<br>12 in Barce | 1.00<br>0.67<br>Uge,<br>Idona, | (0.33, 1.38)           |    |

#### **BMJ Open**

STROBE Statement-checklist of items that should be included in reports of observational studies

|                 | Item<br>No | Recommendation                                                                   | Reported in<br>page |
|-----------------|------------|----------------------------------------------------------------------------------|---------------------|
| Title and       | 1          | (a) Indicate the study's design with a commonly used term in the title or the    | Page 2              |
| abstract        |            | abstract                                                                         | C                   |
|                 |            | (b) Provide in the abstract an informative and balanced summary of what          | Page 2              |
|                 |            | was done and what was found                                                      | C                   |
| Introduction    |            |                                                                                  |                     |
| Background/rati | 2          | Explain the scientific background and rationale for the investigation being      | Pages 3, 4          |
| onale           |            | reported                                                                         | -                   |
| Objectives      | 3          | State specific objectives, including any prespecified hypotheses                 | Page 4              |
| Methods         |            |                                                                                  |                     |
| Study design    | 4          | Present key elements of study design early in the paper                          | Page 4              |
| Setting         | 5          | Describe the setting, locations, and relevant dates, including periods of        | Pages 4, 5          |
| 6               |            | recruitment, exposure, follow-up, and data collection                            |                     |
| Participants    | 6          | (a) Cohort study—Give the eligibility criteria, and the sources and methods      | Pages 4, 5          |
| F               |            | of selection of participants. Describe methods of follow-up                      |                     |
|                 |            | <i>Case-control study</i> —Give the eligibility criteria, and the sources and    |                     |
|                 |            | methods of case ascertainment and control selection. Give the rationale for      |                     |
|                 |            | the choice of cases and controls                                                 |                     |
|                 |            | <i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and |                     |
|                 |            | methods of selection of participants                                             |                     |
|                 |            | (b) Cohort study—For matched studies, give matching criteria and number          | _                   |
|                 |            | (b) Conort study—1 of matched studies, give matching criteria and number         | -                   |
|                 |            | Crease control study. For metabod studies give metabing criterie and the         |                     |
|                 |            | Case-control study—For matched studies, give matching criteria and the           |                     |
| X7 · 11         | 7          | number of controls per case                                                      | D 5 ( 7             |
| Variables       | 1          | Clearly define all outcomes, exposures, predictors, potential confounders,       | Pages 5, 6, 7,      |
|                 |            | and effect modifiers. Give diagnostic criteria, if applicable                    | 8                   |
| Data sources/   | 8*         | For each variable of interest, give sources of data and details of methods of    | Pages 5, 6, 7,      |
| measurement     |            | assessment (measurement). Describe comparability of assessment methods           | 8                   |
|                 |            | if there is more than one group                                                  |                     |
| Bias            | 9          | Describe any efforts to address potential sources of bias                        | Pages 4, 5          |
| Study size      | 10         | Explain how the study size was arrived at                                        | Page 8, in          |
|                 |            |                                                                                  | previous            |
|                 |            |                                                                                  | papers              |
| Quantitative    | 11         | Explain how quantitative variables were handled in the analyses. If              | Pages 5, 6, 7,      |
| variables       |            | applicable, describe which groupings were chosen and why                         | 8                   |
| Statistical     | 12         | (a) Describe all statistical methods, including those used to control for        | Page 8              |
| methods         |            | confounding                                                                      |                     |
|                 |            | (b) Describe any methods used to examine subgroups and interactions              | Page 8              |
|                 |            | (c) Explain how missing data were addressed                                      | Page 8              |
|                 |            | (d) Cohort study—If applicable, explain how loss to follow-up was                | Page 8              |
|                 |            | addressed                                                                        | -                   |
|                 |            | <i>Case-control study</i> —If applicable, explain how matching of cases and      |                     |
|                 |            | controls was addressed                                                           |                     |
|                 |            | <i>Cross-sectional study</i> —If applicable, describe analytical methods taking  |                     |
|                 |            |                                                                                  |                     |

Continued on next page

| Results          |     |                                                                                     | Reported in page |
|------------------|-----|-------------------------------------------------------------------------------------|------------------|
| Participants     | 13* | (a) Report numbers of individuals at each stage of study—eg numbers                 | In previous      |
|                  |     | potentially eligible, examined for eligibility, confirmed eligible, included in     | papers           |
|                  |     | the study, completing follow-up, and analysed                                       |                  |
|                  |     | (b) Give reasons for non-participation at each stage                                | In previous      |
|                  |     |                                                                                     | papers           |
|                  |     | (c) Consider use of a flow diagram                                                  | In previous      |
|                  |     |                                                                                     | papers           |
| Descriptive      | 14* | (a) Give characteristics of study participants (eg demographic, clinical, social)   | Pages 8, 9, 10   |
| data             |     | and information on exposures and potential confounders                              |                  |
|                  |     | (b) Indicate number of participants with missing data for each variable of          | Pages 8, 9, 10   |
|                  |     | interest                                                                            |                  |
|                  |     | (c) Cohort study—Summarise follow-up time (eg, average and total amount)            | -                |
| Outcome data     | 15* | Cohort study—Report numbers of outcome events or summary measures over              | -                |
|                  |     | time                                                                                |                  |
|                  |     | Case-control study—Report numbers in each exposure category, or summary             | -                |
|                  |     | measures of exposure                                                                |                  |
|                  |     | Cross-sectional study—Report numbers of outcome events or summary                   | Pages 9,11       |
|                  |     | measures                                                                            |                  |
| Main results     | 16  | (a) Give unadjusted estimates and, if applicable, confounder-adjusted               | Pages 12, 13     |
|                  |     | estimates and their precision (eg, 95% confidence interval). Make clear which       |                  |
|                  |     | confounders were adjusted for and why they were included                            |                  |
|                  |     | (b) Report category boundaries when continuous variables were categorized           | Pages 6, 7       |
|                  |     | (c) If relevant, consider translating estimates of relative risk into absolute risk | -                |
|                  |     | for a meaningful time period                                                        |                  |
| Other analyses   | 17  | Report other analyses done-eg analyses of subgroups and interactions, and           | Page 12,         |
|                  |     | sensitivity analyses                                                                | supplementary    |
|                  |     |                                                                                     | material         |
| Discussion       |     |                                                                                     |                  |
| Key results      | 18  | Summarise key results with reference to study objectives                            | Page 14          |
| Limitations      | 19  | Discuss limitations of the study, taking into account sources of potential bias     | Pages 15, 16     |
|                  |     | or imprecision. Discuss both direction and magnitude of any potential bias          |                  |
| Interpretation   | 20  | Give a cautious overall interpretation of results considering objectives,           | Pages 14, 15,    |
|                  |     | limitations, multiplicity of analyses, results from similar studies, and other      | 16, 17           |
|                  |     | relevant evidence                                                                   |                  |
| Generalisability | 21  | Discuss the generalisability (external validity) of the study results               | Pages 15, 16     |
| Other informatio | on  |                                                                                     |                  |
| Funding          | 22  |                                                                                     | D 10             |
| Funding          | 22  | Give the source of funding and the role of the funders for the present study        | Page 19          |

\*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

**Note:** An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at

http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

# **BMJ Open**

#### THE RELATIONSHIP BETWEEN BICYCLE COMMUTING AND PERCEIVED STRESS: A CROSS-SECTIONAL STUDY

| Journal:                             | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                        | bmjopen-2016-013542.R1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Article Type:                        | Research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Date Submitted by the Author:        | 20-Dec-2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Complete List of Authors:            | Avila-Palencia, Ione; ISGlobal, Centre for Research in Environmental<br>Epidemiology (CREAL),<br>de Nazelle, Audrey; Centre for Environmental Policy, Imperial College of<br>London<br>Cole-Hunter, Tom; Colorado State University, Department of<br>Environmental and Radiological Health Sciences<br>Donaire-Gonzalez, David; 1ISGlobal, Centre for Research in Environmental<br>Epidemiology (CREAL)<br>Jerrett, Michael; University of California Los Angeles, Department of<br>Environmental Health Sciences<br>Rodriguez, Daniel; University of California Berkeley, Department of City<br>and Regional Planning<br>Nieuwenhuijsen, Mark; ISGlobal, Centre for Research in Environmental<br>Epidemiology (CREAL) |
| <b>Primary Subject<br/>Heading</b> : | Epidemiology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Secondary Subject Heading:           | Mental health, Public health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Keywords:                            | EPIDEMIOLOGY, MENTAL HEALTH, PUBLIC HEALTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

SCHOLARONE<sup>™</sup> Manuscripts

| Page 1 of 34     |    | BMJ Open                                                                                                                      |
|------------------|----|-------------------------------------------------------------------------------------------------------------------------------|
| 1<br>2           |    |                                                                                                                               |
| -<br>3<br>4<br>5 | 1  | THE RELATIONSHIP BETWEEN BICYCLE COMMUTING                                                                                    |
| 6<br>7           | 2  | AND PERCEIVED STRESS: A CROSS-SECTIONAL STUDY                                                                                 |
| 8<br>9           | 3  | Ione Avila-Palencia, MPH <sup>1, 2, 3</sup> ; Audrey de Nazelle, PhD <sup>4</sup> ; Tom Cole-Hunter, PhD <sup>5</sup> ; David |
| 10<br>11         | 4  | Donaire-Gonzalez, PhD <sup>1,3,6</sup> ; Michael Jerrett, PhD <sup>7</sup> ; Daniel A. Rodriguez, PhD <sup>8</sup> ; Mark J   |
| 12<br>13         | 5  | Nieuwenhuijsen, PhD <sup>1,2,3</sup>                                                                                          |
| 14<br>15         | 6  | Author's affiliations:                                                                                                        |
| 17<br>18         | 7  | <sup>1</sup> ISGlobal, Centre for Research in Environmental Epidemiology (CREAL). Barcelona, Spain.                           |
| 19<br>20         | 8  | <sup>2</sup> Universitat Pompeu Fabra (UPF). Barcelona, Spain.                                                                |
| 21<br>22         | 9  | <sup>3</sup> CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.                                                |
| 23<br>24         | 10 | <sup>4</sup> Centre for Environmental Policy, Imperial College of London, London, United Kingdom.                             |
| 25<br>26         | 11 | <sup>5</sup> Department of Environmental and Radiological Health Sciences, Colorado State University,                         |
| 27<br>28         | 12 | Fort Collins, CO, USA                                                                                                         |
| 29<br>30<br>31   | 13 | <sup>6</sup> Physical Activity and Sports Sciences Department, Fundació Blanquerna, Ramon Llull                               |
| 32<br>33         | 14 | University. Barcelona, Spain.                                                                                                 |
| 34<br>35         | 15 | <sup>7</sup> Department of Environmental Health Sciences, University of California, Los Angeles,                              |
| 36<br>37         | 16 | California, United States of America.                                                                                         |
| 38<br>39         | 17 | <sup>8</sup> Department of City and Regional Planning, University of California, Berkeley, California,                        |
| 40<br>41         | 18 | United States of America.                                                                                                     |
| 42<br>43         | 19 | Corresponding author information:                                                                                             |
| 44<br>45<br>46   | 20 | Ione Avila-Palencia, ISGlobal, Centre for Research in Environmental Epidemiology                                              |
| 47<br>48         | 21 | (CREAL), Doctor Aiguader, 88, 08003 Barcelona, Spain. Telephone (+34) 93 2147337; Fax                                         |
| 49<br>50         | 22 | (+34) 93 2147302; E-mail: ione.avila@isglobal.org                                                                             |
| 51<br>52         | 23 | <b>Keywords</b> : Environmental epidemiology, Physical activity, Stress, Urbanisation, Self-rated                             |
| 53<br>54         | 24 | health                                                                                                                        |
| 55<br>56         | 25 | Word count of main text: 3562                                                                                                 |
| 57<br>58<br>59   |    |                                                                                                                               |
| 60               |    | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                     |

ABSTRACT Introduction: Active commuting -walking and bicycling for travel to and/or from work or educational addresses- may facilitate daily, routine physical activity. Several studies have investigated the relationship between active commuting and commuting stress, but there are no studies examining the relationship between bicycle commuting and perceived stress, or studies that account for environmental determinants of bicycling commuting and stress. The current study evaluated the relationship between bicycle use for commuting among working or studying adults in a dense urban setting and perceived stress. Methods: A cross-sectional study was performed with 788 adults who regularly travelled to work or study locations in Barcelona, Spain, excluding those who only commuted on foot. Participants responded to a comprehensive telephone survey concerning their travel behaviour from June 2011 through to May 2012. Participants were categorised as either bicycle

13 commuters or non-bicycle commuters, and based on the Perceived Stress Scale (PSS-4), as

14 stressed or non-stressed. Multivariate Poisson regression with robust variance models of stress

15 status based on bicycling exposure, adjusting for potential confounders, were estimated.

**Results:** Bicycle commuters had significantly lower risk of being stressed [RR (95%CI) =

17 0.73 (0.60, 0.89)]. Bicycle commuters who bicycled four or more days per week had lower

18 risk of being stressed than those who bicycled less than four days. This relationship remained

19 statistically significant after adjusting for individual and environmental confounders, and

20 when using a different cut-off of perceived stress.

Conclusions: Stress reduction may be an important consequence of routine bicycle use and
 should be considered by decision makers as another potential benefit of its promotion.
| 2<br>3                                                                                                                                             | 1  | STRENGHTS AND LIMITATIONS OF THIS STUDY                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|----|------------------------------------------------------------------------------------------|
| 4<br>5<br>6                                                                                                                                        | 2  | • The study had high internal validity, with a good representation of bicycle commuters. |
| 7<br>8                                                                                                                                             | 3  | • The study was conducted in Barcelona (a southern European city), adding evidence in    |
| 9<br>10                                                                                                                                            | 4  | a different context than the current literature on these issues.                         |
| 11<br>12                                                                                                                                           | 5  | • The TAPAS Travel Survey sample is representative of Barcelona's population, taking     |
| 13<br>14<br>15                                                                                                                                     | 6  | into account home neighbourhood deprivation and home and work population density.        |
| 15<br>16<br>17                                                                                                                                     | 7  | • The study used a cross-sectional design, which is not well-suited to assess the        |
| 18<br>19                                                                                                                                           | 8  | direction of causation.                                                                  |
| 20<br>21                                                                                                                                           | 9  | • Using questionnaire data we could have misclassification error (information bias) of   |
| 22<br>23                                                                                                                                           | 10 | bicycle commuting and physical activity because of the data being self-reported.         |
| 26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50 |    |                                                                                          |
| 50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60                                                                                     |    | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                |

## INTRODUCTION

Walking and bicycling for transport is increasingly being promoted due to its potential for increasing physical activity (PA) levels in the general population (1-3). Active commuting – walking and bicycling for travel to and/or from work or educational addresses - has been associated with multiple health benefits from reductions to cardiovascular risk (4,5), lowering of body weight (2,5), improvement of fitness, reduced risk of diabetes (3), to higher levels of physical and mental well-being(6,7). Specifically, bicycle commuting has been inversely associated with all-cause mortality among both men and women in all age groups(8) and it seems to be likely to improve the health-related quality of life in previously untrained healthy adults(9). Active commuting has been shown to have other societal benefits such as helping reduce air pollution, greenhouse gas emissions, and noise, and improving social interaction(10).

Perceived stress is a global and comprehensive stress construct that refers to the interaction between the individual and the environment in the presence of a stressor(11). The perception of an event as stressful can result in a range of physiological, behavioural, and psychological changes, and can lead to cardiovascular disease, increased negative affect, lowered self-esteem, and lowered feelings of control. Hence, it is possible that mental health outcomes such as anxiety disorders and depression can be manifestations of chronic, perceived stress(12). Furthermore, others have suggested gender differences in stress-related variables. Women seem to be more physiologically reactive to social rejection challenges(13), are more likely to have daily stress, and be more impacted by life events(14).

24 Some literature recognises commuting as a potential source of stress(15); however, active

25 commuters have been shown to have higher levels of satisfaction, lower stress, higher

#### **BMJ** Open

relaxation and a heightened sense of freedom compared to car drivers.(16–18). Recent qualitative research has suggested that commuting can be perceived as a relaxing or transitional time between home and work life, which can also be about enjoying pleasant landscape, nature and wildlife(19). Emerging literature has highlighted the relevance of positive natural and built environment to increase bicycle commuting and to improve mental health outcomes. Bicycle lane connectivity, bikeability, separation of bicycling from other traffic, high population density, short trip distance, proximity of a cycle path, green space and also walkability have been suggested as determinants of bicycling(20–24). Green space has also been associated with better self-perceived general health and better mental health(25,26). Several studies have examined the relationship between active commuting and commuting stress (stress directly related with the act of commuting)(17,18,27,28), but none of them have studied the relationship between adult bicycle commuters and perceived stress, nor taking into

14 account environmental determinants. Moreover, most studies of active commuting benefits on

15 mental health have been conducted in North America or Northwest Europe, where the urban

16 design tends to be less dense than many parts of the world(6,7,17,28–30). Consequently, a

17 need exists to understand the relationship between bicycle commuting and perceived stress,

18 particularly in dense urban environments.

20 The current study aimed to evaluate the relationship between bicycle commuting among the

21 working or studying adult population and perceived stress in a dense urban setting.

#### 

## 1 MATERIALS AND METHODS

#### 2 Study population

This cross-sectional study was based on participants from the Transportation, Air Pollution and Physical ActivitieS (TAPAS) Travel Survey. TAPAS is a relatively large study aimed at investigating the risks and benefits of active commuting. Participant recruitment was conducted by trained interviewers on the streets of Barcelona city between June 2011 and May 2012. To ensure adequate geographic coverage, a total of 40 random points (four random points within each of the ten city districts across Barcelona) were sampled. Adult bicycle commuters and non-bicycle commuters were asked in the street to answer a few screening questions, and those who fulfilled the inclusion criteria (being older than 18 years of age; living in Barcelona city since 2006 or earlier; working or going to school in Barcelona city; being healthy enough to ride a bicycle for 20 minutes; having a commute distance greater than a 10-minute walk; and using at least one mode of transport other than walking to commute) were invited to respond to a telephone survey. Bicycle commuters were oversampled to ensure enough bicycle commuters in the study. Those solely commuting on foot were excluded as the main interest was in the contrast between motorized modes (private and public transportation) and the bicycle. Of the 18469 participants approached across the forty sampling random points, 6701 agreed to answer screening questions. Of these, 1508 met the inclusion criteria, and 871 participants completed the survey. After survey responses were checked by the research team, 815 still fulfilled the inclusion criteria and 789 had geocodable home address. After excluding one PA outlier (total of all walking, moderate and vigorous time variables >960 minutes/day), 788 participants remained. Further details on the recruitment is given elsewhere(31).

#### BMJ Open

| 1  | The study protocol was approved by the Clinical Research Ethical Committee of the Parc de    |
|----|----------------------------------------------------------------------------------------------|
| 2  | Salut Mar (CEIC-Parc de Salut Mar), and written informed consent was obtained from all       |
| 3  | participants.                                                                                |
| 4  |                                                                                              |
| 5  | Bicycle commuting                                                                            |
| 6  | The TAPAS Travel Survey assessed the regular use of transport modes(32) and the bicycle      |
| 7  | use(33). Participants who indicated using a bicycle (private or from public bicycle sharing  |
| 8  | system) to go to work or school at least once the week prior to survey administration were   |
| 9  | classified as "bicycle commuters". Participants who did not commute by bicycle in the week   |
| 10 | prior to survey administration were classified as "non-bicycle commuters".                   |
| 11 |                                                                                              |
| 12 | As part of the sensitivity analyses, commuting behaviour was further classified according to |
| 13 | bicycle commuting levels and bicycle commuting propensity(24). Bicycle commuting levels      |
| 14 | classification was based on the days of bicycle commuting in the week prior to survey        |
| 15 | administration: "low" being three days or fewer, "medium" for four days, and "high" for five |
| 16 | or more days. This measure could be interpreted as a proxy of bicycle commuting frequency.   |
| 17 | Bicycle commuting propensity classification took into account both frequency and             |
| 18 | willingness to commute by bicycle: the "bicycle commuters" were further classified as        |
| 19 | "frequent" (four or more days) or "infrequent" (three or less days), and the "non-bicycle    |
| 20 | commuters" were classified as "willing" or "unwilling". The "willing" group were those       |
| 21 | "non-bicycle commuters" who indicated bicycling as "never or nearly never" their general     |
| 22 | transport mode, but who also indicated that they would consider bicycle commuting in         |
| 23 | Barcelona (they answered positively to "considering costs, travelling time, comfort and      |
| 24 | safety, how ready would you be to use the bicycle/Bicing (public bicycle-sharing system) for |
| 25 | your trip to work or education centre?"). The "unwilling" group were those "non-bicycle      |
|    |                                                                                              |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

commuters" who indicated "never or nearly never" bicycling for travel and indicated that they
 would not consider bicycle commuting in Barcelona by answering negatively to the above
 question. More details of the bicycle commuting propensity classification are given
 elsewhere(24). This measure was included in the analysis to assess the effect of being willing
 to commute by bicycle in perceived stress.

#### 7 Perceived stress

The last four questions of the TAPAS Travel Survey were the short version of Perceived Stress Scale (PSS-4)(11), which is a well-validated psychological instrument to measure the degree to which situations in one's life over the past month are appraised as stressful. The instrument contains four statements, which measure how unpredictable, uncontrollable, and overloaded respondents feel that their lives are (Table S1). The higher the score on the PSS-4 (from 0 to 16), the greater the respondent perceives that their demands exceed their ability to cope. There are no cut-off scores. Instead, an individual's score is compared to a normative value(34). In the TAPAS Travel Survey the 5-point Likert scale was modified to a 4-point Likert scale, removing the midpoint option for consistency with other questions in the survey, as all other questions used a 4-point Likert scale. The sample did not have high levels of perceived stress (Table S2); therefore, for an easier interpretation participants with a PSS-4 score higher than 3 (median of the total sample) were classified as "stressed", and those equal or lower than 3 were classified as "non-stressed". The sensitivity of our results to this choice was examined further in sensitivity analyses by classifying the respondents with PSS-4 scores in the 75<sup>th</sup> percentile (P75) and above (a score higher than 4) and in the 90<sup>th</sup> percentile (P90) and above (a score of 6 and above) as stressed and all others as non-stressed.

Page 9 of 34

2

1

**BMJ** Open

9

| 2              |  |
|----------------|--|
| 3              |  |
| 4              |  |
| 5              |  |
| 5              |  |
| 7              |  |
| ,<br>D         |  |
| 0              |  |
| 9              |  |
| 10             |  |
| 11             |  |
| 12             |  |
| 13             |  |
| 17             |  |
| 14             |  |
| 15             |  |
| 16             |  |
| 17             |  |
| 18             |  |
| 19             |  |
| 20             |  |
| 20<br>∩1       |  |
| 21             |  |
| 22             |  |
| 23             |  |
| 24             |  |
| 25             |  |
| 26             |  |
| 20             |  |
| 27             |  |
| 28             |  |
| 29             |  |
| 30             |  |
| 31             |  |
| 27             |  |
| )Z<br>))       |  |
| 33             |  |
| 34             |  |
| 35             |  |
| 36             |  |
| 37             |  |
| 20             |  |
| 20             |  |
| 39             |  |
| 40             |  |
| 41             |  |
| 42             |  |
| 43             |  |
| 11             |  |
| 44<br>4 F      |  |
| 45             |  |
| 46             |  |
| 47             |  |
| 48             |  |
| 49             |  |
| 50             |  |
|                |  |
|                |  |
| 52             |  |
| 53             |  |
| 54             |  |
| 55             |  |
| 56             |  |
|                |  |
| <b>.</b> .     |  |
| 57             |  |
| 57<br>58       |  |
| 57<br>58<br>59 |  |

#### 1 **Other explanatory measures**

Individual determinants of bicycle commuting and perceived stress such as physical activity 3 levels(35), socio-demographic variables, and work or school addresses were also derived from 4 the TAPAS Travel Survey to be used as potential confounders. In addition, the MEDEA 5 Index (Mortalidad en áreas pequeñas Españolas y Desigualdades socioEconómicas y 6 Ambientales, in Spanish; Environmental and socioEconomic Inequalities in Mortality in small 7 Spanish areas, translated to English) was used as an area deprivation indicator assigned to 8 each participants' address. MEDEA measures deprivation at the census tract level based on 9 five domains including percentage of manual workers, temporary workers, total population 10 with low education, young population with low education, and unemployment(36). 11 12 Environmental determinants of bicycle commuting and perceived stress within a 400m buffer 13 surrounding home and work/study addresses, and a Route-By-Area (RBA) surrounding 14 predicted commute routes, were calculated to be used as potential confounders too. The 15 number of public bicycle stations within a 400m buffer surrounding home and work/study 16 addresses was calculated based on information from the Ajuntament de Barcelona -17 Informació de Base i Cartografia (IBC) (Barcelona City Council – Basic information and 18 mapping). Greenness was calculated as a mean in Normalized Difference Vegetation Index 19 (NDVI) via satellite imagery (LANDSAT 4 and 5, NASA). Mean NO<sub>2</sub> levels were estimated 20 using a land-use regression model developed for a previous project(37). Noise was calculated 21 as the proportion of street length above a 55 dB(A) threshold(38). A bikeability index was 22 calculated taking into account five factors shown to influence bicycling: bicycle facility 23 availability, bicycle facility quality, street connectivity, topography, and land use(39). 24 Commute distance did not use buffers and it was calculated in km following the street

#### 

network of the shortest route from home address to work address. Further details of the
 environmental determinants calculation are given elsewhere(24).

#### Statistical analyses

A Generalized Additive Model (GAM) was used to test linearity between perceived stress and total physical activity (Total PA), moderate-to-vigorous physical activity (MVPA), vigorous physical activity (VPA), and age(40). As there was no statistical evidence to reject linearity between perceived stress and Total PA (p-value = 0.3816), MVPA (p-value = 0.5025), VPA (p-value = 0.1630), and age (p-value = 0.2282), these variables were included as continuous variables in the model assuming a linear relationship. Multivariate Poisson regression with robust variance models were used to assess the relationship between bicycle commuting and perceived stress. Possible mediation by different levels of PA between bicycle commuting and perceived stress, and any interaction between gender and bicycle commuting were also tested with Poisson regression with robust variance models. All regression models were conducted with a complete case analysis and included individual and environmental potential confounders that showed a p-value < 0.05 in the bivariate analysis as well as those found to be statistically significant within previous literature. The first descriptive statistical analyses were conducted in Stata version SE 12 (StataCorp LP, Texas USA), while Poisson regression with robust variance models were conducted in Stata version SE 14 (StataCorp LP, Texas USA).

#### **RESULTS**

The included sample had an equal distribution of genders and the median age (P25-P75) was 36 (29-43) years (Table 1). The majority of participants were non-stressed (had a stress score equal or lower than 3), Spanish, possessing university studies completed or equivalent-level education, living with their family or partner, living with at least 2 employed people and not Page 11 of 34

#### BMJ Open

| 1  | with children (64.34%). Among those living with children, 8.12% had children younger than        |
|----|--------------------------------------------------------------------------------------------------|
| 2  | 3 years of age. The sample had positive self-perception of health (with only $<1\%$ of           |
| 3  | participants self-perceiving bad or very bad health), healthy weight according to BMI            |
| 4  | (71.12%), and generally no chronic disease (92.26%). Bicycle commuters were statistically        |
| 5  | significant more likely to be non-stressed; younger (35 years); men; have higher levels of PA;   |
| 6  | possess a university or equivalent-level education; live alone and/or with flat mates with 0-1   |
| 7  | employed people; have no children; and have better self-perception of health, and healthy        |
| 8  | weight, but more chronic diseases than non-bicycle commuters. The majority of participants       |
| 9  | considered that they could release stress when riding a bicycle and that they enjoyed their trip |
| 10 | more if they used a bicycle. Bicycle commuters had shorter commutes compared to non-             |
| 11 | bicycle commuters, and we observed a gradient between commute distance and bicycle               |
| 12 | commuting levels with shorter distances for those who cycled more frequently. This tendency      |
| 13 | was also followed by bicycle commuting propensity, with decreasing commute distance from         |
| 14 | unwilling to bicycle to frequent bicyclists (Table S3). Bicycle commuters also had more          |
| 15 | public bicycle stations around the home and work/study addresses, lower average greenness        |
| 16 | around the home address, and higher levels of bikeability at home, work/study address, and       |
| 17 | on the commute route compared to non-bicycle commuters (Table 1). These environmental            |
| 18 | determinants stayed statistically significant for bicycle commuting propensity, but not          |
| 19 | between bicycle commuting levels (Table S3).                                                     |
| 20 |                                                                                                  |
| 21 | Women, non-Spanish, those living with 0-1 employed people, and those having a chronic            |
|    |                                                                                                  |

disease were more likely to be stressed (Table 2). Participants who had more public bicycle
stations around their work/study area and higher levels of bikeability in the work/study

- 24 address area and on the commute route were less likely to be stressed. There was no
- 25 statistically significant relationship between commute distance, greenness, NO<sub>2</sub> and noise, and

1 perceived stress. The possible mediation of PA was not further explored as there was no

2 statistically significant relationship between levels of PA (Total PA, MVPA and VPA) and

3 perceived stress [RR: 1.00; 95% CI: (0.99, 1.00)] for the three different classifications of

4 perceived stress (P50, P75, P90) (Table 2, Table S4).

to been terien only

#### 1 Table 1. Descriptive analyses of perceived stress and determinants of participants and

#### 2 according to bicycle commuting status.

|                                             | Total  | sample (788)  | Bicycle commuting status |                 |            |                      |        |
|---------------------------------------------|--------|---------------|--------------------------|-----------------|------------|----------------------|--------|
| Variables                                   |        | sumple (100)  | Non-bicycle              | commuters (390) | Bicycle co | p-value <sup>s</sup> |        |
|                                             | n      | %             | n                        | %               | n          | %                    | •      |
| Outcome                                     |        |               |                          |                 |            |                      |        |
| Stressed (median) (Yes)                     | 280    | 35.53         | 162                      | 41.97           | 118        | 30.33                | 0.001  |
|                                             |        |               |                          |                 |            |                      |        |
| Individual determinants                     |        |               |                          |                 |            |                      |        |
| Age (median; P25-P75)                       | 36     | 29-43         | 37                       | 30-45           | 35         | 29-41                | 0.025  |
| Total PA – min/week (median; P25-P75)       | 424.99 | 269.99-700.00 | 374.99                   | 209.99-624.99   | 484.98     | 329.99-734.99        | < 0.00 |
| MVPA – min/week (median; P25-P75)           | 197.49 | 72.50-374.99  | 90.00                    | 0-40            | 299.99     | 159.99-464.99        | < 0.00 |
| VPA – min/week (median; P25-P75)            | 72.50  | 0-180.00      | 35.00                    | 0-134.99        | 105.00     | 0-225.00             | < 0.00 |
| Sex (Woman)                                 | 410    | 52.03         | 234                      | 60.00           | 176        | 44.22                | <0.00  |
| Country of birth (non-Spanish)              | 97     | 12.31         | 41                       | 10.51           | 56         | 14.11                | 0.12   |
| Working status (Student)                    | 104    | 13.20         | 347                      | 87.19           | 51         | 12.81                | 0.74   |
| equivalent-level education)                 | 551    | 69.92         | 247                      | 63.33           | 304        | 76.38                | < 0.00 |
| Living with family/partner                  | 635    | 80.58         | 327                      | 83.85           | 308        | 77.58                | 0.02   |
| Employed people in household (2-5)          | 510    | 64.72         | 261                      | 67.27           | 249        | 62.88                | 0.19   |
| MEDEA index                                 |        |               |                          |                 |            |                      | 0.35   |
| 1st tertile (least deprived)                | 263    | 33.38         | 130                      | 33.33           | 133        | 33.42                |        |
| 2nd tertile                                 | 263    | 33.38         | 122                      | 31.28           | 141        | 35.43                |        |
| 3rd tertile (most deprived)                 | 262    | 33.25         | 138                      | 35.38           | 124        | 31.16                |        |
| Children in household (Yes)                 | 279    | 35.41         | 151                      | 38.82           | 128        | 32.24                | 0.05   |
| Children <3 years in household (Yes)        | 64     | 8.12          | 36                       | 9.25            | 28         | 7.07                 | 0.26   |
| Self-perceived health (Very good/Excellent) | 323    | 40.99         | 140                      | 35.90           | 183        | 45.98                | 0.00   |
| BMI (Overweight/Obese)                      | 212    | 26.9          | 124                      | 31.96           | 88         | 22.11                | 0.00   |
| Chronic disease (Yes)                       | 61     | 7.74          | 25                       | 6.41            | 36         | 9.05                 | 0.16   |
| Stress releasing (Agreement)                | 658    | 83.50         | 302                      | 79.47           | 356        | 90.59                | <0.0   |
| Bicycle trip enjoyment (Agreement)          | 629    | /9.82         | 249                      | 65.35           | 380        | 96.20                | <0.00  |
| Environmental determinants                  |        |               |                          |                 |            |                      |        |
|                                             | 3.85   | 2.05          | 4.38                     | 2.25            | 3.35       | 1.70                 | < 0.00 |
| Commute distance, estimated (km) (mean;SD)  |        |               |                          |                 |            |                      |        |
| Public bicycle stations (mean;SD)           |        |               |                          |                 |            |                      |        |
| Home, count in 400m buffer                  | 4.25   | 2.54          | 3.75                     | 2.51            | 4.75       | 2.47                 | < 0.0  |
| Work/study, count in 400m buffer            | 4.92   | 3.11          | 4.50                     | 3.13            | 5.33       | 3.04                 | <0.0   |
| Greenness, NDVI [IOR, (mean:SD)]            |        |               |                          |                 |            |                      |        |
| Home average of 400m buffer                 | 0.79   | 1.07          | 0.91                     | 1.08            | 0.68       | 1.06                 | < 0.0  |
| Work/study average of 400m buffer           | 0.62   | 0.96          | 0.70                     | 1.07            | 0.55       | 0.83                 | 0.08   |
| Commute mute average of 400m burlet         | 0.97   | 0.96          | 1.07                     | 1.06            | 0.87       | 0.85                 | 0.06   |
| NO <sub>2</sub> nph (mean SD)               | 0.97   | 0.90          | 1.07                     | 1.00            | 0.07       | 0.05                 | 0.00   |
| Home concentration in 400m buffer           | 76.20  | 17.52         | 75.16                    | 17.12           | 77.21      | 17.87                | 0.05   |
| Werk/study, concentration in 400m build     | 78.43  | 22.51         | 78 56                    | 23.92           | 78 31      | 21.10                | 0.84   |
| work/study, concentration in 400m buller    | 94.40  | 16.07         | 94.24                    | 16.82           | 94.55      | 17.12                | 0.0    |
| Commute route, concentration in RBA         | 64.40  | 10.97         | 04.24                    | 10.82           | 04.55      | 17.15                | 0.90   |
| Noise, >55dB (%) (mean;SD)                  |        |               |                          |                 |            |                      |        |
| Home, proportion in 400m buffer             | 78.63  | 11.40         | 78.77                    | 10.99           | 78.50      | 11.79                | 0.82   |
| Work/study, proportion in 400m buffer       | 79.59  | 14.66         | 79.09                    | 14.86           | 80.07      | 14.46                | 0.36   |
| Commute route, proportion in RBA            | 77.40  | 9.04          | 77.51                    | 8.58            | 77.30      | 9.48                 | 0.92   |
| Bikeability (mean;SD)                       |        |               |                          |                 |            |                      |        |
| Home, concentration in 400m buffer          | 6.20   | 1.41          | 5.93                     | 1.45            | 6.46       | 1.31                 | < 0.0  |
| Work/study_concentration in 400m huffer     | 6.56   | 1.39          | 6.31                     | 1.54            | 6.79       | 1.17                 | < 0.0  |
| Commute route concentration in DDA          | 6 70   | 1.12          | 6.45                     | 1 20            | 6.94       | 0.98                 | <0.00  |

PA, Physical Activity; MVPA, Moderate-to-Vigorous Physical Activity; VPA, Vigorous Physical Activity; BMI, Body Mass Index; NDVI, Normalized Difference Vegetation Index; RBA, Route-By-Area. Data are n and %, unless otherwise noted. There are missing data in: Perceived stress (13; 1.65%), Total PA (5; 0.63%), Country of birth (1; 0.13%), Living with family/partner (1; 0.13%), Employed people in household (4; 0.51), Children in household (2; 0.25%), Children <3years old in household (3; 0.38), BMI (2; 0.25%); Stress releasing (15; 1.90%), Bicycle trip enjoyment (12; 1.52%), Commute distance (20; 2.54%), Greenness (20; 2.54%), NO<sub>2</sub> (20; 2.54%). \*Chi square test, except for Age, Total PA, MVPA, VPA, and all the Environmental determinants (U Mann Whitney test).

#### Table 2. Bivariate analyses showing the relationships between perceived stress (median) and

#### determinants of participants.

| Variable                                      | Perceived stress |              |         |  |  |
|-----------------------------------------------|------------------|--------------|---------|--|--|
| variable                                      | RR               | p-value      |         |  |  |
| Individual determinants                       |                  |              |         |  |  |
| Age                                           | 1.00             | (0.99, 1.01) | 0.502   |  |  |
| Total PA - min/week                           | 1.00             | (0.99, 1.00) | 0.669   |  |  |
| MVPA - min/week                               | 1.00             | (0.99, 1.00) | 0.114   |  |  |
| VPA - min/week                                | 1.00             | (0.99, 1.00) | 0.658   |  |  |
| Gender (Woman)                                | 1.55             | (1.27, 1.89) | < 0.001 |  |  |
| Country of birth (Spain)                      | 1.34             | (1.05, 1.70) | 0.017   |  |  |
| Working status (Student)                      | 1.22             | (0.95, 1.56) | 0.115   |  |  |
| Education level (University studies completed |                  |              | 0.207   |  |  |
| or Others)                                    | 0.92             | (0.75, 1.12) | 0.387   |  |  |
| Living with family/partner                    | 0.91             | (0.73, 1.15) | 0.439   |  |  |
| Employed people in household (2-5)            | 0.74             | (0.62, 0.90) | 0.002   |  |  |
| MEDEA index                                   |                  |              |         |  |  |
| 1st tertile (least deprived)                  | 1.00             |              |         |  |  |
| 2nd tertile                                   | 1.08             | (0.85, 1.37) | 0.537   |  |  |
| 3rd tertile (most deprived)                   | 1.18             | (0.94, 1.48) | 0.162   |  |  |
| Children in household (Yes)                   | 0.90             | (0.74, 1.11) | 0.330   |  |  |
| Children <3 years in household (Yes)          | 0.87             | (0.60, 1.27) | 0.475   |  |  |
| Self-perceived health (Very good/Excellent)   | 0.87             | (0.71, 1.06) | 0.157   |  |  |
| BMI (Overweight/Obese)                        | 0.95             | (0.77, 1.18) | 0.669   |  |  |
| Chronic disease (Yes)                         | 1.38             | (1.04, 1.83) | 0.024   |  |  |
| Stress releasing (Agreement)                  | 0.87             | (0.68, 1.11) | 0.273   |  |  |
| Bicycle trip enjoyment (Agreement)            | 0.91             | (0.72, 1.14) | 0.425   |  |  |
| Environmental determinants                    |                  |              |         |  |  |
| Commute distance estimated (km)               | 1.02             | (0.97, 1.06) | 0.508   |  |  |
| Public bicycle stations                       |                  | (            |         |  |  |
| Home, count in 400m buffer                    | 0.99             | (0.95, 1.02) | 0.503   |  |  |
| Work/study, count in 400m buffer              | 0.96             | (0.93, 0.99) | 0.024   |  |  |
| Greenness, NDVI                               |                  |              |         |  |  |
| Home, average of 400m buffer                  | 0.94             | (0.85, 1.05) | 0.258   |  |  |
| Work/study, average of 400m buffer            | 1.06             | (0.96, 1.16) | 0.241   |  |  |
| Commute route, average of RBA                 | 0.99             | (0.89, 1.09) | 0.838   |  |  |
| NO <sub>2</sub> ppb                           |                  |              |         |  |  |
| Home, concentration in 400m buffer            | 1.00             | (0.99, 1.01) | 0.827   |  |  |
| Work/study, concentration in 400m buffer      | 1.00             | (0.99, 1.00) | 0.100   |  |  |
| Commute route, concentration in RBA           | 1.00             | (0.99, 1.00) | 0.518   |  |  |
| Noise, >55dB                                  |                  |              |         |  |  |
| Home, proportion in 400m buffer               | 1.00             | (0.98, 1.00) | 0.363   |  |  |
| Work/study, proportion in 400m buffer         | 1.01             | (0.99, 1.01) | 0.125   |  |  |
| Commute route, proportion in RBA              | 1.00             | (0.98, 1.01) | 0.405   |  |  |
| Bikeability                                   |                  |              |         |  |  |
| Home, concentration in 400m buffer            | 1.00             | (0.94, 1.07) | 0.931   |  |  |
| Work/study, concentration in 400m buffer      | 0.92             | (0.86, 0.98) | 0.009   |  |  |
| Commute route concentration in RBA            | 0.91             | (0.84, 0.98) | 0.018   |  |  |

PA, Physical Activity; MVPA, Moderate-to-Vigorous Physical Activity; VPA, Vigorous Physical Activity; BMI, Body Mass Index; NDVI, Normalized Difference Vegetation Index; RBA, Route-By-Area. Complete case analysis excluding missing data of the variables of final models (Table 3; n=771). The variables that still present missing data and are not included in the final models are: Total PA (5; 0.63%), People living with in household (1; 0.13%), Children in household (2; 0.25%), Children - Syears old in household (3; 0.38), BMI (2; 0.25%); Stress releasing (15; 1.90%), Bicycle trip enjoyment (12; 1.52%), Commute distance (20; 2.54%), Greenness (20; 2.54%), NO<sub>2</sub> (20; 2.54%).

Page 15 of 34

#### BMJ Open

| 1  | Multivariate Poisson regression with robust variance analyses showed a statistically                |
|----|-----------------------------------------------------------------------------------------------------|
| 2  | significant inverse relationship between bicycle commuting and perceived stress. Bicycle            |
| 3  | commuters had a lower risk of being stressed compared to non-bicycle commuters [RR                  |
| 4  | (95%CI) = 0.73 (0.60, 0.89)]. This relationship remained after adjusting for confounders            |
| 5  | (individual and environmental) and when using P75 and P90 perceived stress cut-offs (Table          |
| 6  | 3, Table S5). There was a statistically significant inverse relationship between medium and         |
| 7  | high levels of bicycle commuting and perceived stress using non-bicycle commuters as a              |
| 8  | reference group [RR (95%CI) = $0.46$ (0.28, 0.78); RR (95%CI) = $0.63$ (0.49, 0.81)] and also       |
| 9  | when using low levels of bicycle commuting [RR $(95\%$ CI) = 0.42 $(0.24, 0.73)$ ; RR $(95\%$ CI) = |
| 10 | 0.57 (0.42, 0.77)] as a reference group. This statistically significant relationship remained in    |
| 11 | the majority of sensitivity analyses Regarding bicycle commuting propensity, there was a            |
| 12 | statistically significant inverse relationship between frequent bicycle commuters and               |
| 13 | perceived stress, using unwilling non-bicycle commuters [RR (95%CI) = 0.53 (0.41, 0.67)]            |
| 14 | and infrequent bicycle commuters [RR $(95\%$ CI) = 0.54 $(0.40, 0.72)$ ] as respective reference    |
| 15 | groups. The statistically significant relationship remained after adjusting for individual and      |
| 16 | environmental confounders and when using perceived stress P75 and P90 as cut-offs . Also,           |
| 17 | there was a statistically significant inverse relationship between willing non-bicycle              |
| 18 | commuters and perceived stress, using unwilling non-bicycle commuters [RR $(95\%CI) = 0.72$         |
| 19 | (0.56, 0.94)] as a reference group in the bicycle commuting propensity variable and also            |
| 20 | looking only in the non-bicycle commuting group. This relationship remained after adjusting         |
| 21 | for individual and environmental confounders, but not when using perceived stress at the P75        |
| 22 | and P90 cut-offs.                                                                                   |
| 23 |                                                                                                     |
| 24 | In the fully adjusted models, we found no statistically significant interactions between gender     |
| 25 | and bicycle commuters (p-value= 0.165) between gender and bicycle commuting levels (p-              |

- 1 value=0.226, p-value=0.266, p-value=0.431), or between gender and bicycle commuting
- 2 propensity (p-value=0.982, p-value=0.197, p-value=0.277) (results not shown).

tor peer terier only

#### **BMJ** Open

**Table 3**. Multivariate models showing the relationships between bicycle commuting and perceived stress (median) of participants.

|                                    | Perceived stress          |              |         |      |                                      |         |                                      |              |         |                                      |              |         |
|------------------------------------|---------------------------|--------------|---------|------|--------------------------------------|---------|--------------------------------------|--------------|---------|--------------------------------------|--------------|---------|
| Variable                           | RR Unadjusted<br>(95% CI) |              | p-value | RI   | RR Adjusted <sup>a</sup><br>(95% CI) |         | RR Adjusted <sup>b</sup><br>(95% CI) |              | p-value | RR Adjusted <sup>c</sup><br>(95% CI) |              | p-value |
| All sample (771)                   |                           |              |         |      |                                      |         |                                      |              |         |                                      |              |         |
| Bicycle commuting status           |                           |              |         |      |                                      |         |                                      |              |         |                                      |              |         |
| Non-bicycle commuters              | 1.00                      |              |         | 1.00 |                                      |         | 1.00                                 |              |         | 1.00                                 |              |         |
| Bicycle commuters                  | 0.73                      | (0.60, 0.89) | 0.001   | 0.75 | (0.62, 0.91)                         | 0.003   | 0.77                                 | (0.63, 0.94) | 0.009   | 0.80                                 | (0.66, 0.99) | 0.036   |
| Bicycle commuting levels           |                           |              |         |      |                                      |         |                                      |              |         |                                      |              |         |
| Non-bicycle commuters (0 days)     | 1.00                      |              |         | 1.00 |                                      |         | 1.00                                 |              |         | 1.00                                 |              |         |
| Low bicycle commuting (1-3 days)   | 1.10                      | (0.87, 1.39) | 0.436   | 1.11 | (0.88, 1.40)                         | 0.369   | 1.13                                 | (0.89, 1.44) | 0.297   | 1.17                                 | (0.92, 1.48) | 0.205   |
| Medium bicycle commuting (4 days)  | 0.46                      | (0.28, 0.78) | 0.004   | 0.45 | (0.27, 0.74)                         | 0.002   | 0.45                                 | (0.27, 0.75) | 0.002   | 0.48                                 | (0.29, 0.80) | 0.005   |
| High bicycle commuting (>=5 days)  | 0.63                      | (0.49, 0.81) | < 0.001 | 0.66 | (0.51, 0.85)                         | 0.001   | 0.68                                 | (0.52, 0.88) | 0.003   | 0.71                                 | (0.54, 0.92) | 0.010   |
| Bicycle commuting propensity       |                           |              |         |      |                                      |         |                                      |              |         |                                      |              |         |
| Unwilling Non-bicycle commuters    | 1.00                      |              |         | 1.00 |                                      |         | 1.00                                 |              |         | 1.00                                 |              |         |
| Willing Non-bicycle commuters      | 0.72                      | (0.56, 0.94) | 0.014   | 0.75 | (0.58, 0.97)                         | 0.029   | 0.74                                 | (0.57, 0.96) | 0.022   | 0.75                                 | (0.58, 0.97) | 0.031   |
| Infrequent Bicycle commuters       | 0.98                      | (0.76, 1.25) | 0.847   | 1.00 | (0.78, 1.27)                         | 0.980   | 1.01                                 | (0.79, 1.30) | 0.949   | 1.04                                 | (0.81, 1.34) | 0.739   |
| Frequent Bicycle commuters         | 0.53                      | (0.41, 0.67) | < 0.001 | 0.55 | (0.43, 0.70)                         | < 0.001 | 0.56                                 | (0.43, 0.72) | < 0.001 | 0.58                                 | (0.45, 0.76) | < 0.001 |
| Bicycle commuters sample (387)     |                           |              |         |      |                                      |         |                                      |              |         |                                      |              |         |
| Bicycle commuting levels           |                           |              |         |      |                                      |         |                                      |              |         |                                      |              |         |
| Low bicycle commuting (1-3 days)   | 1.00                      |              |         | 1.00 |                                      |         | 1.00                                 |              |         | 1.00                                 |              |         |
| Medium bicycle commuting (4 days)  | 0.42                      | (0.14, 0.59) | 0.002   | 0.39 | (0.23, 0.67)                         | 0.001   | 0.39                                 | (0.23, 0.65) | < 0.001 | 0.38                                 | (0.23, 0.65) | < 0.001 |
| High bicycle commuting (>=5 days)  | 0.57                      | (0.26, 0.68) | < 0.001 | 0.59 | (0.44, 0.80)                         | 0.001   | 0.59                                 | (0.44, 0.80) | 0.001   | 0.59                                 | (0.44, 0.80) | 0.001   |
| Bicycle commuters propensity       |                           |              |         |      |                                      |         |                                      |              |         |                                      |              |         |
| Infrequent (1-3 days)              | 1.00                      |              |         | 1.00 |                                      |         | 1.00                                 |              |         | 1.00                                 |              |         |
| Frequent (>=4 days)                | 0.54                      | (0.24, 0.62) | < 0.001 | 0.55 | (0.41, 0.73)                         | < 0.001 | 0.54                                 | (0.41, 0.72) | < 0.001 | 0.54                                 | (0.41, 0.72) | < 0.001 |
| Non-bicycle commuters sample (384) |                           |              |         |      |                                      |         |                                      |              |         |                                      |              |         |
| Non-bicycle commuters              |                           |              |         |      |                                      |         |                                      |              |         |                                      |              |         |
| Unwilling                          | 1.00                      |              |         | 1.00 |                                      |         | 1.00                                 |              |         | 1.00                                 |              |         |
| Willing                            | 0.72                      | (0.38, 0.89) | 0.015   | 0.73 | (0.57, 0.95)                         | 0.020   | 0.72                                 | (0.56, 0.93) | 0.013   | 0.74                                 | (0.57, 0.95) | 0.020   |

<sup>3</sup> Adjusted by Gender, Country of birth, Employed people in household, Chronic disease. <sup>b</sup>Adjusted by Age, Gender, Country of birth, Employed people in household, Chronic disease, Self-perceived health, Moderate-to-Vigorous Physical Activity (MVPA). <sup>c</sup>Adjusted by Age, Gender, Country of birth, Employed people in household, Chronic disease, Self-perceived health, Moderate-to-Vigorous Physical Activity (MVPA). <sup>c</sup>Adjusted by Age, Gender, Country of birth, Employed people in household, Chronic disease, Self-perceived health, Moderate-to-Vigorous Physical Activity (MVPA). <sup>c</sup>Adjusted by Age, Gender, Country of birth, Employed people in household, Chronic disease, Self-perceived health, Moderate-to-Vigorous Physical Activity (MVPA). <sup>c</sup>Adjusted by Age, Gender, Country of birth, Employed people in household, Chronic disease, Self-perceived health, MVPA, Public bicycle stations at work/study, Bikeability at commute route.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

## **DISCUSSION**

#### 2 Summary of results

We evaluated relationships between bicycle commuting and perceived stress while adjusting for several confounders in a representative sample of adults in Barcelona, Spain. We found statistically significant inverse relationships between several measures of bicycle commuting and perceived stress. Bicycle commuters who bicycled four or more days per week had lower risk of being stressed compared to those who cycled less or did not bicycle on their commute. This relationship remained statistically significant in all sensitivity analyses and after controlling for individual and environmental confounders.

#### 11 Comparison with previous studies

To our knowledge, this study is the first to assess whether a relationship exists between bicycle commuting and perceived stress. A few studies have focused on the relationship between active commuting and mental health(6,7,29), but the relationship is still unclear. One study found a positive association between active commuting and well-being(6), and another with better mental health in men(29). Moreover, Humphreys(7) found a positive relationship between time spent actively commuting and levels of physical well-being, but not with mental well-being. The relationship between physical activity and mental health has been studied more. It has been suggested that physical activity could reduce stress and anxiety on a daily basis while improving self-perception and mood(41-43), and it has been associated with lower depressive symptomatology and greater emotional well-being(44). These findings suggest that the physical activity gained during bicycle commuting(31) may act as a mediator in the relationship between bicycle commuting and perceived stress. Our results are consistent with the general idea that active commuting is associated with better mental health, but in our

Page 19 of 34

#### **BMJ** Open

| 1  | case physical activity did not act as a mediator in this relationship. Our sample was             |
|----|---------------------------------------------------------------------------------------------------|
| 2  | composed of young, healthy, and active participants with low levels of perceived stress,          |
| 3  | which might have led to an underestimation of the relationship between PA and perceived           |
| 4  | stress.                                                                                           |
| 5  |                                                                                                   |
| 6  | Qualitative research suggested that choice of travel mode may affect well-being(19). The          |
| 7  | quantity of public bicycle (Bicing) stations and the amount of greenness has been related to      |
| 8  | bicycle commuting propensity(24), which could imply that commuting by bicycle provides            |
| 9  | people with more opportunities to "enjoy" or "experience" greenness than commuting on             |
| 10 | public transport or a car. At the same time, the availability of green space close to one's home  |
| 11 | has been shown to be related to better self-perceived general health and better mental            |
| 12 | health(25,26,45). Therefore, it seems that perceptual and environmental factors related to        |
| 13 | bicycle commuting could affect perceived stress, in the way that more pleasant an                 |
| 14 | environment to bicycle commute is, better perceived stress results we will get. This general      |
| 15 | idea is consistent with our results which show an inverse relationship between perceived          |
| 16 | stress and bicycle-friendly environments (public bicycle stations and bikeability levels) in      |
| 17 | work/study address area and the commute route. Importantly, the relationship between              |
| 18 | bicycling and stress was unchanged after controlling for the environmental confounders. Our       |
| 19 | results also showed that general attitude might have a role in this relationship, as we have seen |
| 20 | that those willing non-bicycle commuters, compared to unwilling non-bicycle commuters,            |
| 21 | were less stressed. But this remained quite unclear as the relationship becomes statistically no  |
| 22 | significant in the sensitivity analyses.                                                          |
|    |                                                                                                   |

### 2 Limitations and strengths

Our study had some limitations. Firstly, our study used a cross-sectional design, which is not well-suited to assess the direction of causation, and we cannot exclude reverse causality or residual confounding. It has been suggested that stressed people can engage in unhealthy behaviours, such as poor dietary practices or a lack of physical activity (46). This reasoning could be applied to a behaviour like bicycle commuting, where those individuals who are more stressed would bicycle less. Secondly, our measurement method may be prone to information bias. With the questionnaire data we could have random misclassification error of bicycle commuting and PA because of the data being self-reported. Therefore, the risk estimate and also the potential mediation by PA could be under-estimated(47). The TAPAS Travel Survey only measured levels of PA without differentiating between types of PA (work, travel, recreational). Furthermore, the modification of the 5-point PSS-4 Likert scale into a 4-point Likert scale could incorrectly-estimate the perceived stress.

This study had several strengths, too. The study had high internal validity, with a good representation of bicycle commuters. Related to participants' characteristics, the TAPAS Travel Survey sample is representative of Barcelona's population from the socio-demographic point of view. It was compared with data from the Catalan government's Barcelona Active Population Survey (Statistics and information service, Catalan government 2011) and no statistically significant differences between participants' deprivation index and home and work population density in both surveys were found(24,31). Finally, our study in a southern European city has added evidence in a different context than the current literature on these issues.

#### BMJ Open

#### 1 Future research

Our findings underscored the need for future research. There is a need to obtain a clear understanding of the relationship between the bicycle commuting and perceived stress in longitudinal studies. The role of PA in this relationship seems unclear, and it is likely that other factors could affect the relationship between these two variables, especially those related to environmental determinants and personal attitudes. Further work related to determinants and mediators of bicycle commuting and perceived stress is needed.

## 8 CONCLUSIONS

We found that healthy, adult bicycle commuters had lower risk of being stressed than commuters of other transport modes. Also, bicycle commuters who bicycled four or more days per week had lower risk of being stressed than those who bicycled less than that. Environmental determinants such as the number of public bicycle stations and bikeability, and also personal attitudes seem to have an influence on this relationship. Further research is needed in order to disentangle the relationship between bicycle commuting and perceived stress, and its determinants (individual and environmental) and potential mediators. Our findings suggest that decision-makers may promote bicycle commuting as a daily routine, to reduce stress levels and improve public health and well-being. 

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

# 1 ACKNOWLEDGEMENTS

2 The authors are grateful to the participants of TAPAS Travel Survey and the CREAL

3 technicians who recruited them and created geographical variables. We would like to

4 acknowledge the ESCAPE project and its contributors for air quality and noise model data of

5 Barcelona, as well as the Ajuntament de Barcelona, Departament de Mobilitat for street map

6 information.

## 7 FUNDING

8 This study was performed as part of the TAPAS project < <u>http://www.tapas-program.org/</u> >,

9 funded by the Coca-Cola Foundation, the Agència de Gestió d'ajuts Universitaris i de Recerca

10 (AGAUR) and CREAL internal funding. Coca-Cola Foundation provided funding, but had no

11 role whatsoever in the design of the study or data collection, or interpretation of the results.

## **COMPETING INTERESTS**

13 No conflicts of interest were reported by the authors of this paper.

## 14 AUTHOR'S CONTRIBUTION

15 MJN and AdN obtained the funding and designed the study. IAP conducted the analyses and

16 drafted this version of the paper and received input from all the authors. All authors read and

17 commented on the paper and agreed with the final version.

## 18 DATA SHARING

19 Extra data is available by emailing the corresponding author (Ione Avila-Palencia:

20 ione.avila@isglobal.org).

| 1  | REFERENCES                                                                                  |
|----|---------------------------------------------------------------------------------------------|
| 2  | 1. Faulkner GEJ, Buliung RN, Flora PK, Fusco C. Active school transport, physical           |
| 3  | activity levels and body weight of children and youth: A systematic review. Prev Med.       |
| 4  | Elsevier Inc.; 2009;48(1):3–8.                                                              |
| 5  | 2. Wanner M, Götschi T, Martin-Diener E, Kahlmeier S, Martin BW. Active Transport,          |
| 6  | Physical Activity, and Body Weight in Adults: A Systematic Review. Am J Prev Med.           |
| 7  | 2012;42(5):493–502.                                                                         |
| 8  | 3. Saunders LE, Green JM, Petticrew MP, Steinbach R, Roberts H, Morris J, et al. What       |
| 9  | Are the Health Benefits of Active Travel? A Systematic Review of Trials and Cohort Studies. |
| 10 | Ruiz JR, editor. PLoS One. 2013;8(8):e69912.                                                |
| 11 | 4. Hamer M, Chida Y. Active commuting and cardiovascular risk: A meta-analytic              |
| 12 | review. Prev Med. 2008;46(1):9–13.                                                          |
| 13 | 5. Xu H, Wen LM, Rissel C. The relationships between active transport to work or            |
| 14 | school and cardiovascular health or body weight: a systematic review. Asia Pac J Public     |
| 15 | Health. 2013 Jul [cited 2016 Nov 7];25(4):298–315.                                          |
| 16 | 6. Martin A, Goryakin Y, Suhrcke M. Does active commuting improve psychological             |
| 17 | wellbeing? Longitudinal evidence from eighteen waves of the British Household Panel         |
| 18 | Survey. Prev Med. 2014;69:296–303.                                                          |
| 19 | 7. Humphreys DK, Goodman A, Ogilvie D. Associations between active commuting and            |
| 20 | physical and mental wellbeing. Prev Med. 2013;57(2):135-9.                                  |
| 21 | 8. Andersen LB, Schnohr P, Schroll M, Hein HO. All-Cause Mortality Associated With          |
| 22 | Physical Activity During Leisure Time, Work, Sports, and Cycling to Work. Arch Intern       |
| 23 | Med. 2000;160(11):1621.                                                                     |
|    |                                                                                             |
|    |                                                                                             |
|    |                                                                                             |

| 1  | 9.      | de Geus B, Van Hoof E, Aerts I, Meeusen R. Cycling to work: influence on indexes of       |
|----|---------|-------------------------------------------------------------------------------------------|
| 2  | health  | in untrained men and women in Flanders. Coronary heart disease and quality of life.       |
| 3  | Scand   | J Med Sci Sports. 2008;18(4):498–510.                                                     |
| 4  | 10.     | de Nazelle A, Nieuwenhuijsen MJ, Antó JM, Brauer M, Briggs D, Braun-Fahrlander            |
| 5  | C, et a | al. Improving health through policies that promote active travel: A review of evidence to |
| 6  | suppor  | rt integrated health impact assessment. Environ Int. 2011;37(4):766–77.                   |
| 7  | 11.     | Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. J Health         |
| 8  | Soc B   | ehav. 1983;24(4):385–96.                                                                  |
| 9  | 12.     | Katsarou AL, Triposkiadis F, Panagiotakos D. Perceived stress and vascular disease:       |
| 10 | where   | are we now? Angiology. 2013;64(7):529–34.                                                 |
| 11 | 13.     | Stroud LR, Salovey P, Epel ES. Sex differences in stress responses: Social rejection      |
| 12 | versus  | s achievement stress. Biol Psychiat. 2002;52(4):318–27.                                   |
| 13 | 14.     | Matud MP. Gender differences in stress and coping styles. Pers Indiv Differ.              |
| 14 | 2004;   | 37(7):1401–15.                                                                            |
| 15 | 15.     | Koslowsky M. Commuting Stress: Problems of Definition and Variable Identification.        |
| 16 | Appl l  | Psychol An-Int Rev. 1997;46(2):153–73.                                                    |
| 17 | 16.     | St-Louis E, Manaugh K, van Lierop D, El-Geneidy A. The happy commuter: A                  |
| 18 | compa   | arison of commuter satisfaction across modes. Transportation research. Part F, Traffic    |
| 19 | psych   | ology and behaviour. 2014;26:160–70.                                                      |
| 20 | 17.     | Lajeunesse S, Rodríguez D a. Mindfulness, time affluence, and journey-based affect:       |
| 21 | Explo   | ring relationships. ransportation research. Part F, Traffic psychology and behaviour.     |
| 22 | 2012;   | 15(2):196–205.                                                                            |
| 23 | 18.     | Anable J, Gatersleben B. All work and no play? The role of instrumental and affective     |
| 24 | factors | s in work and leisure journeys by different travel modes. Transportation research. Part   |
| 25 | A, Pol  | licy and practice. 2005;39(2-3):163-81.                                                   |
|    |         |                                                                                           |
|    |         |                                                                                           |

**BMJ** Open

| 1  | 19. Guell C, Ogilvie D. Picturing commuting: photovoice and seeking wellbeing in             |
|----|----------------------------------------------------------------------------------------------|
| 2  | everyday travel. Qual Res. 2015;15(2)201-218.                                                |
| 3  | 20. Titze S, Stronegger WJ, Janschitz S, Oja P. Association of built-environment, social-    |
| 4  | environment and personal factors with bicycling as a mode of transportation among Austrian   |
| 5  | city dwellers. Prev Med. 2008;47(3):252–9.                                                   |
| 6  | 21. Brown BB, Smith KR, Hanson H, Fan JX, Kowaleski-Jones L, Zick CD.                        |
| 7  | Neighborhood design for walking and biking: physical activity and body mass index. Am J      |
| 8  | Prev Med; 2013;44(3):231–8.                                                                  |
| 9  | 22. Fraser SDS, Lock K. Cycling for transport and public health: a systematic review of      |
| 10 | the effect of the environment on cycling. Eur J Public Health. 2011;21(6).                   |
| 11 | 23. Grasser G, Van Dyck D, Titze S, Stronegger W. Objectively measured walkability and       |
| 12 | active transport and weight-related outcomes in adults: a systematic review. Int J Public    |
| 13 | Health; 2013;58(4):615–25.                                                                   |
| 14 | 24. Cole-Hunter T, Donaire-Gonzalez D, Curto a., Ambros a., Valentin a., Garcia-             |
| 15 | Aymerich J, et al. Objective correlates and determinants of bicycle commuting propensity in  |
| 16 | an urban environment. Transportation research. Part D Transport and environment.             |
| 17 | 2015;40(2):132–43.                                                                           |
| 18 | 25. Triguero-Mas M, Dadvand P, Cirach M, Martínez D, Medina A, Mompart A, et al.             |
| 19 | Natural outdoor environments and mental and physical health: Relationships and               |
| 20 | mechanisms. Environ Int. 2015;77:35-41.                                                      |
| 21 | 26. Dadvand P, Bartoll X, Basagaña X, Dalmau-Bueno A, Martinez D, Ambros A, et al.           |
| 22 | Green spaces and General Health: Roles of mental health status, social support, and physical |
| 23 | activity. Environ Int. 2016;91:161-7.                                                        |
| 24 | 27. Olsson LE, Gärling T, Ettema D, Friman M, Fujii S. Happiness and Satisfaction with       |
| 25 | Work Commute. Soc Indic Res. 2013;111(1):255–63.                                             |

| 1  | 28.     | Gottholmseder G, Nowotny K, Pruckner GJ, Theurl E. Stress perception and              |
|----|---------|---------------------------------------------------------------------------------------|
| 2  | comm    | nuting. Health Econ. 2009;18(5):559–76.                                               |
| 3  | 29.     | Ohta M, Mizoue T, Mishima N, Ikeda M. Effect of the physical activities in leisure    |
| 4  | time a  | and commuting to work on mental health. J Occup Health. 2007;49(1):46-52.             |
| 5  | 30.     | Hansson E, Mattisson K, Björk J, Östergren P-O, Jakobsson K. Relationship between     |
| 6  | comm    | nuting and health outcomes in a cross-sectional population survey in southern Sweden. |
| 7  | BMC     | Public Health. 2011;11:834.                                                           |
| 8  | 31.     | Donaire-Gonzalez D, Nazelle A De, Cole-Hunter T, Curto A, Rodriguez D, Mendez         |
| 9  | M, et   | al. The Added Benefit of Bicycle Commuting on the Regular Amount of Physical          |
| 10 | Activ   | ity Performed. Am J Prev Med. 2015;49(6):842–9.                                       |
| 11 | 32.     | Institut d'Estudis Regionals i Metropolitans de Barcelona. La Mobilitat quotidiana a  |
| 12 | Catalı  | unya. Papers. Regió Metropolitana de Barcelona 2008.                                  |
| 13 | 33.     | Forsyth A, Krizek KJ, Agrawal AW, Stonebraker E. Reliability testing of the           |
| 14 | Pedes   | strian and Bicycling Survey (PABS) method. J Phys Act Health. 2012;9(5):677-88.       |
| 15 | 34.     | Warttig SL, Forshaw MJ, South J, White AK. New, normative, English-sample data        |
| 16 | for the | e Short Form Perceived Stress Scale (PSS-4). J Health Psychol. 2013;18(12):1617–28.   |
| 17 | 35.     | Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE.                 |
| 18 | Intern  | ational physical activity questionnaire: 12-country reliability and validity. Med Sci |
| 19 | Sport   | Exerc. 2003;35(8):1381–95.                                                            |
| 20 | 36.     | Domínguez-Berjón MF, Borrell C, Cano-Serral G, Esnaola S, Nolasco A, Pasarín MI,      |
| 21 | et al.  | [Constructing a deprivation index based on census data in large Spanish cities (the   |
| 22 | MED     | EA project)]. Gac Sanit. 2008 Jun;22(3):179–87.                                       |
| 23 | 37.     | Beelen R, Hoek G, Vienneau D, Eeftens M, Dimakopoulou K, Pedeli X, et al.             |
| 24 | Devel   | lopment of NO2 and NOx land use regression models for estimating air pollution        |
|    |         |                                                                                       |
|    |         |                                                                                       |

#### **BMJ** Open

|    | 1 | exposure in 36 study areas in Europe – The ESCAPE project. Atmospheric Environment.       |
|----|---|-------------------------------------------------------------------------------------------|
|    | 2 | 2013 Jun;72(2):10–23.                                                                     |
|    | 3 | 38. World Health Organisation. Guideline for Community Noise. 2011.                       |
| 2  | 4 | http://www.who.int/docstore/peh/noise/Commnoise4.htm (accessed 10 April 2015).            |
| -  | 5 | 39. Winters M, Brauer M, Setton EM, Teschke K. Mapping bikeability: A spatial tool to     |
| (  | 6 | support sustainable travel. Environ Plan B Plan Des. 2013;40(5):865–83.                   |
| ,  | 7 | 40. Hastie TJ, Tibshirani R. Generalized additive models. Stat Sci. 1990;1(3):297–318.    |
| 8  | 8 | 41. Fox KR. The influence of physical activity on mental well-being. Public Health Nutr.  |
| (  | 9 | 1999;2(3A):411–8.                                                                         |
| 10 | 0 | 42. Sexton H, Søgaard a. J, Olstad R. How are mood and exercise related? Results from     |
| 1  | 1 | the Finnmark study. Soc Psych Psych Epid. 2001;36(7):348-53.                              |
| 12 | 2 | 43. Peluso MA, Guerra de Andrade LH. Physical activity and mental health: the             |
| 13 | 3 | association between exercise and mood. Clinics (Sao Paulo). 2005;60(1):61-70.             |
| 14 | 4 | 44. Galper DI, Trivedi MH, Barlow CE, Dunn AL, Kampert JB. Inverse association            |
| 1: | 5 | between physical inactivity and mental health in men and women. Med Sci Sports Exerc.     |
| 10 | 6 | 2006;38(1):173–8.                                                                         |
| 1′ | 7 | 45. Maas J, Verheij RA, Groenewegen PP, De Vries S, Spreeuwenberg P. Green space,         |
| 18 | 8 | urbanity, and health: how strong is the relation? J Epidemiol Community Health.           |
| 19 | 9 | 2006;60(7):587–92.                                                                        |
| 20 | 0 | 46. Stults-Kolehmainen MA, Sinha R. The effects of stress on physical activity and        |
| 2  | 1 | exercise. Sports Med. 2014;44(1):81-121.                                                  |
| 22 | 2 | 47. Baron RM, Kenny D a. The moderator-mediator variable distinction in social            |
| 23 | 3 | psychological research: conceptual, strategic, and statistical considerations. J Pers Soc |
| 24 | 4 | Psychol. 1986;51(6):1173–82.                                                              |
| 2: | 5 |                                                                                           |
|    |   |                                                                                           |
|    |   |                                                                                           |

## SUPPLEMENTARY MATERIAL

#### Table S1. PSS4 questions used in TAPAS Travel Survey

*Q218.* In the last month, how often have you felt that you were unable to control important things in your life?

| 0   | Never            |
|-----|------------------|
| 1   | Almost never     |
| 2   | Nearly always    |
| 3   | Always           |
| 997 | Don't Know       |
| 998 | Refuse to Answer |

- *Q219.* In the last month, how often have you felt confident about your ability to handle your personal problems?
  - 0 Never
    1 Almost never
    2 Nearly always
    3 Always
    997 Don't Know
    998 Refuse to Answer

*Q220.* In the last month, how often have you felt that things were going your way?

- Never
   Almost never
   Nearly always
   Always
   Don't Know
   Refuse to Answer
- *Q221.* In the last month, how often have you felt that difficulties were piling up so high that you could not overcome them?
  - Never
  - 1 Almost never
  - 2 Nearly always
  - 3 Always
  - 997 Don't Know
  - 998 Refuse to Answer

| 1  |
|----|
| 2  |
| 3  |
| 4  |
| 5  |
| 6  |
| 7  |
| /  |
| 8  |
| 9  |
| 10 |
| 11 |
| 12 |
| 13 |
| 11 |
| 14 |
| 15 |
| 16 |
| 17 |
| 18 |
| 19 |
| 20 |
| 21 |
| 21 |
| 22 |
| 23 |
| 24 |
| 25 |
| 26 |
| 27 |
| 28 |
| 20 |
| 29 |
| 30 |
| 31 |
| 32 |
| 33 |
| 34 |
| 35 |
| 36 |
| 27 |
| 57 |
| 38 |
| 39 |
| 40 |
| 41 |
| 42 |
| 43 |
| 44 |
| 15 |
| 40 |
| 46 |
| 47 |
| 48 |

60

| PSS-4 score | n   | %      | Cumulative % |  |
|-------------|-----|--------|--------------|--|
| 0           | 90  | 11.61  | 11.61        |  |
| 1           | 125 | 16.13  | 27.74        |  |
| 2           | 129 | 16.65  | 44.39        |  |
| 3           | 151 | 19.48  | 63.87        |  |
| 4           | 144 | 18.58  | 82.45        |  |
| 5           | 38  | 4.90   | 87.35        |  |
| 6           | 33  | 4.26   | 91.61        |  |
| 7           | 12  | 1.55   | 93.16        |  |
| 8           | 28  | 3.61   | 96.77        |  |
| 9           | 5   | 0.65   | 97.42        |  |
| 10          | 11  | 1.42   | 98.84        |  |
| 11          | 3   | 0.39   | 99.23        |  |
| 12          | 4   | 0.52   | 99.74        |  |
| 13          | 1   | 0.13   | 99.87        |  |
| 14          | 1   | 0.13   | 100.00       |  |
| Total       | 775 | 100.00 |              |  |
|             |     |        |              |  |
|             |     |        |              |  |
|             |     |        |              |  |
|             |     |        |              |  |
|             |     |        |              |  |
|             |     |        |              |  |
|             |     |        |              |  |
|             |     |        |              |  |
|             |     |        |              |  |
|             |     |        |              |  |
|             |     |        |              |  |
|             |     |        |              |  |
|             |     |        |              |  |
|             |     |        |              |  |
|             |     |        |              |  |
|             |     |        |              |  |

 Table S2. PSS4 score distribution in TAPAS Travel Survey sample

### Table S3. Description of the individual and environmental determinants in TAPAS

sample for Bicycle commuting levels and Bicycle commuting propensity.

|                                                                                 |        |                    | Bicy   | cle commutin      | g levels |                   |         |        |                   |        | Bicycle c        | ommuting | propensity    |        |                  | _ |
|---------------------------------------------------------------------------------|--------|--------------------|--------|-------------------|----------|-------------------|---------|--------|-------------------|--------|------------------|----------|---------------|--------|------------------|---|
| Variables                                                                       |        | Low<br>(109)       | Mee    | lium<br>(5)       | E<br>C   | ligh<br>224)      |         | U      | nwilling<br>(230) | v      | (illing<br>(160) | Infre    | quent (109)   | Fi     | requent<br>(289) |   |
|                                                                                 | n      | %                  | n      | %                 | n        | %                 | p-value | n      | %                 | n      | %                | n        | %             | n      | %                | I |
| Outcome                                                                         |        |                    |        |                   |          |                   |         |        |                   |        |                  |          |               |        |                  |   |
| Stressed (median)(Yes)                                                          | 49     | 45.37              | 12     | 19.05             | 57       | 26.15             | <0.001  | 107    | 46.93             | 55     | 34.81            | 49       | 45.37         | 69     | 24.56            |   |
| Individual determinants                                                         |        |                    |        |                   |          |                   |         |        |                   |        |                  |          |               |        |                  |   |
| Age (median; P25-P75)                                                           | 36     | 28-42              | 36     | 28-45             | 35       | 29-41             | 0.777   | 37     | 30-46             | 36     | 29.5-45          | 36       | 28-42         | 35     | 29-41            |   |
| Total PA - min/week (median; P25-P75)                                           | 494.99 | 299.99-<br>734.994 | 454.99 | 359.99-<br>689.99 | 484.99   | 339.99-<br>779.99 | 0.567   | 364.99 | 209.99-600.00     | 404.99 | 209.99-629.99    | 494.99   | 299.99-734.99 | 480.00 | 339.99-744.99    |   |
| MVPA - min/week (median; P25-P75)                                               | 240.00 | 134.99-480         | 294.99 | 189.99-<br>390.00 | 300.00   | 177.49-<br>479.99 | 0.092   | 90.00  | 0-244.99          | 90.00  | 0-240.00         | 240.00   | 134.99-480.00 | 300.00 | 179.99-450.00    |   |
| VPA - min/week (median; P25-P75)                                                | 120.00 | 0-224.99           | 90.00  | 0-199.99          | 102.50   | 0-240.00          | 0.386   | 45.00  | 0-150.00          | 0      | 0-127.50         | 120.00   | 0-224.99      | 90.00  | 225.00           |   |
| Gender (Woman)                                                                  | 49     | 44.95              | 33     | 50.77             | 94       | 41.96             | 0.446   | 151    | 65.65             | 83     | 51.88            | 49       | 44.95         | 127    | 43.94            |   |
| Country of birth (non-Spanish)                                                  | 19     | 17.59              | 7      | 10.77             | 30       | 13.39             | 0.412   | 16     | 6.96              | 25     | 15.63            | 19       | 17.59         | 37     | 12.80            |   |
| Working status (Student)                                                        | 17     | 15.60              | 10     | 15.38             | 24       | 10.71             | 0.364   | 24     | 10.43             | 29     | 18.13            | 17       | 15.60         | 34     | 11.76            |   |
| Education level (University studies completed or<br>equivalent-level education) | 81     | 74.31              | 50     | 76.92             | 173      | 77.23             | 0.836   | 161    | 70.00             | 86     | 53.75            | 81       | 74.31         | 223    | 77.16            |   |
| Living with family/partner                                                      | 88     | 80.73              | 48     | 75.00             | 172      | 76.79             | 0.622   | 192    | 83.48             | 135    | 84.38            | 88       | 80.73         | 220    | 76.39            |   |
| Employed people in household (2-5)                                              | 69     | 63.30              | 35     | 55.56             | 145      | 64.73             | 0.410   | 152    | 66.09             | 109    | 68.99            | 69       | 63.30         | 180    | 62.72            |   |
| MEDEA index                                                                     |        |                    |        |                   |          |                   | 0.627   |        |                   |        |                  |          |               |        |                  |   |
| 1st tertile (least deprived)                                                    | 35     | 32.11              | 23     | 35.38             | 75       | 33.48             |         | 81     | 35.22             | 49     | 30.63            | 35       | 32.11         | 98     | 33.91            |   |
| 2nd tertile                                                                     | 38     | 34.86              | 27     | 41.54             | 76       | 33.93             |         | 66     | 28.70             | 56     | 35.00            | 38       | 34.86         | 103    | 35.64            |   |
| 3rd tertile (most deprived)                                                     | 36     | 33.03              | 15     | 23.08             | 73       | 32.59             |         | 83     | 36.09             | 55     | 34.38            | 36       | 33.03         | 88     | 30.45            |   |
| Children in household (Yes)                                                     | 31     | 28.44              | 18     | 28.13             | 79       | 35.27             | 0.340   | 94     | 40.87             | 57     | 35.85            | 31       | 28.44         | 97     | 33.68            |   |
| Children <3 years in household (Yes)                                            | 3      | 2.75               | 5      | 7.94              | 20       | 8.93              | 0.114   | 20     | 8.73              | 16     | 10.00            | 3        | 2.75          | 25     | 8.71             |   |
| Self-perceived health (Very good/Excellent)                                     | 43     | 39.45              | 27     | 41.54             | 113      | 50.45             | 0.123   | 90     | 39.13             | 50     | 31.25            | 43       | 39.45         | 140    | 48.44            |   |
| BMI (Overweight/Obese)                                                          | 25     | 22.94              | 14     | 21.54             | 49       | 21.88             | 0.969   | 73     | 31.88             | 51     | 32.08            | 25       | 22.94         | 63     | 21.8             |   |
| Chronic disease (Yes)                                                           | 11     | 10.09              | 8      | 12.31             | 17       | 7.59              | 0.458   | 18     | 7.83              | 7      | 4.38             | 11       | 10.09         | 25     | 8.65             |   |
| Stress releasing (Agreement)                                                    | 95     | 87.16              | 62     | 98.41             | 199      | 90.05             | 0.047   | 163    | 72.44             | 139    | 89.68            | 95       | 87.16         | 261    | 91.90            |   |
| Bicycle trip enjoyment (Agreement)                                              | 103    | 94.50              | 65     | 100.00            | 212      | 95.93             | 0.175   | 116    | 51.79             | 133    | 84.71            | 103      | 94.50         | 277    | 96.85            |   |
| Environmental determinants                                                      |        |                    |        |                   |          |                   |         |        |                   |        |                  |          |               |        |                  |   |
| Commute distance, estimated (km) (mean:SD)                                      | 3.73   | 1.97               | 3.43   | 1.70              | 3.13     | 1.52              | 0.044   | 4.42   | 2.35              | 4.32   | 2.11             | 3.73     | 1.97          | 3.20   | 1.56             |   |
| Public bicycle stations (mean;SD)                                               |        |                    |        |                   |          |                   |         |        |                   |        |                  |          |               |        |                  |   |
| Home, count in 400m buffer                                                      | 4.61   | 2.61               | 4.97   | 2.63              | 4.75     | 2.35              | 0.492   | 3.77   | 2.53              | 4.32   | 2.11             | 3.73     | 1.97          | 3.20   | 1.56             |   |
| Work/study, count in 400m buffer                                                | 4.89   | 2.96               | 5.89   | 3.11              | 5.39     | 3.05              | 0.124   | 4.36   | 2.96              | 4.71   | 3.35             | 4.89     | 2.96          | 5.50   | 3.06             |   |
| Greenness, NDVI (mean;SD)                                                       |        |                    |        |                   |          |                   |         |        |                   |        |                  |          |               |        |                  |   |
| Home, average of 400m buffer                                                    | 0.83   | 1.30               | 0.75   | 0.98              | 0.59     | 0.94              | 0.635   | 0.90   | 1.03              | 0.91   | 1.16             | 0.83     | 1.30          | 0.62   | 0.95             |   |
| Work/study, average of 400m buffer                                              | 0.60   | 0.82               | 0.37   | 0.57              | 0.58     | 0.90              | 0.136   | 0.68   | 1.11              | 0.74   | 1.01             | 0.60     | 0.82          | 0.53   | 0.84             |   |
| Commute route, average of RBA                                                   | 0.95   | 0.94               | 0.76   | 0.83              | 0.87     | 0.81              | 0.322   | 1.10   | 1.11              | 1.02   | 0.98             | 0.95     | 0.94          | 0.84   | 0.81             |   |
| NO2, ppb (mean;SD)                                                              |        |                    |        |                   |          |                   |         |        |                   |        |                  |          |               |        |                  |   |
| Home, concentration in 400m buffer                                              | 74.76  | 18.70              | 77.24  | 16.14             | 78.40    | 17.90             | 0.186   | 75.59  | 17.08             | 74.51  | 17.20            | 74.76    | 18.70         | 78.14  | 17.49            |   |
| Work/study, concentration in 400m buffer                                        | 76.49  | 21.63              | 83.02  | 18.82             | 77.81    | 21.37             | 0.091   | 78.50  | 23.84             | 78.64  | 24.11            | 76.49    | 21.63         | 79.00  | 20.90            |   |
| Commute route, concentration in RBA                                             | 82.86  | 16.10              | 87.47  | 15.22             | 84.51    | 18.08             | 0.127   | 85.22  | 17.34             | 82.76  | 15.95            | 82.86    | 16.10         | 85.19  | 17.48            |   |
| Noise, >55dB (mean;SD)                                                          |        |                    |        |                   |          |                   |         |        |                   |        |                  |          |               |        |                  |   |
| Home, proportion in 400m buffer                                                 | 78.73  | 13.39              | 77.65  | 9.77              | 78.63    | 11.54             | 0.554   | 79.03  | 11.00             | 78.39  | 11.01            | 78.73    | 13.39         | 78.41  | 11.16            |   |
| Work/study, proportion in 400m buffer                                           | 81.64  | 13.60              | 80.04  | 13.80             | 79.32    | 15.04             | 0.468   | 78.46  | 15.47             | 80.00  | 13.94            | 81.64    | 13.60         | 79.48  | 14.75            |   |
| Commute route, proportion in RBA                                                | 78.62  | 9.13               | 75.40  | 9.26              | 77.21    | 9.64              | 0.057   | 77.12  | 8.43              | 78.08  | 8.78             | 78.62    | 9.13          | 76.80  | 9.57             |   |
| Bikeability (mean;SD)                                                           |        |                    |        |                   |          |                   |         |        |                   |        |                  |          |               |        |                  |   |
| Home, concentration in 400m buffer                                              | 6.29   | 1.44               | 6.49   | 1.23              | 6.54     | 1.27              | 0.330   | 5.88   | 1.45              | 6.00   | 1.45             | 6.29     | 1.44          | 6.53   | 1.26             |   |
| Work/study, concentration in 400m buffer                                        | 6.82   | 1.28               | 6.88   | 0.98              | 6.75     | 1.17              | 0.638   | 6.21   | 1.58              | 6.46   | 1.47             | 6.82     | 1.28          | 6.78   | 1.13             |   |
| Commute route, concentration in RBA                                             | 6.77   | 1.10               | 7.02   | 0.93              | 6.99     | 0.93              | 0.236   | 6.36   | 1.22              | 6.58   | 1.16             | 6.77     | 1.10          | 7.00   | 0.93             |   |

PA, Physical Activity; MVPA, Moderate-to-Vigorous Physical Activity; VPA, Vigorous Physical Activity; MBI, Body Mass Index. Data are n and %, unless otherwise noted. There are missing data in: Perceived stress (13: 1.65%), Country of birth (1: 0.13%), Living with family/partner (1; 0.13%), Employed people in household (4: 0.51), Children in household (2: 0.25%), Children <3years old in household (3: 0.38), BMI (2: 0.25%); Stress releasing (15: 1.90%), Bicycle trip enjoyment (12: 1.52%), Commute distance (20: 2.54%), Greenness (20; 2.54%), NO<sub>2</sub> (20; 2.54%). "Chi square test, instead of Age, Total PA, MVPA, VPA, and all the Environmental determinants (U Mann Whitney test).

#### BMJ Open

#### Table S4. Sensitivity analyses exploring the relationships between perceived stress

#### (P75, P90) and all covariates.

| Variable                                                                     |      | Perceived stress | (P75)   | Perceived stress (P90) |              |         |  |  |
|------------------------------------------------------------------------------|------|------------------|---------|------------------------|--------------|---------|--|--|
| , ar haby                                                                    | R    | R (95% CI)       | p-value | RI                     | R (95% CI)   | p-value |  |  |
| Individual determinants                                                      |      |                  |         |                        |              |         |  |  |
|                                                                              | 1.00 | (0.99, 1.02)     | 0.793   | 1.00                   | (0.97, 1.02) | 0.662   |  |  |
| Total PA - min/week                                                          | 1.00 | (0.99, 1.00)     | 0.113   | 1.00                   | (0.99, 1.00) | 0.802   |  |  |
| MVPA min/week                                                                | 1.00 | (0.99, 1.00)     | 0.197   | 1.00                   | (0.99, 1.00) | 0.701   |  |  |
|                                                                              | 1.00 | (0.99, 1.00)     | 0.382   | 1.00                   | (0.99, 1.00) | 0 743   |  |  |
| Gender (Woman)                                                               | 1 41 | (1.03, 1.93)     | 0.032   | 1.69                   | (1.04, 2.76) | 0.035   |  |  |
| Country of birth (non-Spanish)                                               | 1.16 | (0.75, 1.78)     | 0.515   | 1.14                   | (0.58, 2.24) | 0.695   |  |  |
| Working status (Student)                                                     | 1.46 | (0.99, 2.14)     | 0.051   | 1.04                   | (0.53, 2.04) | 0.904   |  |  |
| Education level (University studies completed or equivalent-level education) | 0.78 | (0.57, 1.07)     | 0.119   | 0.80                   | (0.49, 1.30) | 0.369   |  |  |
| Living with family/partner                                                   | 1.00 | (0.68, 1.47)     | 0.987   | 0.94                   | (0.53, 1.68) | 0.841   |  |  |
| Employed people in household (2-5)<br>MEDEA index                            | 0.67 | (0.50, 0.91)     | 0.011   | 0.75                   | (0.47, 1.20) | 0.231   |  |  |
| 1 st tertile (least deprived)                                                | 1.00 |                  |         | 1.00                   |              |         |  |  |
| 2nd tertile                                                                  | 1.42 | (0.96, 2.11)     | 0.081   | 1.85                   | (0.99, 3.46) | 0.054   |  |  |
| 3rd tertile (most deprived)                                                  | 1.45 | (0.97, 2.14)     | 0.067   | 1.77                   | (0.94, 3.33) | 0.076   |  |  |
| Children in household (Yes)                                                  | 1.05 | (0.76, 1.44)     | 0.778   | 0.92                   | (0.56, 1.51) | 0.743   |  |  |
| Children <3 years in household (Yes)                                         | 0.61 | (0.30, 1.25)     | 0.180   | 0.54                   | (0.17, 1.68) | 0.289   |  |  |
| Self-perceived health (Very good/Excellent)                                  | 0.65 | (0.47, 0.91)     | 0.011   | 0.88                   | (0.55, 1.42) | 0.604   |  |  |
| BMI (Overweight/Obese)                                                       | 1.08 | (0.77, 1.51)     | 0.664   | 1.03                   | (0.61, 1.73) | 0.922   |  |  |
| Chronic disease (Yes)                                                        | 1.58 | (1.01, 2.48)     | 0.047   | 1.66                   | (0.83, 3.32) | 0.150   |  |  |
| Stress releasing (Agreement)                                                 | 0.85 | (0.57, 1.27)     | 0.423   | 0.94                   | (0.49, 1.79) | 0.850   |  |  |
| Bicycle trip enjoyment (Agreement)                                           | 0.74 | (0.52, 1.04)     | 0.085   | 0.79                   | (0.46, 1.37) | 0.409   |  |  |
| Environmental determinants                                                   |      |                  |         |                        |              |         |  |  |
| Commute distance, estimated (km)                                             | 1.07 | (0.99, 1.14)     | 0.053   | 1.03                   | (0.92, 1.15) | 0.620   |  |  |
| Public bicycle stations                                                      |      |                  |         |                        |              |         |  |  |
| Home, count in 400m buffer                                                   | 0.99 | (0.93, 1.06)     | 0.770   | 0.94                   | (0.84, 1.04) | 0.253   |  |  |
| Work/study, count in 400m buffer                                             | 0.96 | (0.91, 1.01)     | 0.103   | 0.96                   | (0.89, 1.03) | 0.242   |  |  |
| Greenness, NDVI                                                              |      |                  |         |                        |              |         |  |  |
| Home, average of 400m buffer                                                 | 0.95 | (0.79, 1.14)     | 0.557   | 1.04                   | (0.81, 1.33) | 0.768   |  |  |
| Work/study, average of 400m buffer                                           | 1.09 | (0.94, 1.27)     | 0.262   | 0.99                   | (0.74, 1.32) | 0.936   |  |  |
| Commute route, average of RBA                                                | 1.04 | (0.88, 1.22)     | 0.655   | 1.18                   | (0.95, 1.47) | 0.138   |  |  |
| NO <sub>2</sub> , ppb                                                        |      |                  |         |                        |              |         |  |  |
| Home, concentration in 400m buffer                                           | 1.00 | (0.99, 1.00)     | 0.390   | 1.00                   | (0.98, 1.01) | 0.728   |  |  |
| Work/study, concentration in 400m buffer                                     | 0.99 | (0.99, 1.00)     | 0.042   | 0.99                   | (0.98, 1.00) | 0.076   |  |  |
| Commute route, concentration in RBA                                          | 1.00 | (0.99, 1.01)     | 0.474   | 0.99                   | (0.97, 1.00) | 0.138   |  |  |
| Noise, >55dB                                                                 |      |                  |         |                        |              |         |  |  |
| Home, proportion in 400m buffer                                              | 1.01 | (0.99, 1.02)     | 0.483   | 1.00                   | (0.98, 1.03) | 0.845   |  |  |
| Work/study, proportion in 400m buffer                                        | 1.00 | (0.99, 1.01)     | 0.549   | 1.00                   | (0.98, 1.02) | 0.835   |  |  |
| Commute route, proportion in RBA                                             | 1.00 | (0.98, 1.01)     | 0.854   | 1.01                   | (0.98, 1.04) | 0.444   |  |  |
| Bikeability                                                                  |      |                  |         |                        |              |         |  |  |
| Home, concentration in 400m buffer                                           | 0.97 | (0.87, 1.08)     | 0.532   | 0.92                   | (0.78, 1.09) | 0.356   |  |  |
| Work/study, concentration in 400m buffer                                     | 0.92 | (0.82, 1.02)     | 0.108   | 0.89                   | (0.75, 1.07) | 0.216   |  |  |
| Commute route concentration in RBA                                           | 0.88 | (0.77, 1.00)     | 0.055   | 0.81                   | (0.66, 0.99) | 0.042   |  |  |

PA, Physical Activity; MVPA, Moderate-to-Vigorous Physical Activity; VPA, Vigorous Physical Activity; BMI, Body Mass Index. There are missing data in: Perceived stress (13; 1.65%), Country of birth (1; 0.13%), People living with in household (1; 0.13%), Employed people in household (4; 0.51), Children in household (2; 0.25%), Children <a href="https://www.aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.com/aresolut.co

## Table S5. Sensitivity analyses exploring the relationships between bicycle commuting (Bicycle commuting status, Bicycle commuting

levels, Bicycle commuting propensity) and perceived stress (P75, P90).

| 7  |                                       |           |                  |             |           |                 |              |                       |                             |               |            |                       |                |            |                 |               |           |                        |               |           |                       |           |          |                       |         |
|----|---------------------------------------|-----------|------------------|-------------|-----------|-----------------|--------------|-----------------------|-----------------------------|---------------|------------|-----------------------|----------------|------------|-----------------|---------------|-----------|------------------------|---------------|-----------|-----------------------|-----------|----------|-----------------------|---------|
| 8  | Variable                              | pp 1      | Inadiusted       |             | pp        | Adjusteda       | Perceived    | stress (P75           | 5)<br>Adjusted <sup>b</sup> |               | pp         | Adjusted <sup>c</sup> |                | pp         | Unadjusted      |               | ръ        | A dineted <sup>a</sup> | Perceived str | ess (P90) | Adjusted <sup>b</sup> |           | pp       | Adjusted <sup>c</sup> |         |
| a  |                                       | (9        | 5% CI)           | p-value     | кк<br>(9  | 95% CI)         | p-value      | (9                    | 95% CI)                     | p-value       | (9         | 5% CI)                | p-value        | кк<br>(    | 95% CI)         | p-value       | (9        | 5% CI)                 | p-value       | (9        | 5% CI)                | p-value   | (9       | 5% CI)                | p-value |
| 9  | All sample (771)                      |           |                  |             |           |                 |              |                       |                             |               |            |                       |                |            |                 |               |           |                        |               |           |                       |           |          |                       |         |
| 10 | Bicycle commuting status              |           |                  |             |           |                 |              |                       |                             |               |            |                       |                |            |                 |               |           |                        |               |           |                       |           |          |                       |         |
| 11 | Non-bicycle commuters                 | 1.00      | (0.10.0.70)      | 0.001       | 1.00      | (0.40.0.70)     | 0.001        | 1.00                  | 0.44.0.05                   | 0.004         | 1.00       | (0.46.0.00)           | 0.011          | 1.00       | (0.22.0.00)     | 0.014         | 1.00      | (0.04, 0.02)           | 0.005         | 1.00      | (0.01, 0.00)          | 0.014     | 1.00     | (0.22, 0.05)          | 0.022   |
| 12 | Bicycle commuters                     | 0.58      | (0.42, 0.79)     | 0.001       | 0.58      | (0.42, 0.79)    | 0.001        | 0.61                  | (0.44, 0.85)                | 0.004         | 0.64       | (0.46, 0.90)          | 0.011          | 0.54       | (0.33, 0.89)    | 0.014         | 0.56      | (0.34, 0.93)           | 0.025         | 0.52      | (0.31, 0.88)          | 0.014     | 0.56     | (0.33, 0.95)          | 0.032   |
| 12 | Bicycle commuting levels              | 1.00      |                  |             | 1.00      |                 |              | 1.00                  |                             |               | 1.00       |                       |                | 1.00       |                 |               | 1.00      |                        |               | 1.00      |                       |           | 1.00     |                       |         |
| 13 | Low bicycle commuting (1-3 days)      | 1.00      | (0.71, 1.54)     | 0.832       | 1.00      | (0.70, 1.53)    | 0.868        | 1.08                  | (0.73, 1.59)                | 0.708         | 1.10       | (0.74, 1.64)          | 0.626          | 1.00       | (0.68, 2.11)    | 0.535         | 1.22      | (0.68, 2.21)           | 0.505         | 1.14      | (0.63, 2.07)          | 0.662     | 1.18     | (0.65, 2.14)          | 0.573   |
| 14 | Medium bicycle commuting (1-5 days)   | 0.22      | (0.07, 0.66)     | 0.007       | 0.20      | (0.07, 0.62)    | 0.005        | 0.21                  | (0.07, 0.65)                | 0.007         | 0.22       | (0.07, 0.68)          | 0.009          | 0.15       | (0.02, 1.05)    | 0.056         | 0.14      | (0.02, 1.00)           | 0.050         | 0.14      | (0.02, 0.95)          | 0.044     | 0.15     | (0.02, 1.04)          | 0.054   |
| 15 | High bicycle commuting (>=5 days)     | 0.45      | (0.29, 0.70)     | < 0.001     | 0.46      | (0.30, 0.72)    | 0.001        | 0.50                  | (0.32, 0.78)                | 0.003         | 0.52       | (0.33, 0.82)          | 0.005          | 0.34       | (0.16, 0.70)    | 0.004         | 0.36      | (0.17, 0.75)           | 0.005         | 0.33      | (0.15, 0.69)          | 0.004     | 0.35     | (0.17, 0.73)          | 0.005   |
| 16 | Bicycle commuting propensity          |           |                  |             |           |                 |              |                       |                             |               |            |                       |                |            |                 |               |           |                        |               |           |                       |           |          |                       |         |
| 10 | Unwilling Non-bicycle commuters       | 1.00      |                  |             | 1.00      |                 |              | 1.00                  |                             |               | 1.00       |                       |                | 1.00       |                 |               | 1.00      |                        |               | 1.00      |                       |           | 1.00     |                       |         |
| 17 | Willing Non-bicycle commuters         | 0.71      | (0.47, 1.06)     | 0.090       | 0.74      | (0.49, 1.10)    | 0.135        | 0.71                  | (0.48, 1.06)                | 0.095         | 0.72       | (0.48, 1.08)          | 0.116          | 0.66       | (0.35, 1.22)    | 0.183         | 0.70      | (0.38, 1.30)           | 0.255         | 0.70      | (0.37, 1.30)          | 0.253     | 0.71     | (0.38, 1.35)          | 0.298   |
| 18 | Infrequent Bicycle commuters          | 0.92      | (0.61, 1.38)     | 0.684       | 0.92      | (0.61, 1.39)    | 0.695        | 0.94                  | (0.63, 1.43)                | 0.788         | 0.97       | (0.64, 1.48)          | 0.890          | 1.03       | (0.57, 1.87)    | 0.926         | 1.07      | (0.57, 2.01)           | 0.831         | 1.00      | (0.53, 1.88)          | 0.991     | 1.04     | (0.54, 1.98)          | 0.915   |
| 10 | Frequent Bicycle commuters            | 0.35      | (0.23, 0.54)     | <0.001      | 0.36      | (0.23, 0.55)    | <0.001       | 0.58                  | (0.24, 0.59)                | <0.001        | 0.40       | (0.25, 0.62)          | <0.001         | 0.25       | (0.12, 0.52)    | <0.001        | 0.27      | (0.13, 0.56)           | <0.001        | 0.25      | (0.12, 0.52)          | <0.001    | 0.27     | (0.13, 0.56)          | <0.001  |
| 19 | Bicycle commuters sample (387)        |           |                  |             |           |                 |              |                       |                             |               |            |                       |                |            |                 |               |           |                        |               |           |                       |           |          |                       |         |
| 20 | Low bicycle commuting (1-3 days)      | 1.00      |                  |             | 1.00      |                 |              | 1.00                  |                             |               | 1.00       |                       |                | 1.00       |                 |               | 1.00      |                        |               | 1.00      |                       |           | 1.00     |                       |         |
| 21 | Medium bicycle commuting (4 days)     | 0.21      | (0.06, 0.66)     | 0.008       | 0.19      | (0.06, 0.61)    | 0.005        | 0.19                  | (0.06, 0.60)                | 0.005         | 0.19       | (0.06, 0.60)          | 0.004          | 0.12       | (0.02, 0.92)    | 0.041         | 0.11      | (0.02, 0.83)           | 0.032         | 0.11      | (0.02, 0.80)          | 0.028     | 0.11     | (0.02, 0.76)          | 0.026   |
| 22 | High bicycle commuting (>=5 days)     | 0.43      | (0.26, 0.73)     | 0.002       | 0.44      | (0.26, 0.75)    | 0.002        | 0.44                  | (0.26, 0.75)                | 0.002         | 0.44       | (0.26, 0.73)          | 0.002          | 0.28       | (0.12, 0.65)    | 0.003         | 0.28      | (0.12, 0.65)           | 0.003         | 0.27      | (0.12, 0.64)          | 0.003     | 0.27     | (0.12, 0.60)          | 0.001   |
| 22 | Bicycle commuters propensity          |           |                  |             |           |                 |              |                       |                             |               |            |                       |                |            |                 |               |           |                        |               |           |                       |           |          |                       |         |
| 23 | Infrequent (1-3 days)                 | 1.00      | (0.22, 0.64)     | -0.001      | 1.00      | (0.00, 0.(0)    | -0.001       | 1.00                  | (0.22, 0.(2))               | -0.001        | 1.00       | (0.02, 0.02)          | 10.001         | 1.00       | (0.11, 0.55)    | 0.001         | 1.00      | (0.11, 0.55)           | 0.001         | 1.00      | (0.10, 0.54)          | 0.001     | 1.00     | (0.11.0.51)           | -0.001  |
| 24 | Frequent (>=4 days)                   | 0.38      | (0.25, 0.64)     | <0.001      | 0.58      | (0.23, 0.63)    | <0.001       | 0.58                  | (0.23, 0.63)                | <0.001        | 0.58       | (0.23, 0.62)          | <0.001         | 0.25       | (0.11, 0.55)    | 0.001         | 0.24      | (0.11, 0.55)           | 0.001         | 0.24      | (0.10, 0.54)          | 0.001     | 0.23     | (0.11, 0.51)          | <0.001  |
| 25 | Exposure Non-bicycle commuters sample | (384)     |                  |             |           |                 |              |                       |                             |               |            |                       |                |            |                 |               |           |                        |               |           |                       |           |          |                       |         |
| 26 | Unwilling                             | 1.00      |                  |             | 1.00      |                 |              | 1.00                  |                             |               | 1.00       |                       |                | 1.00       |                 |               | 1.00      |                        |               | 1.00      |                       |           | 1.00     |                       |         |
| 20 | Willing                               | 0.71      | (0.47, 1.06)     | 0.090       | 0.72      | (0.48, 1.07)    | 0.106        | 0.67                  | (0.45, 1.00)                | 0.051         | 0.69       | (0.46, 1.03)          | 0.068          | 0.66       | (0.35, 1.22)    | 0.183         | 0.68      | (0.36, 1.26)           | 0.222         | 0.68      | (0.36, 1.26)          | 0.221     | 0.71     | (0.37, 1.36)          | 0.300   |
| 27 | <sup>a</sup> Adjusted by Geno         | der, Cour | ntry of birth, E | mployed pe  | ople in h | ousehold, Chr   | onic diseas  | e. <sup>b</sup> Adjus | ted by Age, Ge              | ender, Count  | ry of birt | h, Employed           | people in hous | sehold, Cl | hronic disease, | Self-perceiv  | ved healt | h, Moderate-to         | o-Vigorous    | Physical  | Activity (MV          | PA). °Adj | usted by |                       |         |
| 28 | Age, Gender, Cou<br>Barcelona, Spain  | ntry of b | irth, Employed   | people in l | househol  | d, Chronic dise | ease, Self-p | erceived              | health, MVPA                | , Public bicy | cle statio | ons at work/st        | udy, Bikeabili | ty at worl | k/study, Bikeat | oility at com | mute rou  | ite. Data were         | collected fr  | om June   | 2011 through          | to May 20 | )12 in   |                       |         |
| 29 | Darceiona, opani                      |           |                  |             |           |                 |              |                       |                             |               |            |                       |                |            |                 |               |           |                        |               |           |                       |           |          |                       |         |
| 30 |                                       |           |                  |             |           |                 |              |                       |                             |               |            |                       |                |            |                 |               |           |                        |               |           |                       |           |          |                       |         |
| 21 |                                       |           |                  |             |           |                 |              |                       |                             |               |            |                       |                |            |                 |               |           |                        |               |           |                       |           |          |                       |         |
| 51 |                                       |           |                  |             |           |                 |              |                       |                             |               |            |                       |                |            |                 |               |           |                        |               |           |                       |           |          |                       |         |
| 32 |                                       |           |                  |             |           |                 |              |                       |                             |               |            |                       |                |            |                 |               |           |                        |               |           |                       |           |          |                       |         |
| 33 |                                       |           |                  |             |           |                 |              |                       |                             |               |            |                       |                |            |                 |               |           |                        |               |           |                       |           |          |                       |         |
| 34 |                                       |           |                  |             |           |                 |              |                       |                             |               |            |                       |                |            |                 |               |           |                        |               |           |                       |           |          |                       |         |
| 35 |                                       |           |                  |             |           |                 |              |                       |                             |               |            |                       |                |            |                 |               |           |                        |               |           |                       |           |          |                       |         |
| 22 |                                       |           |                  |             |           |                 |              |                       |                             |               |            |                       |                |            |                 |               |           |                        |               |           |                       |           |          |                       |         |
| 30 |                                       |           |                  |             |           |                 |              |                       |                             |               |            |                       |                |            |                 |               |           |                        |               |           |                       |           |          |                       |         |
| 37 |                                       |           |                  |             |           |                 |              |                       |                             |               |            |                       |                |            |                 |               |           |                        |               |           |                       |           |          |                       |         |
| 38 |                                       |           |                  |             |           |                 |              |                       |                             |               |            |                       |                |            |                 |               |           |                        |               |           |                       |           |          |                       |         |
| 39 |                                       |           |                  |             |           |                 |              |                       |                             |               |            |                       |                |            |                 |               |           |                        |               |           |                       |           |          |                       |         |
| 40 |                                       |           |                  |             |           |                 |              |                       |                             |               |            |                       |                |            |                 |               |           |                        |               |           |                       |           |          |                       |         |
| 40 |                                       |           |                  |             |           |                 |              |                       |                             |               |            |                       |                |            |                 |               |           |                        |               |           |                       |           |          |                       |         |
| 41 |                                       |           |                  |             |           |                 |              |                       |                             |               |            |                       |                |            |                 |               |           |                        |               |           |                       |           |          |                       |         |
| 42 |                                       |           |                  |             |           |                 |              |                       |                             |               |            |                       |                |            |                 |               |           |                        |               |           |                       |           |          |                       |         |
| 43 |                                       |           |                  |             |           |                 |              |                       |                             |               |            |                       |                |            |                 |               |           |                        |               |           |                       |           |          |                       |         |
| 11 |                                       |           |                  |             |           |                 |              |                       |                             |               |            |                       |                |            |                 |               |           |                        |               |           |                       |           |          |                       |         |
| 45 |                                       |           |                  |             |           | For             | neer r       | eview                 | v only - h                  | ttn·//br      | mion       | en hmi c              | om/sita        | /ahou      | it/auidal       | ines yh       | tml       |                        |               |           |                       |           |          |                       |         |
| 45 |                                       |           |                  |             |           | 101             | heerin       | 21000                 | only - II                   | p.//bi        | njoh       | ch.onj.c              | .on sile       | / 0000     | it/ guidel      | 11/23.411     | um        |                        |               |           |                       |           |          |                       |         |
| 46 |                                       |           |                  |             |           |                 |              |                       |                             |               |            |                       |                |            |                 |               |           |                        |               |           |                       |           |          |                       |         |
| 47 |                                       |           |                  |             |           |                 |              |                       |                             |               |            |                       |                |            |                 |               |           |                        |               |           |                       |           |          |                       |         |

STROBE Statement-checklist of items that should be included in reports of observational studies

|                              | Item<br>No | Recommendation                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Reported in<br>page  |
|------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Title and<br>abstract        | 1          | ( <i>a</i> ) Indicate the study's design with a commonly used term in the title or the abstract                                                                                                                                                                                                                                                                                                                                                                                | Page 2               |
|                              |            | (b) Provide in the abstract an informative and balanced summary of what was done and what was found                                                                                                                                                                                                                                                                                                                                                                            | Page 2               |
| Introduction                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| Background/rati<br>onale     | 2          | Explain the scientific background and rationale for the investigation being reported                                                                                                                                                                                                                                                                                                                                                                                           | Pages 4, 5           |
| Objectives                   | 3          | State specific objectives, including any prespecified hypotheses                                                                                                                                                                                                                                                                                                                                                                                                               | Page 5               |
| Methods                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| Study design                 | 4          | Present key elements of study design early in the paper                                                                                                                                                                                                                                                                                                                                                                                                                        | Page 6               |
| Setting                      | 5          | Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection                                                                                                                                                                                                                                                                                                                                                | Pages 6, 7           |
| Participants                 | 6          | <ul> <li>(a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up</li> <li>Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls</li> <li>Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants</li> </ul> | Pages 6, 7           |
|                              |            | (b) Cohort study—For matched studies, give matching criteria and number<br>of exposed and unexposed<br>Case-control study—For matched studies, give matching criteria and the<br>number of controls per case                                                                                                                                                                                                                                                                   | -                    |
| Variables                    | 7          | Clearly define all outcomes, exposures, predictors, potential confounders,<br>and effect modifiers. Give diagnostic criteria, if applicable                                                                                                                                                                                                                                                                                                                                    | Pages 7, 8, 9,<br>10 |
| Data sources/<br>measurement | 8*         | For each variable of interest, give sources of data and details of methods of<br>assessment (measurement). Describe comparability of assessment methods<br>if there is more than one group                                                                                                                                                                                                                                                                                     | Pages 7, 8, 9,<br>10 |
| Bias                         | 9          | Describe any efforts to address potential sources of bias                                                                                                                                                                                                                                                                                                                                                                                                                      | Pages 6, 7           |
| Study size                   | 10         | Explain how the study size was arrived at                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pages 6, 7           |
| Quantitative variables       | 11         | Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why                                                                                                                                                                                                                                                                                                                                                   | Pages 7, 8, 9,<br>10 |
| Statistical methods          | 12         | ( <i>a</i> ) Describe all statistical methods, including those used to control for confounding                                                                                                                                                                                                                                                                                                                                                                                 | Page 10              |
|                              |            | (b) Describe any methods used to examine subgroups and interactions                                                                                                                                                                                                                                                                                                                                                                                                            | Page 10              |
|                              |            | (c) Explain how missing data were addressed                                                                                                                                                                                                                                                                                                                                                                                                                                    | Page 10              |
|                              |            | (d) Cohort study—If applicable, explain how loss to follow-up was<br>addressed<br>Case-control study—If applicable, explain how matching of cases and<br>controls was addressed<br>Cross-sectional study—If applicable, describe analytical methods taking<br>account of campling strategy                                                                                                                                                                                     | Page 10              |
| Continued on next page       | e          | ( <u>e</u> ) Describe any sensitivity analyses                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pages 7, 8, 10       |

For peer review only - http://bmjopen!bmj.com/site/about/guidelines.xhtml

| Results          |     |                                                                                                                                                                                                         | Reported in<br>page                 |
|------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Participants     | 13* | (a) Report numbers of individuals at each stage of study—eg numbers<br>potentially eligible, examined for eligibility, confirmed eligible, included in<br>the study, completing follow-up, and analysed | Page 6                              |
|                  |     | (b) Give reasons for non-participation at each stage                                                                                                                                                    | Page 6                              |
|                  |     | (c) Consider use of a flow diagram                                                                                                                                                                      | In previous papers                  |
| Descriptive      | 14* | (a) Give characteristics of study participants (eg demographic, clinical,                                                                                                                               | Pages 10, 11,                       |
| data             |     | social) and information on exposures and potential confounders                                                                                                                                          | 12, 13, 14                          |
|                  |     | (b) Indicate number of participants with missing data for each variable of interest                                                                                                                     | Pages 6, 13, 14                     |
|                  |     | (c) <i>Cohort study</i> —Summarise follow-up time (eg, average and total amount)                                                                                                                        | -                                   |
| Outcome data     | 15* | <i>Cohort study</i> —Report numbers of outcome events or summary measures over time                                                                                                                     | -                                   |
|                  |     | <i>Case-control study</i> —Report numbers in each exposure category, or summary measures of exposure                                                                                                    | -                                   |
|                  |     | Cross-sectional study—Report numbers of outcome events or summary                                                                                                                                       | Pages 10, 11,                       |
|                  |     | measures                                                                                                                                                                                                | 12, 13, 14                          |
| Main results     | 16  | (a) Give unadjusted estimates and, if applicable, confounder-adjusted                                                                                                                                   | Pages 15, 16,                       |
|                  |     | estimates and their precision (eg, 95% confidence interval). Make clear                                                                                                                                 | 17                                  |
|                  |     | which confounders were adjusted for and why they were included                                                                                                                                          |                                     |
|                  |     | (b) Report category boundaries when continuous variables were categorized                                                                                                                               | Pages 7, 8                          |
|                  |     | ( <i>c</i> ) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period                                                                               | -                                   |
| Other analyses   | 17  | Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses                                                                                                          | Pages 3, 4, 5<br>of<br>Supplementar |
|                  |     |                                                                                                                                                                                                         | material                            |
| Discussion       |     |                                                                                                                                                                                                         |                                     |
| Key results      | 18  | Summarise key results with reference to study objectives                                                                                                                                                | Page 18                             |
| Limitations      | 19  | Discuss limitations of the study, taking into account sources of potential bias<br>or imprecision. Discuss both direction and magnitude of any potential bias                                           | Page 20                             |
| Interpretation   | 20  | Give a cautious overall interpretation of results considering objectives,                                                                                                                               | Pages 18, 19,                       |
|                  |     | limitations, multiplicity of analyses, results from similar studies, and other relevant evidence                                                                                                        | 20, 21                              |
| Generalisability | 21  | Discuss the generalisability (external validity) of the study results                                                                                                                                   | Pages 20                            |
| Other informatio | on  |                                                                                                                                                                                                         |                                     |
| Funding          | 22  | Give the source of funding and the role of the funders for the present study                                                                                                                            | Page 22                             |
|                  |     | and if applicable for the original study on which the present article is based                                                                                                                          |                                     |

unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

# **BMJ Open**

# The relationship between bicycle commuting and perceived stress: a cross-sectional study

| Journal:                             | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                        | bmjopen-2016-013542.R2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Article Type:                        | Research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Date Submitted by the Author:        | 13-Feb-2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Complete List of Authors:            | Avila-Palencia, Ione; ISGlobal, Centre for Research in Environmental<br>Epidemiology (CREAL),<br>de Nazelle, Audrey; Centre for Environmental Policy, Imperial College of<br>London<br>Cole-Hunter, Tom; Colorado State University, Department of<br>Environmental and Radiological Health Sciences<br>Donaire-Gonzalez, David; ISGlobal, Centre for Research in Environmental<br>Epidemiology (CREAL)<br>Jerrett, Michael; University of California Los Angeles, Department of<br>Environmental Health Sciences<br>Rodriguez, Daniel; University of California Berkeley, Department of City<br>and Regional Planning<br>Nieuwenhuijsen, Mark; ISGlobal, Centre for Research in Environmental<br>Epidemiology (CREAL) |
| <b>Primary Subject<br/>Heading</b> : | Epidemiology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Secondary Subject Heading:           | Mental health, Public health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Keywords:                            | EPIDEMIOLOGY, MENTAL HEALTH, PUBLIC HEALTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

SCHOLARONE<sup>™</sup> Manuscripts

| Page 1 of 34     |    | BMJ Open                                                                                                                      |
|------------------|----|-------------------------------------------------------------------------------------------------------------------------------|
| 1<br>2           |    |                                                                                                                               |
| -<br>3<br>4<br>5 | 1  | THE RELATIONSHIP BETWEEN BICYCLE COMMUTING                                                                                    |
| 6<br>7           | 2  | AND PERCEIVED STRESS: A CROSS-SECTIONAL STUDY                                                                                 |
| 8<br>9           | 3  | Ione Avila-Palencia, MPH <sup>1, 2, 3</sup> ; Audrey de Nazelle, PhD <sup>4</sup> ; Tom Cole-Hunter, PhD <sup>5</sup> ; David |
| 10<br>11         | 4  | Donaire-Gonzalez, PhD <sup>1,3,6</sup> ; Michael Jerrett, PhD <sup>7</sup> ; Daniel A. Rodriguez, PhD <sup>8</sup> ; Mark J   |
| 12<br>13         | 5  | Nieuwenhuijsen, PhD <sup>1,2,3</sup>                                                                                          |
| 14<br>15         | 6  | Author's affiliations:                                                                                                        |
| 17<br>18         | 7  | <sup>1</sup> ISGlobal, Centre for Research in Environmental Epidemiology (CREAL). Barcelona, Spain.                           |
| 19<br>20         | 8  | <sup>2</sup> Universitat Pompeu Fabra (UPF). Barcelona, Spain.                                                                |
| 21<br>22         | 9  | <sup>3</sup> CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.                                                |
| 23<br>24         | 10 | <sup>4</sup> Centre for Environmental Policy, Imperial College of London, London, United Kingdom.                             |
| 25<br>26         | 11 | <sup>5</sup> Department of Environmental and Radiological Health Sciences, Colorado State University,                         |
| 27<br>28         | 12 | Fort Collins, CO, USA                                                                                                         |
| 29<br>30<br>31   | 13 | <sup>6</sup> Physical Activity and Sports Sciences Department, Fundació Blanquerna, Ramon Llull                               |
| 32<br>33         | 14 | University. Barcelona, Spain.                                                                                                 |
| 34<br>35         | 15 | <sup>7</sup> Department of Environmental Health Sciences, University of California, Los Angeles,                              |
| 36<br>37         | 16 | California, United States of America.                                                                                         |
| 38<br>39         | 17 | <sup>8</sup> Department of City and Regional Planning, University of California, Berkeley, California,                        |
| 40<br>41         | 18 | United States of America.                                                                                                     |
| 42<br>43         | 19 | Corresponding author information:                                                                                             |
| 44<br>45<br>46   | 20 | Ione Avila-Palencia, ISGlobal, Centre for Research in Environmental Epidemiology                                              |
| 47<br>48         | 21 | (CREAL), Doctor Aiguader, 88, 08003 Barcelona, Spain. Telephone (+34) 93 2147337; Fax                                         |
| 49<br>50         | 22 | (+34) 93 2147302; E-mail: ione.avila@isglobal.org                                                                             |
| 51<br>52         | 23 | <b>Keywords</b> : Environmental epidemiology, Physical activity, Stress, Urbanisation, Self-rated                             |
| 53<br>54         | 24 | health                                                                                                                        |
| 55<br>56         | 25 | Word count of main text: 3562                                                                                                 |
| 57<br>58<br>59   |    |                                                                                                                               |
| 60               |    | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                     |

## ABSTRACT

Introduction: Active commuting –walking and bicycling for travel to and/or from work or educational addresses– may facilitate daily, routine physical activity. Several studies have investigated the relationship between active commuting and commuting stress, but there are no studies examining the relationship between bicycle commuting and perceived stress, or studies that account for environmental determinants of bicycling commuting and stress. The current study evaluated the relationship between bicycle use for commuting among working or studying adults in a dense urban setting and perceived stress.

9 Methods: A cross-sectional study was performed with 788 adults who regularly travelled to

10 work or study locations in Barcelona, Spain, excluding those who only commuted on foot.

11 Participants responded to a comprehensive telephone survey concerning their travel behaviour

12 from June 2011 through to May 2012. Participants were categorised as either bicycle

13 commuters or non-bicycle commuters, and based on the Perceived Stress Scale (PSS-4), as

14 stressed or non-stressed. Multivariate Poisson regression with robust variance models of stress

15 status based on bicycling exposure, adjusting for potential confounders, were estimated.

**Results:** Bicycle commuters had significantly lower risk of being stressed [RR (95%CI) =

17 0.73 (0.60, 0.89), p-value=0.001]. Bicycle commuters who bicycled four or more days per

18 week had lower risk of being stressed than those who bicycled less than four days. This

19 relationship remained statistically significant after adjusting for individual and environmental

20 confounders, and when using a different cut-off of perceived stress.

**Conclusions:** Stress reduction may be an important consequence of routine bicycle use and

should be considered by decision makers as another potential benefit of its promotion.

| 2<br>3                                                                                                         | 1  | STRENGHTS AND LIMITATIONS OF THIS STUDY                                                  |
|----------------------------------------------------------------------------------------------------------------|----|------------------------------------------------------------------------------------------|
| 4<br>5<br>6                                                                                                    | 2  | • The study had high internal validity, with a good representation of bicycle commuters. |
| 7<br>8                                                                                                         | 3  | • The study was conducted in Barcelona (a southern European city), adding evidence in    |
| 9<br>10                                                                                                        | 4  | a different context than the current literature on these issues.                         |
| 11<br>12                                                                                                       | 5  | • The TAPAS Travel Survey sample is representative of Barcelona's population, taking     |
| 13<br>14<br>15                                                                                                 | 6  | into account home neighbourhood deprivation and home and work population density.        |
| 15<br>16<br>17                                                                                                 | 7  | • The study used a cross-sectional design, which is not well-suited to assess the        |
| 18<br>19                                                                                                       | 8  | direction of causation.                                                                  |
| 20<br>21                                                                                                       | 9  | • Using questionnaire data we could have misclassification error (information bias) of   |
| 22<br>23                                                                                                       | 10 | bicycle commuting and physical activity because of the data being self-reported.         |
| 25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43 | 11 |                                                                                          |
| 44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60             |    | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                |
## INTRODUCTION

Walking and bicycling for transport is increasingly being promoted due to its potential for increasing physical activity (PA) levels in the general population (1-3). Active commuting – walking and bicycling for travel to and/or from work or educational addresses - has been associated with multiple health benefits from reductions to cardiovascular risk (4,5), lowering of body weight (2,5), improvement of fitness, reduced risk of diabetes (3), to higher levels of physical and mental well-being(6,7). Specifically, bicycle commuting has been inversely associated with all-cause mortality among both men and women in all age groups(8) and it seems to be likely to improve the health-related quality of life in previously untrained healthy adults(9). Active commuting has been shown to have other societal benefits such as helping reduce air pollution, greenhouse gas emissions, and noise, and improving social interaction(10).

Perceived stress is a global and comprehensive stress construct that refers to the interaction between the individual and the environment in the presence of a stressor(11). The perception of an event as stressful can result in a range of physiological, behavioural, and psychological changes, and can lead to cardiovascular disease, increased negative affect, lowered self-esteem, and lowered feelings of control. Hence, it is possible that mental health outcomes such as anxiety disorders and depression can be manifestations of chronic, perceived stress(12). Furthermore, others have suggested gender differences in stress-related variables. Women seem to be more physiologically reactive to social rejection challenges(13), are more likely to have daily stress, and be more impacted by life events(14).

24 Some literature recognises commuting as a potential source of stress(15); however, active

25 commuters have been shown to have higher levels of satisfaction, lower stress, higher

#### **BMJ** Open

relaxation and a heightened sense of freedom compared to car drivers(16–18). Recent qualitative research has suggested that commuting can be perceived as a relaxing or transitional time between home and work life, which can also be about enjoying pleasant landscape, nature and wildlife(19). Emerging literature has highlighted the relevance of positive natural and built environment to increase bicycle commuting and to improve mental health outcomes. Bicycle lane connectivity, bikeability, separation of bicycling from other traffic, high population density, short trip distance, proximity of a cycle path, green space and also walkability have been suggested as determinants of bicycling(20–24). Green space has also been associated with better self-perceived general health and better mental health(25,26). Several studies have examined the relationship between active commuting and commuting stress (stress directly related with the act of commuting)(17,18,27,28), but none of them have

13 studied the relationship between adult bicycle commuters and perceived stress, nor taking into

14 account environmental determinants. Moreover, most studies of active commuting benefits on

15 mental health have been conducted in North America or Northwest Europe, where the urban

16 design tends to be less dense than many parts of the world(6,7,17,28–30). Consequently, a

17 need exists to understand the relationship between bicycle commuting and perceived stress,

18 particularly in dense urban environments.

20 The current study aimed to evaluate the relationship between bicycle commuting among the

21 working or studying adult population and perceived stress in a dense urban setting.

#### 

## 1 MATERIALS AND METHODS

#### 2 Study population

This cross-sectional study was based on participants from the Transportation, Air Pollution and Physical ActivitieS (TAPAS) Travel Survey. TAPAS is a relatively large study aimed at investigating the risks and benefits of active commuting. Participant recruitment was conducted by trained interviewers on the streets of Barcelona city between June 2011 and May 2012. To ensure adequate geographic coverage, a total of 40 random points (four random points within each of the ten city districts across Barcelona) were sampled. Adult bicycle commuters and non-bicycle commuters were asked in the street to answer a few screening questions, and those who fulfilled the inclusion criteria (being older than 18 years of age; living in Barcelona city since 2006 or earlier; working or going to school in Barcelona city; being healthy enough to ride a bicycle for 20 minutes; having a commute distance greater than a 10-minute walk; and using at least one mode of transport other than walking to commute) were invited to respond to a telephone survey. Bicycle commuters were oversampled to ensure enough bicycle commuters in the study. Those solely commuting on foot were excluded as the main interest was in the contrast between motorized modes (private and public transportation) and the bicycle. Of the 18469 participants approached across the forty sampling random points, 6701 agreed to answer screening questions. Of these, 1508 met the inclusion criteria, and 871 participants completed the survey. After survey responses were checked by the research team, 815 still fulfilled the inclusion criteria and 789 had geocodable home address. After excluding one PA outlier (total of all walking, moderate and vigorous time variables >960 minutes/day), 788 participants remained. Further details on the recruitment is given elsewhere(31).

#### BMJ Open

| 1  | The study protocol was approved by the Clinical Research Ethical Committee of the Parc de    |
|----|----------------------------------------------------------------------------------------------|
| 2  | Salut Mar (CEIC-Parc de Salut Mar), and written informed consent was obtained from all       |
| 3  | participants.                                                                                |
| 4  |                                                                                              |
| 5  | Bicycle commuting                                                                            |
| 6  | The TAPAS Travel Survey assessed the regular use of transport modes(32) and the bicycle      |
| 7  | use(33). Participants who indicated using a bicycle (private or from public bicycle sharing  |
| 8  | system) to go to work or school at least once the week prior to survey administration were   |
| 9  | classified as "bicycle commuters". Participants who did not commute by bicycle in the week   |
| 10 | prior to survey administration were classified as "non-bicycle commuters".                   |
| 11 |                                                                                              |
| 12 | As part of the sensitivity analyses, commuting behaviour was further classified according to |
| 13 | bicycle commuting levels and bicycle commuting propensity(24). Bicycle commuting levels      |
| 14 | classification was based on the days of bicycle commuting in the week prior to survey        |
| 15 | administration: "low" being three days or fewer, "medium" for four days, and "high" for five |
| 16 | or more days. This measure could be interpreted as a proxy of bicycle commuting frequency.   |
| 17 | Bicycle commuting propensity classification took into account both frequency and             |
| 18 | willingness to commute by bicycle: the "bicycle commuters" were further classified as        |
| 19 | "frequent" (four or more days) or "infrequent" (three or less days), and the "non-bicycle    |
| 20 | commuters" were classified as "willing" or "unwilling". The "willing" group were those       |
| 21 | "non-bicycle commuters" who indicated bicycling as "never or nearly never" their general     |
| 22 | transport mode, but who also indicated that they would consider bicycle commuting in         |
| 23 | Barcelona (they answered positively to "considering costs, travelling time, comfort and      |
| 24 | safety, how ready would you be to use the bicycle/Bicing (public bicycle-sharing system) for |
| 25 | your trip to work or education centre?"). The "unwilling" group were those "non-bicycle      |
|    |                                                                                              |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

commuters" who indicated "never or nearly never" bicycling for travel and indicated that they
 would not consider bicycle commuting in Barcelona by answering negatively to the above
 question. More details of the bicycle commuting propensity classification are given
 elsewhere(24). This measure was included in the analysis to assess the effect of being willing
 to commute by bicycle in perceived stress.

#### 7 Perceived stress

The last four questions of the TAPAS Travel Survey were the short version of Perceived Stress Scale (PSS-4)(11), which is a well-validated psychological instrument to measure the degree to which situations in one's life over the past month are appraised as stressful. The instrument contains four statements, which measure how unpredictable, uncontrollable, and overloaded respondents feel that their lives are (Table S1). The higher the score on the PSS-4 (from 0 to 16), the greater the respondent perceives that their demands exceed their ability to cope. There are no cut-off scores. Instead, an individual's score is compared to a normative value(34). In the TAPAS Travel Survey the 5-point Likert scale was modified to a 4-point Likert scale, removing the midpoint option for consistency with other questions in the survey, as all other questions used a 4-point Likert scale. The sample did not have high levels of perceived stress (Table S2); therefore, for an easier interpretation, participants with a PSS-4 score higher than 3 (median of the total sample) were classified as "stressed", and those equal or lower than 3 were classified as "non-stressed". The sensitivity of our results to this choice was examined further in sensitivity analyses by classifying the respondents with PSS-4 scores in the 75<sup>th</sup> percentile (P75) and above (a score higher than 4) and in the 90<sup>th</sup> percentile (P90) and above (a score of 6 and above) as stressed and all others as non-stressed.

Page 9 of 34

2

1

**BMJ** Open

9

| 2              |  |
|----------------|--|
| 3              |  |
| 4              |  |
| 5              |  |
| 5              |  |
| 7              |  |
| ,<br>D         |  |
| 0              |  |
| 9              |  |
| 10             |  |
| 11             |  |
| 12             |  |
| 13             |  |
| 17             |  |
| 14             |  |
| 15             |  |
| 16             |  |
| 17             |  |
| 18             |  |
| 19             |  |
| 20             |  |
| 20<br>∩1       |  |
| 21             |  |
| 22             |  |
| 23             |  |
| 24             |  |
| 25             |  |
| 26             |  |
| 20             |  |
| 27             |  |
| 28             |  |
| 29             |  |
| 30             |  |
| 31             |  |
| 27             |  |
| )Z<br>))       |  |
| 33             |  |
| 34             |  |
| 35             |  |
| 36             |  |
| 37             |  |
| 20             |  |
| 20             |  |
| 39             |  |
| 40             |  |
| 41             |  |
| 42             |  |
| 43             |  |
| 11             |  |
| 44<br>4 F      |  |
| 45             |  |
| 46             |  |
| 47             |  |
| 48             |  |
| 49             |  |
| 50             |  |
|                |  |
|                |  |
| 52             |  |
| 53             |  |
| 54             |  |
| 55             |  |
| 56             |  |
|                |  |
| <b>.</b> .     |  |
| 57             |  |
| 57<br>58       |  |
| 57<br>58<br>59 |  |

#### 1 **Other explanatory measures**

Individual determinants of bicycle commuting and perceived stress such as physical activity 3 levels(35), socio-demographic variables, and work or school addresses were also derived from 4 the TAPAS Travel Survey to be used as potential confounders. In addition, the MEDEA 5 Index (Mortalidad en áreas pequeñas Españolas y Desigualdades socioEconómicas y 6 Ambientales, in Spanish; Environmental and socioEconomic Inequalities in Mortality in small 7 Spanish areas, translated to English) was used as an area deprivation indicator assigned to 8 each participants' address. MEDEA measures deprivation at the census tract level based on 9 five domains including percentage of manual workers, temporary workers, total population 10 with low education, young population with low education, and unemployment(36). 11 12 Environmental determinants of bicycle commuting and perceived stress within a 400m buffer 13 surrounding home and work/study addresses, and a Route-By-Area (RBA) surrounding 14 predicted commute routes, were calculated to be used as potential confounders too. The 15 number of public bicycle stations within a 400m buffer surrounding home and work/study 16 addresses was calculated based on information from the Ajuntament de Barcelona -17 Informació de Base i Cartografia (IBC) (Barcelona City Council – Basic information and 18 mapping). Greenness was calculated as a mean in Normalized Difference Vegetation Index 19 (NDVI) via satellite imagery (LANDSAT 4 and 5, NASA). Mean NO<sub>2</sub> levels were estimated 20 using a land-use regression model developed for a previous project(37). Noise was calculated 21 as the proportion of street length above a 55 dB(A) threshold(38). A bikeability index was 22 calculated taking into account five factors shown to influence bicycling: bicycle facility 23 availability, bicycle facility quality, street connectivity, topography, and land use(39). 24 Commute distance did not use buffers and it was calculated in km following the street

#### 

network of the shortest route from home address to work address. Further details of the
 environmental determinants calculation are given elsewhere(24).

#### Statistical analyses

A Generalized Additive Model (GAM) was used to test linearity between perceived stress and total physical activity (Total PA), moderate-to-vigorous physical activity (MVPA), vigorous physical activity (VPA), and age(40). As there was no statistical evidence to reject linearity between perceived stress and Total PA (p-value = 0.3816), MVPA (p-value = 0.5025), VPA (p-value = 0.1630), and age (p-value = 0.2282), these variables were included as continuous variables in the model assuming a linear relationship. Multivariate Poisson regression with robust variance models were used to assess the relationship between bicycle commuting and perceived stress. Possible mediation by different levels of PA between bicycle commuting and perceived stress, and any interaction between gender and bicycle commuting were also tested with Poisson regression with robust variance models. All regression models were conducted with a complete case analysis and included individual and environmental potential confounders that showed a p-value < 0.05 in the bivariate analysis as well as those found to be statistically significant within previous literature. The first descriptive statistical analyses were conducted in Stata version SE 12 (StataCorp LP, Texas USA), while Poisson regression with robust variance models were conducted in Stata version SE 14 (StataCorp LP, Texas USA).

#### **RESULTS**

The included sample had an equal distribution of genders and the median age (P25-P75) was 36 (29-43) years (Table 1). The majority of participants were non-stressed (had a stress score equal or lower than 3), Spanish, possessing university studies completed or equivalent-level education, living with their family or partner, living with at least 2 employed people and not Page 11 of 34

#### BMJ Open

| 1  | with children (64.34%). Among those living with children, 8.12% had children younger than        |
|----|--------------------------------------------------------------------------------------------------|
| 2  | 3 years of age. The sample had positive self-perception of health (with only $<1\%$ of           |
| 3  | participants self-perceiving bad or very bad health), healthy weight according to BMI            |
| 4  | (71.12%), and generally no chronic disease (92.26%). Bicycle commuters were statistically        |
| 5  | significant more likely to be non-stressed; younger (35 years); men; have higher levels of PA;   |
| 6  | possess a university or equivalent-level education; live alone and/or with flat mates with 0-1   |
| 7  | employed people; have no children; and have better self-perception of health, and healthy        |
| 8  | weight, but more chronic diseases than non-bicycle commuters. The majority of participants       |
| 9  | considered that they could release stress when riding a bicycle and that they enjoyed their trip |
| 10 | more if they used a bicycle. Bicycle commuters had shorter commutes compared to non-             |
| 11 | bicycle commuters, and we observed a gradient between commute distance and bicycle               |
| 12 | commuting levels with shorter distances for those who cycled more frequently. This tendency      |
| 13 | was also followed by bicycle commuting propensity, with decreasing commute distance from         |
| 14 | unwilling to bicycle to frequent bicyclists (Table S3). Bicycle commuters also had more          |
| 15 | public bicycle stations around the home and work/study addresses, lower average greenness        |
| 16 | around the home address, and higher levels of bikeability at home, work/study address, and       |
| 17 | on the commute route compared to non-bicycle commuters (Table 1). These environmental            |
| 18 | determinants stayed statistically significant for bicycle commuting propensity, but not          |
| 19 | between bicycle commuting levels (Table S3).                                                     |
| 20 |                                                                                                  |
| 21 | Women, non-Spanish, those living with 0-1 employed people, and those having a chronic            |
|    |                                                                                                  |

disease were more likely to be stressed (Table 2). Participants who had more public bicycle
stations around their work/study area and higher levels of bikeability in the work/study

- 24 address area and on the commute route were less likely to be stressed. There was no
- 25 statistically significant relationship between commute distance, greenness, NO<sub>2</sub> and noise, and

- 1 perceived stress. The possible mediation of PA was not further explored as there was no
- 2 statistically significant relationship between levels of PA (Total PA, MVPA and VPA) and
- 3 perceived stress for the three different classifications of perceived stress (P50, P75, P90) [RR
- 4 (95% CI): 1.00 (0.99, 1.00), all p-values>0.10] (Table 2, Table S4).

to beet terien only

456-8

#### 1 Table 1. Descriptive analyses of perceived stress and determinants of participants and

#### 2 according to bicycle commuting status.

|                                                                               | Total               | sample (788)  | Bicycle commuting status |                 |            |                      |         |  |
|-------------------------------------------------------------------------------|---------------------|---------------|--------------------------|-----------------|------------|----------------------|---------|--|
| Variables                                                                     | Total sample (700)  |               | Non-bicycle              | commuters (390) | Bicycle co | n-value <sup>a</sup> |         |  |
|                                                                               | n                   | %             | n                        | %               | n          | %                    | P       |  |
| Outcome                                                                       |                     |               |                          |                 |            |                      |         |  |
| Stressed (median) (Yes)                                                       | 280                 | 35.53         | 162                      | 41.97           | 118        | 30.33                | 0.001   |  |
| Sitessed (incutail) (103)                                                     | 200                 | 00.00         | 102                      |                 | 110        | 50.55                | 0.001   |  |
| Individual determinants                                                       |                     |               |                          |                 |            |                      |         |  |
| Age (median; P25-P75)                                                         | 36                  | 29-43         | 37                       | 30-45           | 35         | 29-41                | 0.025   |  |
| Total PA – min/week (median; P25-P75)                                         | 424.99              | 269.99-700.00 | 374.99                   | 209.99-624.99   | 484.98     | 329.99-734.99        | < 0.001 |  |
| MVPA – min/week (median; P25-P75)                                             | 197.49              | 72.50-374.99  | 90.00                    | 0-40            | 299.99     | 159.99-464.99        | < 0.001 |  |
| VPA – min/week (median; P25-P75)                                              | 72.50               | 0-180.00      | 35.00                    | 0-134.99        | 105.00     | 0-225.00             | < 0.001 |  |
| Gender (Woman)                                                                | 410                 | 52.03         | 234                      | 60.00           | 176        | 44.22                | < 0.001 |  |
| Country of birth (non-Spanish)                                                | 97                  | 12.31         | 41                       | 10.51           | 56         | 14.11                | 0.125   |  |
| Working status (Student)                                                      | 104                 | 13.20         | 347                      | 87.19           | 51         | 12.81                | 0.748   |  |
| equivalent-level (University studies completed or equivalent-level education) | 551                 | 69.92         | 247                      | 63.33           | 304        | 76.38                | < 0.001 |  |
| Living with family/partner                                                    | 635                 | 80.58         | 327                      | 83.85           | 308        | 77.58                | 0.026   |  |
| Employed people in household (2-5)                                            | 510                 | 64.72         | 261                      | 67.27           | 249        | 62.88                | 0.198   |  |
| MEDEA index                                                                   |                     |               |                          |                 |            |                      | 0.355   |  |
| 1st tertile (least deprived)                                                  | 263                 | 33.38         | 130                      | 33.33           | 133        | 33.42                |         |  |
| 2nd tertile                                                                   | 263                 | 33.38         | 122                      | 31.28           | 141        | 35.43                |         |  |
| 3rd tertile (most deprived)                                                   | 262                 | 33.25         | 138                      | 35.38           | 124        | 31.16                |         |  |
| Children in household (Yes)                                                   | 279                 | 35.41         | 151                      | 38.82           | 128        | 32.24                | 0.054   |  |
| Children <3 years in household (Yes)                                          | 64                  | 8.12          | 36                       | 9.25            | 28         | 7.07                 | 0.264   |  |
| Self-perceived health (Very good/Excellent)                                   | 323                 | 40.99         | 140                      | 35.90           | 183        | 45.98                | 0.004   |  |
| BMI (Overweight/Obese)                                                        | 212                 | 26.9          | 124                      | 31.96           | 88         | 22.11                | 0.002   |  |
| Chronic disease (Yes)                                                         | 61                  | 7.74          | 25                       | 0.41            | 30<br>256  | 9.05                 | 0.100   |  |
| Stress releasing (Agreement)                                                  | 620                 | 83.30         | 302                      | (9.4)           | 330        | 90.39                | <0.001  |  |
| Bicycle trip enjoyment (Agreement)                                            | 029                 | 19.82         | 249                      | 05.55           | 380        | 90.20                | <0.001  |  |
| Environmental determinants                                                    |                     |               |                          |                 |            |                      |         |  |
|                                                                               | 2.95                | 2.05          | 4 28                     | 2.25            | 2.25       | 1.70                 | <0.001  |  |
| Commute distance estimated (km) (mean SD)                                     | 5.65                | 2.03          | 4.38                     | 2.23            | 3.33       | 1.70                 | <0.001  |  |
| Public bioucle stations (mean SD)                                             |                     |               |                          |                 |            |                      |         |  |
| Hama accurt in 400m huffer                                                    | 4.25                | 2.54          | 2.75                     | 2.51            | 4 75       | 2.47                 | <0.001  |  |
|                                                                               | 4.23                | 2.34          | 3.73                     | 2.51            | 4.73       | 2.47                 | <0.001  |  |
| work/study, count in 400m buffer                                              | 4.92                | 3.11          | 4.50                     | 3.13            | 5.33       | 3.04                 | ~0.001  |  |
| Greenness, NDVI [IQR, (mean;SD)]                                              |                     |               |                          | 1.00            | 0.60       |                      |         |  |
| Home, average of 400m buffer                                                  | 0.79                | 1.07          | 0.91                     | 1.08            | 0.68       | 1.06                 | < 0.001 |  |
| Work/study, average of 400m buffer                                            | 0.62                | 0.96          | 0.70                     | 1.07            | 0.55       | 0.83                 | 0.086   |  |
| Commute route, average of RBA                                                 | 0.97                | 0.96          | 1.07                     | 1.06            | 0.87       | 0.85                 | 0.062   |  |
| NO <sub>2</sub> , ppb (mean;SD)                                               |                     |               |                          |                 |            |                      |         |  |
| Home, concentration in 400m buffer                                            | 76.20               | 17.52         | 75.16                    | 17.12           | 77.21      | 17.87                | 0.058   |  |
| Work/study, concentration in 400m buffer                                      | 78.43               | 22.51         | 78.56                    | 23.92           | 78.31      | 21.10                | 0.843   |  |
| Commute route, concentration in RBA                                           | 84.40               | 16.97         | 84.24                    | 16.82           | 84.55      | 17.13                | 0.987   |  |
| Noise, >55dB (%) (mean:SD)                                                    |                     |               |                          |                 |            |                      |         |  |
| Home proportion in 400m buffer                                                | 78.63               | 11.40         | 78.77                    | 10.99           | 78.50      | 11.79                | 0.823   |  |
| Work/study, proportion in 400m buffer                                         | 79.59               | 14.66         | 79 09                    | 14 86           | 80.07      | 14 46                | 0 369   |  |
| Commute soute anne stien in DDA                                               | 77.40               | 9.04          | 77.51                    | 8 58            | 77 30      | 9.48                 | 0.924   |  |
| Commute route, proportion in KBA                                              | 77.40               | 2.04          | 11.31                    | 0.50            | 11.50      | 2.40                 | 0.924   |  |
| Bikeability (mean;SD)                                                         | <i>(</i> <b>2</b> 0 | 1.41          | C 02                     | 1.45            | <i></i>    | 1.21                 |         |  |
| Home, concentration in 400m buffer                                            | 6.20                | 1.41          | 5.93                     | 1.45            | 6.46       | 1.31                 | < 0.001 |  |
| Work/study, concentration in 400m buffer                                      | 6.56                | 1.39          | 6.31                     | 1.54            | 6.79       | 1.17                 | < 0.001 |  |
| Commute route, concentration in RBA                                           | 6.70                | 1.12          | 6.45                     | 1.20            | 6.94       | 0.98                 | < 0.001 |  |

PA, Physical Activity; MVPA, Moderate-to-Vigorous Physical Activity; VPA, Vigorous Physical Activity; MEDEA, Mortalidad en áreas pequeñas Españolas y Desigualdades socioEconómic nequalities in Mortality in small Spanish areas, translated to English); BMI, Body Mass Index; NDVI, Normalized Difference Vegetation Index; RBA, Route-By-Area. Data are na nad %, unless otherwise noted. There are missing data in: Perceived Stress (13; 1.65%), Total PA, Route-By-Area. Data are na nad %, unless otherwise noted. There are missing data in: Perceived Stress (13; 1.65%), Total PA (5; 0.63%), Country of birth (1; 0.13%), Living with family/partner (1; 0.13%), Employed people in household (4; 0.51), Children in household (2; 0.25%), Children <3years old in household (3; 0.38), BMI (2; 0.25%); Stress releasing (15; 1.90%), Bicycle trip enjoyment (12; 1.52%), Commute distance (20; 2.54%), Greenness (20; 2.54%), NO<sub>2</sub>(20; 2.54%). "Chi square test, except for Age, Total PA, MVPA, VPA, and all the Environmental determinants (U Mann Whitney test)."

#### Table 2. Bivariate analyses showing the relationships between perceived stress (median) and

#### determinants of participants.

| Variahla                                      | Perceived stress |                              |        |  |  |
|-----------------------------------------------|------------------|------------------------------|--------|--|--|
| variable                                      | RR               | p-value                      |        |  |  |
| Individual determinants                       |                  |                              |        |  |  |
| Age                                           | 1.00             | (0.99, 1.01)                 | 0.502  |  |  |
| Total PA - min/week                           | 1.00             | (0.99, 1.01)                 | 0.669  |  |  |
| MVPA - min/week                               | 1.00             | (0.99, 1.00)                 | 0.114  |  |  |
| VPA - min/week                                | 1.00             | (0.99, 1.00)                 | 0.658  |  |  |
| Gender (Woman)                                | 1.55             | (1.27, 1.89)                 | <0.001 |  |  |
| Country of hirth (Spain)                      | 1 34             | (1.27, 1.09)<br>(1.05, 1.70) | 0.017  |  |  |
| Working status (Student)                      | 1 22             | (0.95, 1.76)                 | 0.115  |  |  |
| Education level (University studies completed | 1.22             | (0.95, 1.50)                 | 0.115  |  |  |
| or Others)                                    | 0.92             | (0.75, 1.12)                 | 0.387  |  |  |
| Living with family/partner                    | 0.91             | (0.73, 1.12)                 | 0 439  |  |  |
| Employed people in household (2-5)            | 0.74             | (0.62, 0.90)                 | 0.002  |  |  |
| MEDEA index                                   | 0.71             | (                            | 0.002  |  |  |
| 1st tertile (least deprived)                  | 1.00             |                              |        |  |  |
| 2nd tertile                                   | 1.08             | (0.85, 1.37)                 | 0.537  |  |  |
| 3rd tertile (most deprived)                   | 1.18             | (0.94, 1.48)                 | 0.162  |  |  |
| Children in household (Yes)                   | 0.90             | (0.74, 1.10)                 | 0.330  |  |  |
| Children <3 years in household (Yes)          | 0.90             | (0.60, 1.27)                 | 0.475  |  |  |
| Self-perceived health (Very good/Excellent)   | 0.87             | (0.00, 1.27)<br>(0.71, 1.06) | 0.157  |  |  |
| BMI (Overweight/Ohese)                        | 0.95             | (0.77, 1.18)                 | 0.669  |  |  |
| Chronic disease (Yes)                         | 1 38             | (1.04, 1.83)                 | 0.024  |  |  |
| Stress releasing (Agreement)                  | 0.87             | (0.68, 1.11)                 | 0.273  |  |  |
| Bicycle trin enjoyment (Agreement)            | 0.91             | (0.00, 1.11)<br>(0.72, 1.14) | 0.425  |  |  |
| Bieyele trip enjoyment (Agreement)            | 0.91             | (0.72, 1.11)                 | 0.120  |  |  |
| Environmental determinants                    |                  |                              |        |  |  |
| Commute distance, estimated (km)              | 1.02             | (0.97, 1.06)                 | 0.508  |  |  |
| Public bicycle stations                       |                  |                              |        |  |  |
| Home, count in 400m buffer                    | 0.99             | (0.95, 1.02)                 | 0.503  |  |  |
| Work/study, count in 400m buffer              | 0.96             | (0.93, 0.99)                 | 0.024  |  |  |
| Greenness, NDVI                               |                  | ()                           |        |  |  |
| Home, average of 400m buffer                  | 0.94             | (0.85, 1.05)                 | 0.258  |  |  |
| Work/study, average of 400m buffer            | 1.06             | (0.96, 1.16)                 | 0.241  |  |  |
| Commute route, average of RBA                 | 0.99             | (0.89, 1.09)                 | 0.838  |  |  |
| NO <sub>2</sub> ppb                           |                  |                              |        |  |  |
| Home, concentration in 400m buffer            | 1.00             | (0.99, 1.01)                 | 0.827  |  |  |
| Work/study, concentration in 400m buffer      | 1.00             | (0.99, 1.00)                 | 0.100  |  |  |
| Commute route, concentration in RBA           | 1.00             | (0.99, 1.00)                 | 0.518  |  |  |
| Noise, >55dB                                  |                  |                              |        |  |  |
| Home, proportion in 400m buffer               | 1.00             | (0.98, 1.00)                 | 0.363  |  |  |
| Work/study, proportion in 400m buffer         | 1.01             | (0.99, 1.01)                 | 0.125  |  |  |
| Commute route, proportion in RBA              | 1.00             | (0.98, 1.01)                 | 0.405  |  |  |
| Bikeability                                   |                  |                              |        |  |  |
| Home, concentration in 400m buffer            | 1.00             | (0.94, 1.07)                 | 0.931  |  |  |
| Work/study, concentration in 400m buffer      | 0.92             | (0.86, 0.98)                 | 0.009  |  |  |
| Commute route, concentration in RBA           | 0.91             | (0.84, 0.98)                 | 0.018  |  |  |

PA, Physical Activity; WPA, Moderate-to-Vigorous Physical Activity; VPA, Vigorous Physical Activity; MEDEA, Mortalidad en áreas pequeñas Españolas y Desigualdades socioEconómicas y Ambientales, in Spanish (Environmental and socioEconomic Inequalities in Mortality in small Spanish areas, translated to English); BMI, Body Mass Index, NDVI, Normalized Difference Vegetation Index; RBA, Route-By-Area. Complete case analysis excluding missing data of the variables of final models (Table 3; n=771). The variables that still present missing data and are not included in the final models are: Total PA (5; 0.63%), People living with in household (1; 0.13%), Children in household (2; 0.25%), Children <3 per source of in a nodels are: Total PA (5; 0.63%), People living with in household (2; 0.25%), Children <3 per source of a star of a

Page 15 of 34

#### **BMJ** Open

| 1  | Multivariate Poisson regression with robust variance analyses showed a statistically             |
|----|--------------------------------------------------------------------------------------------------|
| 2  | significant inverse relationship between bicycle commuting and perceived stress. Bicycle         |
| 3  | commuters had a lower risk of being stressed compared to non-bicycle commuters [RR               |
| 4  | (95%CI) = 0.73 (0.60, 0.89), p-value=0.001]. This relationship remained after adjusting for      |
| 5  | confounders (individual and environmental) and when using P75 and P90 perceived stress           |
| 6  | cut-offs (Table 3, Table S5). There was a statistically significant inverse relationship between |
| 7  | medium and high levels of bicycle commuting and perceived stress using non-bicycle               |
| 8  | commuters as a reference group [RR (95%CI) = 0.46 (0.28, 0.78), p-value=0.004; RR                |
| 9  | (95%CI) = 0.63 (0.49, 0.81), p-value<0.001] and also when using low levels of bicycle            |
| 10 | commuting [RR (95%CI) = 0.42 (0.24, 0.73), p-value=0.002; RR (95%CI) = 0.57 (0.42,               |
| 11 | 0.77), p-value<0.001] as a reference group. This statistically significant relationship remained |
| 12 | in the majority of sensitivity analyses. Regarding bicycle commuting propensity, there was a     |
| 13 | statistically significant inverse relationship between frequent bicycle commuters and            |
| 14 | perceived stress, using unwilling non-bicycle commuters [RR (95%CI) = 0.53 (0.41, 0.67), p-      |
| 15 | value<0.001] and infrequent bicycle commuters [RR (95%CI) = 0.54 (0.40, 0.72), p-                |
| 16 | value<0.001] as respective reference groups. The statistically significant relationship          |
| 17 | remained after adjusting for individual and environmental confounders and when using             |
| 18 | perceived stress P75 and P90 as cut-offs. Also, there was a statistically significant inverse    |
| 19 | relationship between willing non-bicycle commuters and perceived stress, using unwilling         |
| 20 | non-bicycle commuters [RR (95%CI) = 0.72 (0.56, 0.94), p-value=0.014] as a reference group       |
| 21 | in the bicycle commuting propensity variable and also looking only in the non-bicycle            |
| 22 | commuting group [RR (95%CI) = 0.72 (0.56, 0.94), p-value=0.015]. This relationship               |
| 23 | remained after adjusting for individual and environmental confounders, but not when using        |
| 24 | perceived stress at the P75 and P90 cut-offs.                                                    |
| 25 |                                                                                                  |

- 1 In the fully adjusted models, we found no statistically significant interactions between gender
- 2 and bicycle commuters (p-value= 0.165) between gender and bicycle commuting levels (p-
- 3 value=0.226, p-value=0.266, p-value=0.431), or between gender and bicycle commuting
- 4 propensity (p-value=0.982, p-value=0.197, p-value=0.277) (results not shown).

to beet terien only

#### **BMJ** Open

**Table 3**. Multivariate models showing the relationships between bicycle commuting and perceived stress (median) of participants.

|                                    | Perceived stress          |              |         |      |                                      |         |                                      |              |         |                                      |              |         |
|------------------------------------|---------------------------|--------------|---------|------|--------------------------------------|---------|--------------------------------------|--------------|---------|--------------------------------------|--------------|---------|
| Variable                           | RR Unadjusted<br>(95% CI) |              | p-value | RI   | RR Adjusted <sup>a</sup><br>(95% CI) |         | RR Adjusted <sup>b</sup><br>(95% CI) |              | p-value | RR Adjusted <sup>c</sup><br>(95% CI) |              | p-value |
| All sample (771)                   |                           |              |         |      |                                      |         |                                      |              |         |                                      |              |         |
| Bicycle commuting status           |                           |              |         |      |                                      |         |                                      |              |         |                                      |              |         |
| Non-bicycle commuters              | 1.00                      |              |         | 1.00 |                                      |         | 1.00                                 |              |         | 1.00                                 |              |         |
| Bicycle commuters                  | 0.73                      | (0.60, 0.89) | 0.001   | 0.75 | (0.62, 0.91)                         | 0.003   | 0.77                                 | (0.63, 0.94) | 0.009   | 0.80                                 | (0.66, 0.99) | 0.036   |
| Bicycle commuting levels           |                           |              |         |      |                                      |         |                                      |              |         |                                      |              |         |
| Non-bicycle commuters (0 days)     | 1.00                      |              |         | 1.00 |                                      |         | 1.00                                 |              |         | 1.00                                 |              |         |
| Low bicycle commuting (1-3 days)   | 1.10                      | (0.87, 1.39) | 0.436   | 1.11 | (0.88, 1.40)                         | 0.369   | 1.13                                 | (0.89, 1.44) | 0.297   | 1.17                                 | (0.92, 1.48) | 0.205   |
| Medium bicycle commuting (4 days)  | 0.46                      | (0.28, 0.78) | 0.004   | 0.45 | (0.27, 0.74)                         | 0.002   | 0.45                                 | (0.27, 0.75) | 0.002   | 0.48                                 | (0.29, 0.80) | 0.005   |
| High bicycle commuting (>=5 days)  | 0.63                      | (0.49, 0.81) | < 0.001 | 0.66 | (0.51, 0.85)                         | 0.001   | 0.68                                 | (0.52, 0.88) | 0.003   | 0.71                                 | (0.54, 0.92) | 0.010   |
| Bicycle commuting propensity       |                           |              |         |      |                                      |         |                                      |              |         |                                      |              |         |
| Unwilling Non-bicycle commuters    | 1.00                      |              |         | 1.00 |                                      |         | 1.00                                 |              |         | 1.00                                 |              |         |
| Willing Non-bicycle commuters      | 0.72                      | (0.56, 0.94) | 0.014   | 0.75 | (0.58, 0.97)                         | 0.029   | 0.74                                 | (0.57, 0.96) | 0.022   | 0.75                                 | (0.58, 0.97) | 0.031   |
| Infrequent Bicycle commuters       | 0.98                      | (0.76, 1.25) | 0.847   | 1.00 | (0.78, 1.27)                         | 0.980   | 1.01                                 | (0.79, 1.30) | 0.940   | 1.04                                 | (0.81, 1.34) | 0.739   |
| Frequent Bicycle commuters         | 0.53                      | (0.41, 0.67) | < 0.001 | 0.55 | (0.43, 0.70)                         | < 0.001 | 0.56                                 | (0.43, 0.72) | < 0.001 | 0.58                                 | (0.45, 0.76) | < 0.001 |
| Bicycle commuters sample (387)     |                           |              |         |      |                                      |         |                                      |              |         |                                      |              |         |
| Bicycle commuting levels           |                           |              |         |      |                                      |         |                                      |              |         |                                      |              |         |
| Low bicycle commuting (1-3 days)   | 1.00                      |              |         | 1.00 |                                      |         | 1.00                                 |              |         | 1.00                                 |              |         |
| Medium bicycle commuting (4 days)  | 0.42                      | (0.24, 0.73) | 0.002   | 0.39 | (0.23, 0.67)                         | 0.001   | 0.39                                 | (0.23, 0.65) | < 0.001 | 0.38                                 | (0.23, 0.65) | < 0.001 |
| High bicycle commuting (>=5 days)  | 0.57                      | (0.42, 0.77) | < 0.001 | 0.59 | (0.44, 0.80)                         | 0.001   | 0.59                                 | (0.44, 0.80) | 0.001   | 0.59                                 | (0.44, 0.80) | 0.001   |
| Bicycle commuters propensity       |                           |              |         |      |                                      |         |                                      |              |         |                                      |              |         |
| Infrequent (1-3 days)              | 1.00                      |              |         | 1.00 |                                      |         | 1.00                                 |              |         | 1.00                                 |              |         |
| Frequent (>=4 days)                | 0.54                      | (0.40, 0.72) | < 0.001 | 0.55 | (0.41, 0.73)                         | < 0.001 | 0.54                                 | (0.41, 0.72) | < 0.001 | 0.54                                 | (0.41, 0.72) | < 0.001 |
| Non-bicycle commuters sample (384) |                           |              |         |      |                                      |         |                                      |              |         |                                      |              |         |
| Non-bicycle commuters              |                           |              |         |      |                                      |         |                                      |              |         |                                      |              |         |
| Unwilling                          | 1.00                      |              |         | 1.00 |                                      |         | 1.00                                 |              |         | 1.00                                 |              |         |
| Willing                            | 0.72                      | (0.56, 0.94) | 0.015   | 0.73 | (0.57, 0.95)                         | 0.020   | 0.72                                 | (0.56, 0.93) | 0.013   | 0.74                                 | (0.57, 0.95) | 0.020   |

<sup>3</sup> Adjusted by Gender, Country of birth, Employed people in household, Chronic disease. <sup>b</sup>Adjusted by Age, Gender, Country of birth, Employed people in household, Chronic disease, Self-perceived health, Moderate-to-Vigorous Physical Activity (MVPA). <sup>c</sup>Adjusted by Age, Gender, Country of birth, Employed people in household, Chronic disease, Self-perceived health, Moderate-to-Vigorous Physical Activity (MVPA). <sup>c</sup>Adjusted by Age, Gender, Country of birth, Employed people in household, Chronic disease, Self-perceived health, Moderate-to-Vigorous Physical Activity (MVPA). <sup>c</sup>Adjusted by Age, Gender, Country of birth, Employed people in household, Chronic disease, Self-perceived health, Moderate-to-Vigorous Physical Activity (MVPA). <sup>c</sup>Adjusted by Age, Gender, Country of birth, Employed people in household, Chronic disease, Self-perceived health, MVPA, Public bicycle stations at work/study, Bikeability at commute route.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

### **DISCUSSION**

#### 2 Summary of results

We evaluated relationships between bicycle commuting and perceived stress while adjusting for several confounders in a representative sample of adults in Barcelona, Spain. We found statistically significant inverse relationships between several measures of bicycle commuting and perceived stress. Bicycle commuters who bicycled four or more days per week had lower risk of being stressed compared to those who cycled less or did not bicycle on their commute. This relationship remained statistically significant in all sensitivity analyses and after controlling for individual and environmental confounders.

#### 11 Comparison with previous studies

To our knowledge, this study is the first to assess whether a relationship exists between bicycle commuting and perceived stress. A few studies have focused on the relationship between active commuting and mental health(6,7,29), but the relationship is still unclear. One study found a positive association between active commuting and well-being(6), and another with better mental health in men(29). Moreover, Humphreys(7) found a positive relationship between time spent actively commuting and levels of physical well-being, but not with mental well-being. The relationship between physical activity and mental health has been studied more. It has been suggested that physical activity could reduce stress and anxiety on a daily basis while improving self-perception and mood(41-43), and it has been associated with lower depressive symptomatology and greater emotional well-being(44). These findings suggest that the physical activity gained during bicycle commuting(31) may act as a mediator in the relationship between bicycle commuting and perceived stress. Our results are consistent with the general idea that active commuting is associated with better mental health, but in our

Page 19 of 34

#### **BMJ** Open

| 1  | case physical activity did not act as a mediator in this relationship. Our sample was             |
|----|---------------------------------------------------------------------------------------------------|
| 2  | composed of young, healthy, and active participants with low levels of perceived stress,          |
| 3  | which might have led to an underestimation of the relationship between PA and perceived           |
| 4  | stress.                                                                                           |
| 5  |                                                                                                   |
| 6  | Qualitative research suggested that choice of travel mode may affect well-being(19). The          |
| 7  | quantity of public bicycle (Bicing) stations and the amount of greenness has been related to      |
| 8  | bicycle commuting propensity(24), which could imply that commuting by bicycle provides            |
| 9  | people with more opportunities to "enjoy" or "experience" greenness than commuting on             |
| 10 | public transport or a car. At the same time, the availability of green space close to one's home  |
| 11 | has been shown to be related to better self-perceived general health and better mental            |
| 12 | health(25,26,45). Therefore, it seems that perceptual and environmental factors related to        |
| 13 | bicycle commuting could affect perceived stress, in the way that more pleasant an                 |
| 14 | environment to bicycle commute is, better perceived stress results we will get. This general      |
| 15 | idea is consistent with our results which show an inverse relationship between perceived          |
| 16 | stress and bicycle-friendly environments (public bicycle stations and bikeability levels) in      |
| 17 | work/study address area and the commute route. Importantly, the relationship between              |
| 18 | bicycling and stress was unchanged after controlling for the environmental confounders. Our       |
| 19 | results also showed that general attitude might have a role in this relationship, as we have seen |
| 20 | that those willing non-bicycle commuters, compared to unwilling non-bicycle commuters,            |
| 21 | were less stressed. But this remained quite unclear as the relationship becomes statistically no  |
| 22 | significant in the sensitivity analyses.                                                          |
|    |                                                                                                   |

### 2 Limitations and strengths

Our study had some limitations. Firstly, our study used a cross-sectional design, which is not well-suited to assess the direction of causation, and we cannot exclude reverse causality or residual confounding. It has been suggested that stressed people can engage in unhealthy behaviours, such as poor dietary practices or a lack of physical activity (46). This reasoning could be applied to a behaviour like bicycle commuting, where those individuals who are more stressed would bicycle less. Secondly, our measurement method may be prone to information bias. With the questionnaire data we could have random misclassification error of bicycle commuting and PA because of the data being self-reported. Therefore, the risk estimate and also the potential mediation by PA could be under-estimated(47). The TAPAS Travel Survey only measured levels of PA without differentiating between types of PA (work, travel, recreational). Furthermore, the modification of the 5-point PSS-4 Likert scale into a 4-point Likert scale could incorrectly-estimate the perceived stress.

This study had several strengths, too. The study had high internal validity, with a good representation of bicycle commuters. Related to participants' characteristics, the TAPAS Travel Survey sample is representative of Barcelona's population from the socio-demographic point of view. It was compared with data from the Catalan government's Barcelona Active Population Survey (Statistics and information service, Catalan government 2011) and no statistically significant differences between participants' deprivation index and home and work population density in both surveys were found(24,31). Finally, our study in a southern European city has added evidence in a different context than the current literature on these issues.

#### BMJ Open

#### 1 Future research

Our findings underscored the need for future research. There is a need to obtain a clear understanding of the relationship between the bicycle commuting and perceived stress in longitudinal studies. The role of PA in this relationship seems unclear, and it is likely that other factors could affect the relationship between these two variables, especially those related to environmental determinants and personal attitudes. Further work related to determinants and mediators of bicycle commuting and perceived stress is needed.

## 8 CONCLUSIONS

We found that healthy, adult bicycle commuters had lower risk of being stressed than commuters of other transport modes. Also, bicycle commuters who bicycled four or more days per week had lower risk of being stressed than those who bicycled less than that. Environmental determinants such as the number of public bicycle stations and bikeability, and also personal attitudes seem to have an influence on this relationship. Further research is needed in order to disentangle the relationship between bicycle commuting and perceived stress, and its determinants (individual and environmental) and potential mediators. Our findings suggest that decision-makers may promote bicycle commuting as a daily routine, to reduce stress levels and improve public health and well-being. 

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

## 1 ACKNOWLEDGEMENTS

2 The authors are grateful to the participants of TAPAS Travel Survey and the CREAL

3 technicians who recruited them and created geographical variables. We would like to

4 acknowledge the ESCAPE project and its contributors for air quality and noise model data of

5 Barcelona, as well as the Ajuntament de Barcelona, Departament de Mobilitat for street map

6 information.

## 7 FUNDING

8 This study was performed as part of the TAPAS project < <u>http://www.tapas-program.org/</u> >,

9 funded by the Coca-Cola Foundation, the Agència de Gestió d'ajuts Universitaris i de Recerca

10 (AGAUR) and CREAL internal funding. Coca-Cola Foundation provided funding, but had no

11 role whatsoever in the design of the study or data collection, or interpretation of the results.

## **COMPETING INTERESTS**

13 No conflicts of interest were reported by the authors of this paper.

## 14 AUTHOR'S CONTRIBUTION

15 MJN and AdN obtained the funding and designed the study. IAP conducted the analyses and

16 drafted this version of the paper and received input from all the authors. All authors read and

17 commented on the paper and agreed with the final version.

## 18 DATA SHARING

19 Extra data is available by emailing the corresponding author (Ione Avila-Palencia:

20 ione.avila@isglobal.org).

| 1  | REFERENCES                                                                                  |
|----|---------------------------------------------------------------------------------------------|
| 2  | 1. Faulkner GEJ, Buliung RN, Flora PK, Fusco C. Active school transport, physical           |
| 3  | activity levels and body weight of children and youth: A systematic review. Prev Med.       |
| 4  | Elsevier Inc.; 2009;48(1):3-8.                                                              |
| 5  | 2. Wanner M, Götschi T, Martin-Diener E, Kahlmeier S, Martin BW. Active Transport,          |
| 6  | Physical Activity, and Body Weight in Adults: A Systematic Review. Am J Prev Med.           |
| 7  | 2012;42(5):493–502.                                                                         |
| 8  | 3. Saunders LE, Green JM, Petticrew MP, Steinbach R, Roberts H, Morris J, et al. What       |
| 9  | Are the Health Benefits of Active Travel? A Systematic Review of Trials and Cohort Studies. |
| 10 | Ruiz JR, editor. PLoS One. 2013;8(8):e69912.                                                |
| 11 | 4. Hamer M, Chida Y. Active commuting and cardiovascular risk: A meta-analytic              |
| 12 | review. Prev Med. 2008;46(1):9–13.                                                          |
| 13 | 5. Xu H, Wen LM, Rissel C. The relationships between active transport to work or            |
| 14 | school and cardiovascular health or body weight: a systematic review. Asia Pac J Public     |
| 15 | Health. 2013 Jul [cited 2016 Nov 7];25(4):298–315.                                          |
| 16 | 6. Martin A, Goryakin Y, Suhrcke M. Does active commuting improve psychological             |
| 17 | wellbeing? Longitudinal evidence from eighteen waves of the British Household Panel         |
| 18 | Survey. Prev Med. 2014;69:296–303.                                                          |
| 19 | 7. Humphreys DK, Goodman A, Ogilvie D. Associations between active commuting and            |
| 20 | physical and mental wellbeing. Prev Med. 2013;57(2):135-9.                                  |
| 21 | 8. Andersen LB, Schnohr P, Schroll M, Hein HO. All-Cause Mortality Associated With          |
| 22 | Physical Activity During Leisure Time, Work, Sports, and Cycling to Work. Arch Intern       |
| 23 | Med. 2000;160(11):1621.                                                                     |
|    |                                                                                             |
|    |                                                                                             |
|    |                                                                                             |

| 1  | 9.      | de Geus B, Van Hoof E, Aerts I, Meeusen R. Cycling to work: influence on indexes of       |
|----|---------|-------------------------------------------------------------------------------------------|
| 2  | health  | in untrained men and women in Flanders. Coronary heart disease and quality of life.       |
| 3  | Scand   | J Med Sci Sports. 2008;18(4):498–510.                                                     |
| 4  | 10.     | de Nazelle A, Nieuwenhuijsen MJ, Antó JM, Brauer M, Briggs D, Braun-Fahrlander            |
| 5  | C, et a | al. Improving health through policies that promote active travel: A review of evidence to |
| 6  | suppor  | rt integrated health impact assessment. Environ Int. 2011;37(4):766–77.                   |
| 7  | 11.     | Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. J Health         |
| 8  | Soc B   | ehav. 1983;24(4):385–96.                                                                  |
| 9  | 12.     | Katsarou AL, Triposkiadis F, Panagiotakos D. Perceived stress and vascular disease:       |
| 10 | where   | are we now? Angiology. 2013;64(7):529–34.                                                 |
| 11 | 13.     | Stroud LR, Salovey P, Epel ES. Sex differences in stress responses: Social rejection      |
| 12 | versus  | s achievement stress. Biol Psychiat. 2002;52(4):318–27.                                   |
| 13 | 14.     | Matud MP. Gender differences in stress and coping styles. Pers Indiv Differ.              |
| 14 | 2004;   | 37(7):1401–15.                                                                            |
| 15 | 15.     | Koslowsky M. Commuting Stress: Problems of Definition and Variable Identification.        |
| 16 | Appl l  | Psychol An-Int Rev. 1997;46(2):153–73.                                                    |
| 17 | 16.     | St-Louis E, Manaugh K, van Lierop D, El-Geneidy A. The happy commuter: A                  |
| 18 | compa   | arison of commuter satisfaction across modes. Transportation research. Part F, Traffic    |
| 19 | psych   | ology and behaviour. 2014;26:160–70.                                                      |
| 20 | 17.     | Lajeunesse S, Rodríguez D a. Mindfulness, time affluence, and journey-based affect:       |
| 21 | Explo   | ring relationships. ransportation research. Part F, Traffic psychology and behaviour.     |
| 22 | 2012;   | 15(2):196–205.                                                                            |
| 23 | 18.     | Anable J, Gatersleben B. All work and no play? The role of instrumental and affective     |
| 24 | factors | s in work and leisure journeys by different travel modes. Transportation research. Part   |
| 25 | A, Pol  | licy and practice. 2005;39(2-3):163-81.                                                   |
|    |         |                                                                                           |
|    |         |                                                                                           |

**BMJ** Open

| 1  | 19. Guell C, Ogilvie D. Picturing commuting: photovoice and seeking wellbeing in             |
|----|----------------------------------------------------------------------------------------------|
| 2  | everyday travel. Qual Res. 2015;15(2)201-218.                                                |
| 3  | 20. Titze S, Stronegger WJ, Janschitz S, Oja P. Association of built-environment, social-    |
| 4  | environment and personal factors with bicycling as a mode of transportation among Austrian   |
| 5  | city dwellers. Prev Med. 2008;47(3):252–9.                                                   |
| 6  | 21. Brown BB, Smith KR, Hanson H, Fan JX, Kowaleski-Jones L, Zick CD.                        |
| 7  | Neighborhood design for walking and biking: physical activity and body mass index. Am J      |
| 8  | Prev Med; 2013;44(3):231–8.                                                                  |
| 9  | 22. Fraser SDS, Lock K. Cycling for transport and public health: a systematic review of      |
| 10 | the effect of the environment on cycling. Eur J Public Health. 2011;21(6).                   |
| 11 | 23. Grasser G, Van Dyck D, Titze S, Stronegger W. Objectively measured walkability and       |
| 12 | active transport and weight-related outcomes in adults: a systematic review. Int J Public    |
| 13 | Health; 2013;58(4):615–25.                                                                   |
| 14 | 24. Cole-Hunter T, Donaire-Gonzalez D, Curto a., Ambros a., Valentin a., Garcia-             |
| 15 | Aymerich J, et al. Objective correlates and determinants of bicycle commuting propensity in  |
| 16 | an urban environment. Transportation research. Part D Transport and environment.             |
| 17 | 2015;40(2):132–43.                                                                           |
| 18 | 25. Triguero-Mas M, Dadvand P, Cirach M, Martínez D, Medina A, Mompart A, et al.             |
| 19 | Natural outdoor environments and mental and physical health: Relationships and               |
| 20 | mechanisms. Environ Int. 2015;77:35–41.                                                      |
| 21 | 26. Dadvand P, Bartoll X, Basagaña X, Dalmau-Bueno A, Martinez D, Ambros A, et al.           |
| 22 | Green spaces and General Health: Roles of mental health status, social support, and physical |
| 23 | activity. Environ Int. 2016;91:161-7.                                                        |
| 24 | 27. Olsson LE, Gärling T, Ettema D, Friman M, Fujii S. Happiness and Satisfaction with       |
| 25 | Work Commute. Soc Indic Res. 2013;111(1):255–63.                                             |

| 1  | 28.      | Gottholmseder G, Nowotny K, Pruckner GJ, Theurl E. Stress perception and              |
|----|----------|---------------------------------------------------------------------------------------|
| 2  | comm     | uting. Health Econ. 2009;18(5):559–76.                                                |
| 3  | 29.      | Ohta M, Mizoue T, Mishima N, Ikeda M. Effect of the physical activities in leisure    |
| 4  | time a   | nd commuting to work on mental health. J Occup Health. 2007;49(1):46-52.              |
| 5  | 30.      | Hansson E, Mattisson K, Björk J, Östergren P-O, Jakobsson K. Relationship between     |
| 6  | comm     | uting and health outcomes in a cross-sectional population survey in southern Sweden.  |
| 7  | BMC      | Public Health. 2011;11:834.                                                           |
| 8  | 31.      | Donaire-Gonzalez D, Nazelle A De, Cole-Hunter T, Curto A, Rodriguez D, Mendez         |
| 9  | M, et a  | al. The Added Benefit of Bicycle Commuting on the Regular Amount of Physical          |
| 10 | Activit  | ty Performed. Am J Prev Med. 2015;49(6):842–9.                                        |
| 11 | 32.      | Institut d'Estudis Regionals i Metropolitans de Barcelona. La Mobilitat quotidiana a  |
| 12 | Catalu   | nya. Papers. Regió Metropolitana de Barcelona 2008.                                   |
| 13 | 33.      | Forsyth A, Krizek KJ, Agrawal AW, Stonebraker E. Reliability testing of the           |
| 14 | Pedest   | rian and Bicycling Survey (PABS) method. J Phys Act Health. 2012;9(5):677-88.         |
| 15 | 34.      | Warttig SL, Forshaw MJ, South J, White AK. New, normative, English-sample data        |
| 16 | for the  | Short Form Perceived Stress Scale (PSS-4). J Health Psychol. 2013;18(12):1617–28.     |
| 17 | 35.      | Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE.                 |
| 18 | Interna  | ational physical activity questionnaire: 12-country reliability and validity. Med Sci |
| 19 | Sport I  | Exerc. 2003;35(8):1381–95.                                                            |
| 20 | 36.      | Domínguez-Berjón MF, Borrell C, Cano-Serral G, Esnaola S, Nolasco A, Pasarín MI,      |
| 21 | et al. [ | Constructing a deprivation index based on census data in large Spanish cities (the    |
| 22 | MEDE     | EA project)]. Gac Sanit. 2008 Jun;22(3):179–87.                                       |
| 23 | 37.      | Beelen R, Hoek G, Vienneau D, Eeftens M, Dimakopoulou K, Pedeli X, et al.             |
| 24 | Develo   | opment of NO2 and NOx land use regression models for estimating air pollution         |
|    |          |                                                                                       |
|    |          |                                                                                       |

#### **BMJ** Open

| 1  | exposure in 36 study areas in Europe – The ESCAPE project. Atmospheric Environment.       |
|----|-------------------------------------------------------------------------------------------|
| 2  | 2013 Jun;72(2):10–23.                                                                     |
| 3  | 38. World Health Organisation. Guideline for Community Noise. 2011.                       |
| 4  | http://www.who.int/docstore/peh/noise/Commnoise4.htm (accessed 10 April 2015).            |
| 5  | 39. Winters M, Brauer M, Setton EM, Teschke K. Mapping bikeability: A spatial tool to     |
| 6  | support sustainable travel. Environ Plan B Plan Des. 2013;40(5):865-83.                   |
| 7  | 40. Hastie TJ, Tibshirani R. Generalized additive models. Stat Sci. 1990;1(3):297–318.    |
| 8  | 41. Fox KR. The influence of physical activity on mental well-being. Public Health Nutr.  |
| 9  | 1999;2(3A):411–8.                                                                         |
| 10 | 42. Sexton H, Søgaard a. J, Olstad R. How are mood and exercise related? Results from     |
| 11 | the Finnmark study. Soc Psych Psych Epid. 2001;36(7):348-53.                              |
| 12 | 43. Peluso MA, Guerra de Andrade LH. Physical activity and mental health: the             |
| 13 | association between exercise and mood. Clinics (Sao Paulo). 2005;60(1):61-70.             |
| 14 | 44. Galper DI, Trivedi MH, Barlow CE, Dunn AL, Kampert JB. Inverse association            |
| 15 | between physical inactivity and mental health in men and women. Med Sci Sports Exerc.     |
| 16 | 2006;38(1):173–8.                                                                         |
| 17 | 45. Maas J, Verheij RA, Groenewegen PP, De Vries S, Spreeuwenberg P. Green space,         |
| 18 | urbanity, and health: how strong is the relation? J Epidemiol Community Health.           |
| 19 | 2006;60(7):587–92.                                                                        |
| 20 | 46. Stults-Kolehmainen MA, Sinha R. The effects of stress on physical activity and        |
| 21 | exercise. Sports Med. 2014;44(1):81-121.                                                  |
| 22 | 47. Baron RM, Kenny D a. The moderator-mediator variable distinction in social            |
| 23 | psychological research: conceptual, strategic, and statistical considerations. J Pers Soc |
| 24 | Psychol. 1986;51(6):1173-82.                                                              |
| 25 |                                                                                           |
|    |                                                                                           |
|    |                                                                                           |

## SUPPLEMENTARY MATERIAL

#### Table S1. PSS4 questions used in TAPAS Travel Survey

## *Q218.* In the last month, how often have you felt that you were unable to control important things in your life?

| 0   | Never            |
|-----|------------------|
| 1   | Almost never     |
| 2   | Nearly always    |
| 3   | Always           |
| 997 | Don't Know       |
| 998 | Refuse to Answer |

## *Q219.* In the last month, how often have you felt confident about your ability to handle your personal problems?

| 0   | Never            |
|-----|------------------|
| 1   | Almost never     |
| 2   | Nearly always    |
| 3   | Always           |
| 997 | Don't Know       |
| 998 | Refuse to Answer |

*Q220.* In the last month, how often have you felt that things were going your way?

| 0   | Never            |
|-----|------------------|
| 1   | Almost never     |
| 2   | Nearly always    |
| 3   | Always           |
| 997 | Don't Know       |
| 998 | Refuse to Answer |
|     |                  |

# *Q221.* In the last month, how often have you felt that difficulties were piling up so high that you could not overcome them?

| 0          | Never            |
|------------|------------------|
| 1          | Almost never     |
| 2          | Nearly always    |
| 3          | Always           |
| 997        | Don't Know       |
| <b>998</b> | Refuse to Answer |

| 1         |
|-----------|
| 2         |
| 3         |
| 4         |
| 5         |
| 6         |
| 7         |
| 8         |
| 9         |
| 10        |
| 11        |
| 12        |
| 13        |
| 14        |
| 15        |
| 16        |
| 17        |
| 18        |
| 19        |
| 20        |
| 21        |
| 22        |
| 23        |
| 24        |
| 25        |
| 26        |
| 20        |
| 28        |
| 20        |
| 30        |
| 30        |
| 37        |
| 32        |
| 34        |
| 35        |
| 36        |
| 30<br>27  |
| 27<br>20  |
| 20        |
| 39        |
| 40        |
| 41<br>12  |
| 4Z<br>42  |
| 45<br>44  |
| 44<br>45  |
| 45        |
| 40        |
| 47<br>10  |
| 40<br>70  |
| 49<br>50  |
| 50<br>E 1 |
| 51<br>52  |
| 52<br>52  |
| כ<br>ב≁   |
| 54        |
| 55        |
| 50        |
| 5/<br>50  |
| אר        |

| PSS-4 score | n   | %      | Cumulative % |
|-------------|-----|--------|--------------|
| 0           | 90  | 11.61  | 11.61        |
| 1           | 125 | 16.13  | 27.74        |
| 2           | 129 | 16.65  | 44.39        |
| 3           | 151 | 19.48  | 63.87        |
| 4           | 144 | 18.58  | 82.45        |
| 5           | 38  | 4.90   | 87.35        |
| 6           | 33  | 4.26   | 91.61        |
| 7           | 12  | 1.55   | 93.16        |
| 8           | 28  | 3.61   | 96.77        |
| 9           | 5   | 0.65   | 97.42        |
| 10          | 11  | 1.42   | 98.84        |
| 11          | 3   | 0.39   | 99.23        |
| 12          | 4   | 0.52   | 99.74        |
| 13          | 1   | 0.13   | 99.87        |
| 14          | 1   | 0.13   | 100.00       |
| Total       | 775 | 100.00 |              |

Table S2. PSS4 score distribution in TAPAS Travel Survey sample

### Table S3. Description of the individual and environmental determinants in TAPAS

sample for Bicycle commuting levels and Bicycle commuting propensity.

| 9  |                                                                                 |                |                         |            |                   |             |                   |                |             |                   |                   |                  |                |               |        |                  |         |
|----|---------------------------------------------------------------------------------|----------------|-------------------------|------------|-------------------|-------------|-------------------|----------------|-------------|-------------------|-------------------|------------------|----------------|---------------|--------|------------------|---------|
| 10 |                                                                                 |                |                         | Bicy       | cle commuting     | g levels    |                   |                |             |                   |                   | Bicycle co       | ommuting       | propensity    |        |                  |         |
| 11 | Variables                                                                       |                | Low<br>(109)            | Me         | dium<br>65)       | H<br>(2     | ligh<br>(24)      |                | U           | nwilling<br>(230) | 1                 | Willing<br>(160) | Infree         | quent (109)   | Fi     | requent<br>(289) |         |
| 12 |                                                                                 | n              | %                       | n          | %                 | n           | %                 | p-value        | n           | %                 | n                 | %                | n              | %             | n      | %                | p-value |
| 13 | Outcome                                                                         |                |                         |            |                   |             |                   |                |             |                   |                   |                  |                |               |        |                  |         |
| 14 | Stressed (median)(Yes)                                                          | 49             | 45.37                   | 12         | 19.05             | 57          | 26.15             | < 0.001        | 107         | 46.93             | 55                | 34.81            | 49             | 45.37         | 69     | 24.56            | < 0.001 |
| 15 | Individual determinants                                                         |                |                         |            |                   |             |                   |                |             |                   |                   |                  |                |               |        |                  |         |
| 16 | Age (median; P25-P75)                                                           | 36             | 28-42                   | 36         | 28-45             | 35          | 29-41             | 0.777          | 37          | 30-46             | 36                | 29.5-45          | 36             | 28-42         | 35     | 29-41            | 0.111   |
| 17 | Total PA - min/week (median; P25-P75)                                           | 494.99         | 299.99-734.99           | 454.99     | 359.99-<br>689.99 | 484.99      | 339.99-<br>779.99 | 0.567          | 364.99      | 209.99-600.00     | 404.99            | 209.99-629.99    | 494.99         | 299.99-734.99 | 480.00 | 339.99-744.99    | < 0.001 |
| 18 | MVPA - min/week (median; P25-P75)                                               | 240.00         | 134.99-480.00           | 294.99     | 390.00            | 300.00      | 479.99            | 0.092          | 90.00       | 0-244.99          | 90.00             | 0-240.00         | 240.00         | 134.99-480.00 | 300.00 | 179.99-450.00    | < 0.001 |
| 19 | VPA - min/week (median; P25-P75)                                                | 120.00         | 0-224.99                | 90.00      | 0-199.99          | 102.50      | 0-240.00          | 0.386          | 45.00       | 0-150.00          | 0                 | 0-127.50         | 120.00         | 0-224.99      | 90.00  | 225.00           | < 0.001 |
| 20 | Gender (Woman)                                                                  | 49             | 44.95                   | 33         | 50.77             | 94          | 41.96             | 0.446          | 151         | 65.65             | 83                | 51.88            | 49             | 44.95         | 127    | 43.94            | < 0.001 |
| 20 | Country of birth (non-Spanish)                                                  | 19             | 17.59                   | 7          | 10.77             | 30          | 13.39             | 0.412          | 16          | 6.96              | 25                | 15.63            | 19             | 17.59         | 37     | 12.80            | 0.014   |
| 21 | Working status (Student)                                                        | 17             | 15.60                   | 10         | 15.38             | 24          | 10.71             | 0.364          | 24          | 10.43             | 29                | 18.13            | 17             | 15.60         | 34     | 11.76            | 0.112   |
| 22 | Education level (University studies completed or<br>equivalent-level education) | 81             | 74.31                   | 50         | 76.92             | 173         | 77.23             | 0.836          | 161         | 70.00             | 86                | 53.75            | 81             | 74.31         | 223    | 77.16            | < 0.001 |
| 23 | Living with family/partner                                                      | 88             | 80.73                   | 48         | 75.00             | 172         | 76.79             | 0.622          | 192         | 83.48             | 135               | 84.38            | 88             | 80.73         | 220    | 76.39            | 0.114   |
| 24 | Employed people in household (2-5)                                              | 69             | 63.30                   | 35         | 55.56             | 145         | 64.73             | 0.410          | 152         | 66.09             | 109               | 68.99            | 69             | 63.30         | 180    | 62.72            | 0.568   |
| 25 | MEDEA index                                                                     |                |                         |            |                   |             |                   | 0.627          |             |                   |                   |                  |                |               |        |                  | 0.660   |
| 26 | 1st tertile (least deprived)                                                    | 35             | 32.11                   | 23         | 35.38             | 75          | 33.48             |                | 81          | 35.22             | 49                | 30.63            | 35             | 32.11         | 98     | 33.91            |         |
| 20 | 2nd tertile                                                                     | 38             | 34.86                   | 27         | 41.54             | 76          | 33.93             |                | 66          | 28.70             | 56                | 35.00            | 38             | 34.86         | 103    | 35.64            |         |
| 27 | 3rd tertile (most deprived)                                                     | 36             | 33.03                   | 15         | 23.08             | 73          | 32.59             |                | 83          | 36.09             | 55                | 34.38            | 36             | 33.03         | 88     | 30.45            |         |
| 28 | Children in household (Yes)                                                     | 31             | 28.44                   | 18         | 28.13             | 79          | 35.27             | 0.340          | 94          | 40.87             | 57                | 35.85            | 31             | 28.44         | 97     | 33.68            | 0.128   |
| 29 | Children <3 years in household (Yes)                                            | 3              | 2.75                    | 5          | 7.94              | 20          | 8.93              | 0.114          | 20          | 8.73              | 16                | 10.00            | 3              | 2.75          | 25     | 8.71             | 0.158   |
| 30 | Self-perceived health (Very good/Excellent)                                     | 43             | 39.45                   | 27         | 41.54             | 113         | 50.45             | 0.123          | 90          | 39.13             | 50                | 31.25            | 43             | 39.45         | 140    | 48.44            | 0.004   |
| 21 | BMI (Overweight/Obese)                                                          | 25             | 22.94                   | 14         | 21.54             | 49          | 21.88             | 0.969          | 73          | 31.88             | 51                | 32.08            | 25             | 22.94         | 63     | 21.8             | 0.021   |
| 21 | Chronic disease (Yes)                                                           | 11             | 10.09                   | 8          | 12.31             | 17          | 7.59              | 0.458          | 18          | 7.83              | 7                 | 4.38             | 11             | 10.09         | 25     | 8.65             | 0.293   |
| 32 | Stress releasing (Agreement)                                                    | 95             | 87.16                   | 62         | 98.41             | 199         | 90.05             | 0.047          | 163         | 72.44             | 139               | 89.68            | 95             | 87.16         | 261    | 91.90            | < 0.001 |
| 33 | Bicycle trip enjoyment (Agreement)                                              | 103            | 94.50                   | 65         | 100.00            | 212         | 95.93             | 0.175          | 116         | 51.79             | 133               | 84.71            | 103            | 94.50         | 277    | 96.85            | < 0.001 |
| 34 |                                                                                 |                |                         |            |                   |             |                   |                |             |                   |                   |                  |                |               |        |                  |         |
| 35 | Environmental determinants                                                      |                |                         |            |                   |             |                   |                |             |                   |                   |                  |                |               |        |                  |         |
| 36 | Commute distance, estimated (km) (mean;SD)                                      | 3.73           | 1.97                    | 3.43       | 1.70              | 3.13        | 1.52              | 0.044          | 4.42        | 2.35              | 4.32              | 2.11             | 3.73           | 1.97          | 3.20   | 1.56             | < 0.001 |
| 20 | Public bicycle stations (mean;SD)                                               |                |                         |            |                   |             |                   |                |             |                   |                   |                  |                |               |        |                  |         |
| 37 | Home, count in 400m buffer                                                      | 4.61           | 2.61                    | 4.97       | 2.63              | 4.75        | 2.35              | 0.492          | 3.77        | 2.53              | 3.72              | 2.49             | 4.61           | 2.61          | 4.80   | 2.41             | < 0.001 |
| 38 | Work/study, count in 400m buffer                                                | 4.89           | 2.96                    | 5.89       | 3.11              | 5.39        | 3.05              | 0.124          | 4.36        | 2.96              | 4.71              | 3.35             | 4.89           | 2.96          | 5.50   | 3.06             | <0.001  |
| 39 | Greenness, NDVI (mean;SD)                                                       |                |                         |            |                   |             |                   |                |             |                   |                   |                  |                |               |        |                  |         |
| 40 | Home, average of 400m buffer                                                    | 0.83           | 1.30                    | 0.75       | 0.98              | 0.59        | 0.94              | 0.635          | 0.90        | 1.03              | 0.91              | 1.16             | 0.83           | 1.30          | 0.62   | 0.95             | 0.002   |
| 11 | Work/study, average of 400m buffer                                              | 0.60           | 0.82                    | 0.37       | 0.57              | 0.58        | 0.90              | 0.136          | 0.68        | 1.11              | 0.74              | 1.01             | 0.60           | 0.82          | 0.53   | 0.84             | 0.328   |
| 41 | Commute route, average of RBA                                                   | 0.95           | 0.94                    | 0.76       | 0.83              | 0.87        | 0.81              | 0.322          | 1.10        | 1.11              | 1.02              | 0.98             | 0.95           | 0.94          | 0.84   | 0.81             | 0.236   |
| 42 | NO2 ppb (mean;SD)                                                               | 74.76          | 19.70                   | 77.04      | 16.14             | 78.40       | 17.00             | 0.100          | 75.50       | 17.09             | 74.51             | 17.00            | 74.76          | 10.70         | 70.14  | 17.40            | 0.062   |
| 43 | Home, concentration in 400m buffer                                              | 74.70          | 18.70                   | 11.24      | 10.14             | 78.40       | 17.90             | 0.180          | 79.59       | 17.08             | 74.51             | 17.20            | 74.70          | 18.70         | 78.14  | 17.49            | 0.063   |
| 44 | Work/study, concentration in 400m buffer                                        | /0.49          | 21.05                   | 83.02      | 18.82             | //.81       | 21.37             | 0.197          | /8.50       | 25.84             | /8.04             | 24.11            | /6.49          | 21.05         | 79.00  | 20.90            | 0.727   |
| 45 | Commute route, concentration in RBA                                             | 82.80          | 16.10                   | 87.47      | 15.22             | 84.51       | 18.08             | 0.127          | 85.22       | 17.54             | 82.70             | 15.95            | 82.80          | 16.10         | 85.19  | 17.48            | 0.296   |
| 16 | Noise, >55dB (mean;SD)                                                          | 70 72          | 12.20                   | 77.65      | 0.77              | 79 62       | 11.54             | 0.554          | 70.02       | 11.00             | 79.20             | 11.01            | 70 72          | 12 20         | 79.41  | 11.16            | 0.847   |
| 47 | Home, proportion in 400m buffer                                                 | 10.13          | 13.39                   | 11.00      | 9.//              | 70.22       | 11.34             | 0.354          | 79.03       | 11.00             | 18.39             | 12.04            | 16.15          | 13.39         | 70.49  | 11.10            | 0.424   |
| 4/ | Work/study, proportion in 400m buffer                                           | 01.04<br>78.40 | 0.12                    | 75 40      | 15.80             | 19.32       | 0.64              | 0.408          | 77.12       | 9.42              | 70.00             | 9 70             | 01.04<br>78 40 | 13.00         | 76 90  | 14./3            | 0.454   |
| 48 | Commute route, proportion in RBA                                                | /0.02          | 9.13                    | /3.40      | 9.20              | 11.21       | 9.04              | 0.057          | 11.12       | 0.43              | 78.08             | o./ð             | / 6.02         | 9.13          | 70.80  | 9.37             | 0.100   |
| 49 | Bikeability (mean;SD)                                                           | 6 20           | 1.44                    | 6 40       | 1.22              | 6 51        | 1.07              | 0.220          | 5 00        | 1.45              | 6.00              | 1.45             | 6.20           | 1.44          | 6 57   | 1.24             | <0.001  |
| 50 | Home, concentration in 400m buffer                                              | 6.02           | 1.44                    | 6.00       | 1.23              | 6.75        | 1.27              | 0.550          | 5.88        | 1.40              | 6.44              | 1.45             | 6.29           | 1.44          | 6.79   | 1.20             | <0.001  |
| 51 | Work/study, concentration in 400m buffer                                        | 6.77           | 1.20                    | 7.02       | 0.98              | 6.00        | 0.93              | 0.036          | 6.36        | 1.30              | 6.58              | 1.47             | 6.77           | 1.20          | 7.00   | 0.03             | <0.001  |
| 51 | Commute route, concentration in RBA<br>PA Physical Acti                         | vitv M         | VPA Moderat             | e-to-Vigor | ous Physical      | Activity: V | VPA Vigoro        | us Physical    | Activity: 1 | MEDEA Mort        | o.Jo<br>alidad en | áreas nequeñas   | Esnañol        | as v Designal | lades  | 0.93             | <0.001  |
| 52 | TA, Thysical Acti                                                               |                | · · · · · · · · · · · · | the form   | sas i nysical     | Leaving,    | · · · · , vigol0  | as i nysical i |             |                   | uuu Ull           | Leas pequends    | -Lopanon       | De la Mara I  |        |                  |         |

PA, Physical Activity; MVPA, Moderate-to-Vigorous Physical Activity; VPA, Vigorous Physical Activity; MEDEA, Mortalidad en áreas pequeñas Españolas y Desigualdades socioEconómicas y Ambientales, in Spanish (Environmental and socioEconomic Inequalities in Mortality in small Spanish areas, translated to English); BMI, Body Mass Index; NDVI, Normalized Difference Vegetation Index; RBA, Route-By-Area. Data are n and %, unless otherwise noted. There are missing data in: Perceived stress (13; 1.65%), Total PA (5; 0.63%), Country of birth (1; 0.13%), Living with family/partner (1; 0.13%), Employed people in household (4; 0.51), Children in household (2; 0.25%), Children <3years old in household (3; 0.38), BMI (2; 0.25%); Stress releasing (15; 1.90%), Bicycle trip enjoyment (12; 1.52%), Commute distance (20; 2.54%), Greenness (20; 2.54%), NO<sub>2</sub> (20; 2.54%). <sup>a</sup>Chi square test, except for Age, Total PA, MVPA, VPA, and all the Environmental determinants (U Mann Whitney test).

#### Table S4. Sensitivity analyses exploring the relationships between perceived stress

#### (P75, P90) and all covariates.

| Variable                                                                     |      | Perceived stress | s (P75) | Perceived stress (P90) |              |        |  |  |  |
|------------------------------------------------------------------------------|------|------------------|---------|------------------------|--------------|--------|--|--|--|
| Vallauk                                                                      | RI   | R (95% CI)       | p-value | RI                     | R (95% CI)   | p-valu |  |  |  |
| Individual determinants                                                      |      |                  |         |                        |              |        |  |  |  |
| Age                                                                          | 1.00 | (0.99, 1.02)     | 0.793   | 1.00                   | (0.97, 1.02) | 0.662  |  |  |  |
| Total PA - min/week                                                          | 1.00 | (0.99, 1.00)     | 0.113   | 1.00                   | (0.99, 1.00) | 0.802  |  |  |  |
| MVPA - min/week                                                              | 1.00 | (0.99, 1.00)     | 0.197   | 1.00                   | (0.99, 1.00) | 0.701  |  |  |  |
| VPA - min/week                                                               | 1.00 | (0.99, 1.00)     | 0.382   | 1.00                   | (0.99, 1.00) | 0.743  |  |  |  |
| Gender (Woman)                                                               | 1.41 | (1.03, 1.93)     | 0.032   | 1.69                   | (1.04, 2.76) | 0.035  |  |  |  |
| Country of birth (non-Spanish)                                               | 1.16 | (0.75, 1.78)     | 0.515   | 1.14                   | (0.58, 2.24) | 0.695  |  |  |  |
| Working status (Student)                                                     | 1.46 | (0.99, 2.14)     | 0.051   | 1.04                   | (0.53, 2.04) | 0.904  |  |  |  |
| Education level (University studies completed or equivalent-level education) | 0.78 | (0.57, 1.07)     | 0.119   | 0.80                   | (0.49, 1.30) | 0.369  |  |  |  |
| Living with family/partner                                                   | 1.00 | (0.68, 1.47)     | 0.987   | 0.94                   | (0.53, 1.68) | 0.841  |  |  |  |
| Employed people in household (2-5)<br>MEDEA index                            | 0.67 | (0.50, 0.91)     | 0.011   | 0.75                   | (0.47, 1.20) | 0.231  |  |  |  |
| 1st tertile (least deprived)                                                 | 1.00 |                  |         | 1.00                   |              |        |  |  |  |
| 2nd tertile                                                                  | 1.42 | (0.96, 2.11)     | 0.081   | 1.85                   | (0.99, 3.46) | 0.054  |  |  |  |
| 3rd tertile (most deprived)                                                  | 1.45 | (0.97, 2.14)     | 0.067   | 1.77                   | (0.94, 3.33) | 0.076  |  |  |  |
| Children in household (Yes)                                                  | 1.05 | (0.76, 1.44)     | 0.778   | 0.92                   | (0.56, 1.51) | 0.743  |  |  |  |
| Children <3 years in household (Yes)                                         | 0.61 | (0.30, 1.25)     | 0.180   | 0.54                   | (0.17, 1.68) | 0.289  |  |  |  |
| Self-perceived health (Very good/Excellent)                                  | 0.65 | (0.47, 0.91)     | 0.011   | 0.88                   | (0.55, 1.42) | 0.604  |  |  |  |
| BMI (Overweight/Obese)                                                       | 1.08 | (0.77, 1.51)     | 0.664   | 1.03                   | (0.61, 1.73) | 0.92   |  |  |  |
| Chronic disease (Ves)                                                        | 1.58 | (1.01, 2.48)     | 0.047   | 1.65                   | (0.83, 3.32) | 0.150  |  |  |  |
| Stress releasing (Agreement)                                                 | 0.85 | (0.57, 1.27)     | 0.423   | 0.94                   | (0.49, 1.79) | 0.850  |  |  |  |
| Bicycle trin enjoyment (Agreement)                                           | 0.74 | (0.52, 1.04)     | 0.085   | 0.79                   | (0.46, 1.37) | 0.409  |  |  |  |
| beyere trip enjoyment (Agreement)                                            |      |                  |         |                        | (0110, 001)  |        |  |  |  |
| Environmental determinants                                                   |      |                  |         |                        |              |        |  |  |  |
| Commute distance, estimated (km)                                             | 1.07 | (0.99, 1.14)     | 0.053   | 1.03                   | (0.92, 1.15) | 0.620  |  |  |  |
| Public bicycle stations                                                      |      |                  |         |                        |              |        |  |  |  |
| Home, count in 400m buffer                                                   | 0.99 | (0.93, 1.06)     | 0.770   | 0.94                   | (0.84, 1.04) | 0.253  |  |  |  |
| Work/study, count in 400m buffer                                             | 0.96 | (0.91, 1.01)     | 0.103   | 0.96                   | (0.89, 1.03) | 0.242  |  |  |  |
| Greenness. NDVI                                                              |      |                  |         |                        |              |        |  |  |  |
| Home, average of 400m buffer                                                 | 0.95 | (0.79, 1.14)     | 0.557   | 1.04                   | (0.81, 1.33) | 0.768  |  |  |  |
| Work/study, average of 400m buffer                                           | 1.09 | (0.94, 1.27)     | 0.262   | 0.99                   | (0.74, 1.32) | 0.930  |  |  |  |
| Commute route, average of RBA                                                | 1.04 | (0.88, 1.22)     | 0.655   | 1.18                   | (0.95, 1.47) | 0.138  |  |  |  |
| NO <sub>2</sub> pph                                                          |      | (,               |         |                        |              |        |  |  |  |
| Home concentration in 400m buffer                                            | 1.00 | (0.99, 1.00)     | 0.390   | 1.00                   | (0.98, 1.01) | 0.728  |  |  |  |
| Work/study_concentration in 400m buffer                                      | 0.99 | (0.99, 1.00)     | 0.042   | 0.99                   | (0.98, 1.00) | 0.076  |  |  |  |
| Commute route, concentration in RBA                                          | 1.00 | (0.99, 1.01)     | 0.474   | 0.99                   | (0.97, 1.00) | 0.138  |  |  |  |
| Noise >55dB                                                                  |      | ()               |         |                        | ()           |        |  |  |  |
| Home proportion in 400m buffer                                               | 1.01 | (0.99, 1.02)     | 0.483   | 1.00                   | (0.98, 1.03) | 0.84   |  |  |  |
| Work/study proportion in 400m buffer                                         | 1.00 | (0.99, 1.01)     | 0.549   | 1.00                   | (0.98, 1.02) | 0.835  |  |  |  |
| Commute route, proportion in RBA                                             | 1.00 | (0.98, 1.01)     | 0.854   | 1.01                   | (0.98, 1.04) | 0.444  |  |  |  |
| Rikeshility                                                                  | 1.00 | ()               | 0.02    | 1.01                   | (1.00, 1.01) | 0.144  |  |  |  |
| Home concentration in 400m buffer                                            | 0.97 | (0.87, 1.08)     | 0.532   | 0.92                   | (0.78, 1.09) | 0.356  |  |  |  |
| Work/study, concentration in 400m buffer                                     | 0.97 | (0.87, 1.00)     | 0.108   | 0.89                   | (0.75, 1.07) | 0.216  |  |  |  |
| work study, concentration in 400m burler                                     | 0.92 | (0.02, 1.02)     | 0.100   | 0.09                   | (0.66,0.00)  | 0.041  |  |  |  |

 Commute route, concentration in RBA
 0.88
 (0.77, 1.00)
 0.055
 0.81
 (0.66, 0.99)
 0.042

 PA, Physical Activity; MVPA, Moderate-to-Vigorous Physical Activity; VPA, Vigorous Physical Activity; MEDEA, Mortalidad en áreas pequeñas Españolas y Desigualdades socioEconómicas y Ambientales, in Spanish (Environmental and socioEconomic Inequalities in Mortality in small Spanish areas, translated to English); BMI, Body Mass Index; NDVI, Normalized Difference Vegetation Index; RBA, Route-By-Area. Complete case analysis excluding missing data of the variables of final models (Table S5; n=771). The variables that still present missing data and are not included in the final models are: Total PA (5; 0.63%), People living with in household (1; 0.13%), Children in household (2; 0.25%); Stress releasing (15; 1.90%), Bicycle trip enjoyment (12; 1.52%), Commute distance (20; 2.54%), Greenness (20; 2.54%), NO<sub>2</sub>(20; 2.54%).

## Table S5. Sensitivity analyses exploring the relationships between bicycle commuting (Bicycle commuting status, Bicycle commuting

levels, Bicycle commuting propensity) and perceived stress (P75, P90).

| 7   |                                       |            |                  |               |           |                       |              |                       |                            |               |             |                       |                |            |                 |              |           |                       |               |           |                       |           |          |                       |         |
|-----|---------------------------------------|------------|------------------|---------------|-----------|-----------------------|--------------|-----------------------|----------------------------|---------------|-------------|-----------------------|----------------|------------|-----------------|--------------|-----------|-----------------------|---------------|-----------|-----------------------|-----------|----------|-----------------------|---------|
| 8   | Variable                              | RPI        | Unadjusted       |               | pp        | Adjusted <sup>a</sup> | Perceived    | stress (P75           | )<br>Adjusted <sup>b</sup> |               | RB          | Adjusted <sup>c</sup> |                | RB         | Unadjusted      |              | RP        | Adjusted <sup>a</sup> | Perceived str | ess (P90) | Adjusted <sup>b</sup> |           | RB       | Adjusted <sup>c</sup> |         |
| a . |                                       | KK (9      | 95% CI)          | p-value       | кк<br>(9  | 5% CI)                | p-value      | кк<br>(9              | Aujusieu<br>95% CI)        | p-value       | (9          | 5% CI)                | p-value        | лК<br>(    | 95% CI)         | p-value      | кк<br>(9  | 5% CI)                | p-value       | (9        | 5% CI)                | p-value   | (9       | 5% CI)                | p-value |
| 20  | All sample (771)                      |            |                  |               |           |                       |              |                       |                            |               |             |                       |                |            |                 |              |           |                       |               |           |                       |           |          |                       |         |
| 10  | Bicycle commuting status              |            |                  |               |           |                       |              |                       |                            |               |             |                       |                |            |                 |              |           |                       |               |           |                       |           |          |                       |         |
| 11  | Non-bicycle commuters                 | 1.00       | (0.42.0.70)      | 0.001         | 1.00      | (0.40.0.70)           | 0.001        | 1.00                  | (0.44.0.95)                | 0.004         | 1.00        | (0.46.0.00)           | 0.011          | 1.00       | (0.22, 0.90)    | 0.014        | 1.00      | (0.24, 0.02)          | 0.025         | 1.00      | (0.21, 0.89)          | 0.014     | 1.00     | (0.22, 0.05)          | 0.022   |
| 12  | Bicycle commuters                     | 0.58       | (0.42, 0.79)     | 0.001         | 0.58      | (0.42, 0.79)          | 0.001        | 0.61                  | (0.44, 0.85)               | 0.004         | 0.64        | (0.46, 0.90)          | 0.011          | 0.54       | (0.33, 0.89)    | 0.014        | 0.56      | (0.54, 0.95)          | 0.025         | 0.52      | (0.51, 0.88)          | 0.014     | 0.56     | (0.33, 0.95)          | 0.032   |
| 12  | Non-bicycle commuters (0 days)        | 1.00       |                  |               | 1.00      |                       |              | 1.00                  |                            |               | 1.00        |                       |                | 1.00       |                 |              | 1.00      |                       |               | 1.00      |                       |           | 1.00     |                       |         |
| 13  | Low bicycle commuting (1-3 days)      | 1.04       | (0.71, 1.54)     | 0.832         | 1.03      | (0.70, 1.53)          | 0.868        | 1.08                  | (0.73, 1.59)               | 0.708         | 1.10        | (0.74, 1.64)          | 0.626          | 1.20       | (0.68, 2.11)    | 0.535        | 1.22      | (0.68, 2.21)          | 0.505         | 1.14      | (0.63, 2.07)          | 0.662     | 1.18     | (0.65, 2.14)          | 0.589   |
| 14  | Medium bicycle commuting (4 days)     | 0.22       | (0.07, 0.66)     | 0.007         | 0.20      | (0.07, 0.62)          | 0.005        | 0.21                  | (0.07, 0.65)               | 0.007         | 0.22        | (0.07, 0.68)          | 0.009          | 0.15       | (0.02, 1.05)    | 0.056        | 0.14      | (0.02, 1.00)          | 0.050         | 0.14      | (0.02, 0.95)          | 0.044     | 0.15     | (0.02, 1.04)          | 0.054   |
| 15  | High bicycle commuting (>=5 days)     | 0.45       | (0.29, 0.70)     | < 0.001       | 0.46      | (0.30, 0.72)          | 0.001        | 0.50                  | (0.32, 0.78)               | 0.003         | 0.52        | (0.33, 0.82)          | 0.005          | 0.34       | (0.16, 0.70)    | 0.004        | 0.36      | (0.17, 0.75)          | 0.006         | 0.33      | (0.15, 0.69)          | 0.004     | 0.35     | (0.17, 0.73)          | 0.005   |
| 16  | Bicycle commuting propensity          |            |                  |               |           |                       |              |                       |                            |               |             |                       |                |            |                 |              |           |                       |               |           |                       |           |          |                       |         |
| 10  | Unwilling Non-bicycle commuters       | 1.00       |                  |               | 1.00      |                       |              | 1.00                  |                            |               | 1.00        |                       |                | 1.00       |                 |              | 1.00      |                       |               | 1.00      |                       |           | 1.00     |                       |         |
| 17  | Willing Non-bicycle commuters         | 0.71       | (0.47, 1.06)     | 0.090         | 0.74      | (0.49, 1.10)          | 0.135        | 0.71                  | (0.48, 1.06)               | 0.095         | 0.72        | (0.48, 1.08)          | 0.116          | 0.66       | (0.35, 1.22)    | 0.183        | 0.70      | (0.38, 1.30)          | 0.255         | 0.70      | (0.37, 1.30)          | 0.253     | 0.71     | (0.38, 1.35)          | 0.298   |
| 18  | Infrequent Bicycle commuters          | 0.92       | (0.01, 1.58)     | <0.001        | 0.92      | (0.01, 1.39)          | <0.095       | 0.94                  | (0.65, 1.45)               | 0.788         | 0.97        | (0.04, 1.48)          | <0.001         | 0.25       | (0.12, 0.52)    | <0.926       | 0.27      | (0.57, 2.01)          | <0.001        | 0.25      | (0.55, 1.88)          | <0.001    | 0.27     | (0.13, 0.56)          | <0.001  |
| 10  | Frequent Bicycle commuters            | 0.55       | (0.23, 0.34)     | <0.001        | 0.50      | (0.23, 0.33)          | <0.001       | 0.58                  | (0.24, 0.39)               | <0.001        | 0.40        | (0.25, 0.02)          | <0.001         | 0.25       | (0.12, 0.32)    | <0.001       | 0.27      | (0.15, 0.50)          | <0.001        | 0.25      | (0.12, 0.52)          | <0.001    | 0.27     | (0.15, 0.50)          | <0.001  |
| 19  | Bicycle commuting levels              |            |                  |               |           |                       |              |                       |                            |               |             |                       |                |            |                 |              |           |                       |               |           |                       |           |          |                       |         |
| 20  | Low bicycle commuting (1-3 days)      | 1.00       |                  |               | 1.00      |                       |              | 1.00                  |                            |               | 1.00        |                       |                | 1.00       |                 |              | 1.00      |                       |               | 1.00      |                       |           | 1.00     |                       |         |
| 21  | Medium bicycle commuting (4 days)     | 0.21       | (0.06, 0.66)     | 0.008         | 0.19      | (0.06, 0.61)          | 0.005        | 0.19                  | (0.06, 0.60)               | 0.005         | 0.19        | (0.06, 0.60)          | 0.004          | 0.12       | (0.02, 0.92)    | 0.041        | 0.11      | (0.02, 0.83)          | 0.032         | 0.11      | (0.02, 0.80)          | 0.028     | 0.11     | (0.02, 0.76)          | 0.026   |
| 22  | High bicycle commuting (>=5 days)     | 0.43       | (0.26, 0.73)     | 0.002         | 0.44      | (0.26, 0.75)          | 0.002        | 0.44                  | (0.26, 0.75)               | 0.002         | 0.44        | (0.26, 0.73)          | 0.002          | 0.28       | (0.12, 0.65)    | 0.003        | 0.28      | (0.12, 0.65)          | 0.003         | 0.27      | (0.12, 0.64)          | 0.003     | 0.27     | (0.12, 0.60)          | 0.001   |
| 22  | Bicycle commuters propensity          |            |                  |               |           |                       |              |                       |                            |               |             |                       |                |            |                 |              |           |                       |               |           |                       |           |          |                       |         |
| 25  | Infrequent (1-3 days)                 | 0.28       | (0.23, 0.64)     | <0.001        | 0.28      | (0.22, 0.62)          | <0.001       | 0.38                  | (0.22, 0.62)               | <0.001        | 0.38        | (0.22, 0.62)          | <0.001         | 0.25       | (0.11, 0.55)    | 0.001        | 0.24      | (0.11.0.55)           | 0.001         | 0.24      | (0.10.0.54)           | 0.001     | 0.22     | (0.11.0.51)           | <0.001  |
| 24  | Frequent (>=4 days)                   | (394)      | (0.23, 0.04)     | <0.001        | 0.58      | (0.23, 0.03)          | <0.001       | 0.58                  | (0.23, 0.03)               | <0.001        | 0.58        | (0.23, 0.02)          | <0.001         | 0.25       | (0.11, 0.55)    | 0.001        | 0.24      | (0.11, 0.55)          | 0.001         | 0.24      | (0.10, 0.54)          | 0.001     | 0.23     | (0.11, 0.51)          | <0.001  |
| 25  | Exposure Non-bicycle commuters sample | (304)      |                  |               |           |                       |              |                       |                            |               |             |                       |                |            |                 |              |           |                       |               |           |                       |           |          |                       |         |
| 26  | Unwilling                             | 1.00       |                  |               | 1.00      |                       |              | 1.00                  |                            |               | 1.00        |                       |                | 1.00       |                 |              | 1.00      |                       |               | 1.00      |                       |           | 1.00     |                       |         |
| 27  | Willing                               | 0.71       | (0.47, 1.06)     | 0.090         | 0.72      | (0.48, 1.07)          | 0.106        | 0.67                  | (0.45, 1.00)               | 0.051         | 0.69        | (0.46, 1.03)          | 0.068          | 0.66       | (0.35, 1.22)    | 0.183        | 0.68      | (0.36, 1.26)          | 0.222         | 0.68      | (0.36, 1.26)          | 0.221     | 0.71     | (0.37, 1.36)          | 0.300   |
| 27  | <sup>a</sup> Adjusted by Gen          | der, Cou   | ntry of birth, E | mployed pe    | ople in h | ousehold, Chr         | onic diseas  | e. <sup>b</sup> Adjus | ted by Age, Ge             | nder, Count   | ry of birt  | h, Employed           | people in hou  | sehold, Cl | hronic disease, | Self-perceiv | ved healt | h, Moderate-to        | o-Vigorous    | Physical  | Activity (MV          | PA). °Adj | usted by |                       |         |
| 28  | Age, Gender, Cou                      | intry of b | oirth, Employed  | i people in l | nousehol  | d, Chronic dis        | ease, Self-p | erceived              | health, MVPA               | , Public bicy | ycle statio | ons at work/st        | udy, Bikeabili | ty at worl | k/study, Bikeat | ulity at com | mute rou  | ite.                  |               |           |                       |           |          |                       |         |
| 29  |                                       |            |                  |               |           |                       |              |                       |                            |               |             |                       |                |            |                 |              |           |                       |               |           |                       |           |          |                       |         |
| 30  |                                       |            |                  |               |           |                       |              |                       |                            |               |             |                       |                |            |                 |              |           |                       |               |           |                       |           |          |                       |         |
| 21  |                                       |            |                  |               |           |                       |              |                       |                            |               |             |                       |                |            |                 |              |           |                       |               |           |                       |           |          |                       |         |
| 51  |                                       |            |                  |               |           |                       |              |                       |                            |               |             |                       |                |            |                 |              |           |                       |               |           |                       |           |          |                       |         |
| 32  |                                       |            |                  |               |           |                       |              |                       |                            |               |             |                       |                |            |                 |              |           |                       |               |           |                       |           |          |                       |         |
| 33  |                                       |            |                  |               |           |                       |              |                       |                            |               |             |                       |                |            |                 |              |           |                       |               |           |                       |           |          |                       |         |
| 34  |                                       |            |                  |               |           |                       |              |                       |                            |               |             |                       |                |            |                 |              |           |                       |               |           |                       |           |          |                       |         |
| 25  |                                       |            |                  |               |           |                       |              |                       |                            |               |             |                       |                |            |                 |              |           |                       |               |           |                       |           |          |                       |         |
| 55  |                                       |            |                  |               |           |                       |              |                       |                            |               |             |                       |                |            |                 |              |           |                       |               |           |                       |           |          |                       |         |
| 36  |                                       |            |                  |               |           |                       |              |                       |                            |               |             |                       |                |            |                 |              |           |                       |               |           |                       |           |          |                       |         |
| 37  |                                       |            |                  |               |           |                       |              |                       |                            |               |             |                       |                |            |                 |              |           |                       |               |           |                       |           |          |                       |         |
| 38  |                                       |            |                  |               |           |                       |              |                       |                            |               |             |                       |                |            |                 |              |           |                       |               |           |                       |           |          |                       |         |
| 20  |                                       |            |                  |               |           |                       |              |                       |                            |               |             |                       |                |            |                 |              |           |                       |               |           |                       |           |          |                       |         |
| 29  |                                       |            |                  |               |           |                       |              |                       |                            |               |             |                       |                |            |                 |              |           |                       |               |           |                       |           |          |                       |         |
| 40  |                                       |            |                  |               |           |                       |              |                       |                            |               |             |                       |                |            |                 |              |           |                       |               |           |                       |           |          |                       |         |
| 41  |                                       |            |                  |               |           |                       |              |                       |                            |               |             |                       |                |            |                 |              |           |                       |               |           |                       |           |          |                       |         |
| 42  |                                       |            |                  |               |           |                       |              |                       |                            |               |             |                       |                |            |                 |              |           |                       |               |           |                       |           |          |                       |         |
| 12  |                                       |            |                  |               |           |                       |              |                       |                            |               |             |                       |                |            |                 |              |           |                       |               |           |                       |           |          |                       |         |
| 43  |                                       |            |                  |               |           |                       |              |                       |                            |               |             |                       |                |            |                 |              |           |                       |               |           |                       |           |          |                       |         |
| 44  |                                       |            |                  |               |           | _                     |              |                       |                            |               |             |                       |                |            | ,               |              |           |                       |               |           |                       |           |          |                       |         |
| 45  |                                       |            |                  |               |           | For                   | peer r       | eview                 | r only - h                 | ttp://br      | njop        | en.bmj.c              | :om/site       | /abou      | ıt/guidel       | ines.xh      | tml       |                       |               |           |                       |           |          |                       |         |
| 46  |                                       |            |                  |               |           |                       |              |                       |                            |               |             |                       |                |            |                 |              |           |                       |               |           |                       |           |          |                       |         |
| 47  |                                       |            |                  |               |           |                       |              |                       |                            |               |             |                       |                |            |                 |              |           |                       |               |           |                       |           |          |                       |         |
| 4/  |                                       |            |                  |               |           |                       |              |                       |                            |               |             |                       |                |            |                 |              |           |                       |               |           |                       |           |          |                       |         |

STROBE Statement-checklist of items that should be included in reports of observational studies

|                              | Item<br>No | Recommendation                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Reported in<br>page  |
|------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Title and<br>abstract        | 1          | ( <i>a</i> ) Indicate the study's design with a commonly used term in the title or the abstract                                                                                                                                                                                                                                                                                                                                                                                | Page 2               |
|                              |            | (b) Provide in the abstract an informative and balanced summary of what was done and what was found                                                                                                                                                                                                                                                                                                                                                                            | Page 2               |
| Introduction                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| Background/rati<br>onale     | 2          | Explain the scientific background and rationale for the investigation being reported                                                                                                                                                                                                                                                                                                                                                                                           | Pages 4, 5           |
| Objectives                   | 3          | State specific objectives, including any prespecified hypotheses                                                                                                                                                                                                                                                                                                                                                                                                               | Page 5               |
| Methods                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| Study design                 | 4          | Present key elements of study design early in the paper                                                                                                                                                                                                                                                                                                                                                                                                                        | Page 6               |
| Setting                      | 5          | Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection                                                                                                                                                                                                                                                                                                                                                | Pages 6, 7           |
| Participants                 | 6          | <ul> <li>(a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up</li> <li>Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls</li> <li>Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants</li> </ul> | Pages 6, 7           |
|                              |            | (b) Cohort study—For matched studies, give matching criteria and number<br>of exposed and unexposed<br>Case-control study—For matched studies, give matching criteria and the<br>number of controls per case                                                                                                                                                                                                                                                                   | -                    |
| Variables                    | 7          | Clearly define all outcomes, exposures, predictors, potential confounders,<br>and effect modifiers. Give diagnostic criteria, if applicable                                                                                                                                                                                                                                                                                                                                    | Pages 7, 8, 9,<br>10 |
| Data sources/<br>measurement | 8*         | For each variable of interest, give sources of data and details of methods of<br>assessment (measurement). Describe comparability of assessment methods<br>if there is more than one group                                                                                                                                                                                                                                                                                     | Pages 7, 8, 9,<br>10 |
| Bias                         | 9          | Describe any efforts to address potential sources of bias                                                                                                                                                                                                                                                                                                                                                                                                                      | Pages 6, 7           |
| Study size                   | 10         | Explain how the study size was arrived at                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pages 6, 7           |
| Quantitative variables       | 11         | Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why                                                                                                                                                                                                                                                                                                                                                   | Pages 7, 8, 9,<br>10 |
| Statistical methods          | 12         | ( <i>a</i> ) Describe all statistical methods, including those used to control for confounding                                                                                                                                                                                                                                                                                                                                                                                 | Page 10              |
|                              |            | (b) Describe any methods used to examine subgroups and interactions                                                                                                                                                                                                                                                                                                                                                                                                            | Page 10              |
|                              |            | (c) Explain how missing data were addressed                                                                                                                                                                                                                                                                                                                                                                                                                                    | Page 10              |
|                              |            | (d) Cohort study—If applicable, explain how loss to follow-up was<br>addressed<br>Case-control study—If applicable, explain how matching of cases and<br>controls was addressed<br>Cross-sectional study—If applicable, describe analytical methods taking<br>account of campling strategy                                                                                                                                                                                     | Page 10              |
| Continued on next page       | e          | ( <u>e</u> ) Describe any sensitivity analyses                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pages 7, 8, 10       |

For peer review only - http://bmjopen!bmj.com/site/about/guidelines.xhtml

| Results          |     |                                                                                                                                                                                                         | Reported in<br>page                 |
|------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Participants     | 13* | (a) Report numbers of individuals at each stage of study—eg numbers<br>potentially eligible, examined for eligibility, confirmed eligible, included in<br>the study, completing follow-up, and analysed | Page 6                              |
|                  |     | (b) Give reasons for non-participation at each stage                                                                                                                                                    | Page 6                              |
|                  |     | (c) Consider use of a flow diagram                                                                                                                                                                      | In previous papers                  |
| Descriptive      | 14* | (a) Give characteristics of study participants (eg demographic, clinical,                                                                                                                               | Pages 10, 11,                       |
| data             |     | social) and information on exposures and potential confounders                                                                                                                                          | 12, 13, 14                          |
|                  |     | (b) Indicate number of participants with missing data for each variable of interest                                                                                                                     | Pages 6, 13, 14                     |
|                  |     | (c) <i>Cohort study</i> —Summarise follow-up time (eg, average and total amount)                                                                                                                        | -                                   |
| Outcome data     | 15* | <i>Cohort study</i> —Report numbers of outcome events or summary measures over time                                                                                                                     | -                                   |
|                  |     | <i>Case-control study</i> —Report numbers in each exposure category, or summary measures of exposure                                                                                                    | -                                   |
|                  |     | Cross-sectional study—Report numbers of outcome events or summary                                                                                                                                       | Pages 10, 11,                       |
|                  |     | measures                                                                                                                                                                                                | 12, 13, 14                          |
| Main results     | 16  | (a) Give unadjusted estimates and, if applicable, confounder-adjusted                                                                                                                                   | Pages 15, 16,                       |
|                  |     | estimates and their precision (eg, 95% confidence interval). Make clear                                                                                                                                 | 17                                  |
|                  |     | which confounders were adjusted for and why they were included                                                                                                                                          |                                     |
|                  |     | (b) Report category boundaries when continuous variables were categorized                                                                                                                               | Pages 7, 8                          |
|                  |     | ( <i>c</i> ) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period                                                                               | -                                   |
| Other analyses   | 17  | Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses                                                                                                          | Pages 3, 4, 5<br>of<br>Supplementar |
|                  |     |                                                                                                                                                                                                         | material                            |
| Discussion       |     |                                                                                                                                                                                                         |                                     |
| Key results      | 18  | Summarise key results with reference to study objectives                                                                                                                                                | Page 18                             |
| Limitations      | 19  | Discuss limitations of the study, taking into account sources of potential bias<br>or imprecision. Discuss both direction and magnitude of any potential bias                                           | Page 20                             |
| Interpretation   | 20  | Give a cautious overall interpretation of results considering objectives,                                                                                                                               | Pages 18, 19,                       |
|                  |     | limitations, multiplicity of analyses, results from similar studies, and other relevant evidence                                                                                                        | 20, 21                              |
| Generalisability | 21  | Discuss the generalisability (external validity) of the study results                                                                                                                                   | Pages 20                            |
| Other informatio | on  |                                                                                                                                                                                                         |                                     |
| Funding          | 22  | Give the source of funding and the role of the funders for the present study                                                                                                                            | Page 22                             |
|                  |     | and if applicable for the original study on which the present article is based                                                                                                                          |                                     |

unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

# **BMJ Open**

# The relationship between bicycle commuting and perceived stress: a cross-sectional study

| Journal:                             | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                        | bmjopen-2016-013542.R3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Article Type:                        | Research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Date Submitted by the Author:        | 29-Mar-2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Complete List of Authors:            | Avila-Palencia, Ione; ISGlobal, Centre for Research in Environmental<br>Epidemiology (CREAL),<br>de Nazelle, Audrey; Centre for Environmental Policy, Imperial College of<br>London<br>Cole-Hunter, Tom; Colorado State University, Department of<br>Environmental and Radiological Health Sciences<br>Donaire-Gonzalez, David; ISGlobal, Centre for Research in Environmental<br>Epidemiology (CREAL)<br>Jerrett, Michael; University of California Los Angeles, Department of<br>Environmental Health Sciences<br>Rodriguez, Daniel; University of California Berkeley, Department of City<br>and Regional Planning<br>Nieuwenhuijsen, Mark; ISGlobal, Centre for Research in Environmental<br>Epidemiology (CREAL) |
| <b>Primary Subject<br/>Heading</b> : | Epidemiology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Secondary Subject Heading:           | Mental health, Public health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Keywords:                            | EPIDEMIOLOGY, MENTAL HEALTH, PUBLIC HEALTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

SCHOLARONE<sup>™</sup> Manuscripts



| 2<br>3                                               |    |                                                                                                                               |
|------------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------|
| 4<br>5                                               | 1  | THE RELATIONSHIP BETWEEN BICYCLE COMMUTING                                                                                    |
| 6<br>7                                               | 2  | AND PERCEIVED STRESS: A CROSS-SECTIONAL STUDY                                                                                 |
| o<br>9<br>10                                         | 3  | Ione Avila-Palencia, MPH <sup>1, 2, 3</sup> ; Audrey de Nazelle, PhD <sup>4</sup> ; Tom Cole-Hunter, PhD <sup>5</sup> ; David |
| 11<br>12                                             | 4  | Donaire-Gonzalez, PhD <sup>1,3,6</sup> ; Michael Jerrett, PhD <sup>7</sup> ; Daniel A. Rodriguez, PhD <sup>8</sup> ; Mark J   |
| 13<br>14                                             | 5  | Nieuwenhuijsen, PhD <sup>1,2,3</sup>                                                                                          |
| 15<br>16                                             | 6  | Author's affiliations:                                                                                                        |
| 17<br>18<br>19                                       | 7  | <sup>1</sup> ISGlobal, Centre for Research in Environmental Epidemiology (CREAL). Barcelona, Spain.                           |
| 20<br>21                                             | 8  | <sup>2</sup> Universitat Pompeu Fabra (UPF). Barcelona, Spain.                                                                |
| 22<br>23                                             | 9  | <sup>3</sup> CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.                                                |
| 24<br>25                                             | 10 | <sup>4</sup> Centre for Environmental Policy, Imperial College of London, London, United Kingdom.                             |
| 26<br>27<br>28                                       | 11 | <sup>5</sup> Department of Environmental and Radiological Health Sciences, Colorado State University,                         |
| 29<br>30                                             | 12 | Fort Collins, CO, USA                                                                                                         |
| 31<br>32                                             | 13 | <sup>6</sup> Physical Activity and Sports Sciences Department, Fundació Blanquerna, Ramon Llull                               |
| 33<br>34                                             | 14 | University. Barcelona, Spain.                                                                                                 |
| 35<br>36<br>37                                       | 15 | <sup>7</sup> Department of Environmental Health Sciences, University of California, Los Angeles,                              |
| 38<br>39                                             | 16 | California, United States of America.                                                                                         |
| 40<br>41                                             | 17 | <sup>8</sup> Department of City and Regional Planning, University of California, Berkeley, California,                        |
| 42<br>43                                             | 18 | United States of America.                                                                                                     |
| 44<br>45 19 <b>Corresponding author information:</b> |    | Corresponding author information:                                                                                             |
| 40<br>47<br>48                                       | 20 | Ione Avila-Palencia, ISGlobal, Centre for Research in Environmental Epidemiology                                              |
| 49<br>50                                             | 21 | (CREAL), Doctor Aiguader, 88, 08003 Barcelona, Spain. Telephone (+34) 93 2147337; Fax                                         |
| 51<br>52                                             | 22 | (+34) 93 2147302; E-mail: ione.avila@isglobal.org                                                                             |
| 53<br>54                                             | 23 | Keywords: Bicycling, Commuting, Physical activity, Stress, Survey                                                             |
| 55<br>56<br>57<br>58<br>59<br>60                     | 24 | Word count of main text: 4243                                                                                                 |

### 1 ABSTRACT

| 2  | Introduction: Active commuting -walking and bicycling for travel to and/or from work or       |
|----|-----------------------------------------------------------------------------------------------|
| 3  | educational addresses- may facilitate daily, routine physical activity. Several studies have  |
| 4  | investigated the relationship between active commuting and commuting stress; however, there   |
| 5  | are no studies examining the relationship between solely bicycle commuting and perceived      |
| 6  | stress, or studies that account for environmental determinants of bicycling commuting and     |
| 7  | stress. The current study evaluated the relationship between bicycle commuting, among         |
| 8  | working or studying adults in a dense urban setting, and perceived stress.                    |
| 9  | Methods: A cross-sectional study was performed with 788 adults who regularly travelled to     |
| 10 | work or study locations (excluding those who only commuted on foot) in Barcelona, Spain.      |
| 11 | Participants responded to a comprehensive telephone survey concerning their travel behaviour  |
| 12 | from June 2011 through to May 2012. Participants were categorised as either bicycle           |
| 13 | commuters or non-bicycle commuters, and (based on the Perceived Stress Scale, PSS-4) as       |
| 14 | either stressed or non-stressed. Multivariate Poisson regression with robust variance models  |
| 15 | of stress status based on exposures with bicycle commuting were estimated, and adjusted for   |
| 16 | potential confounders. Results: Bicycle commuters had significantly lower risk of being       |
| 17 | stressed than non-bicycle commuters [RR (95%CI) = 0.73 (0.60, 0.89), p-value=0.001].          |
| 18 | Bicycle commuters who bicycled four days per week [RR $(95\%$ CI) = 0.42 (0.24, 0.73), p-     |
| 19 | value=0.002] and those who bicycled five or more days per week [RR $(95\%$ CI) = 0.57 (0.42,  |
| 20 | 0.77), p-value<0.001] had lower risk of being stressed than those who bicycled less than four |
| 21 | days. This relationship remained statistically significant after adjusting for individual and |
| 22 | environmental confounders, and when using different cut-offs of perceived stress.             |
| 23 | Conclusions: Stress reduction may be an important consequence of routine bicycle use and      |
| 24 | should be considered by decision makers as another potential benefit of its promotion.        |
| 25 |                                                                                               |

•

•

•

•

•

population density.

direction of causation.

**BMJ Open** 

The study had high internal validity, with a good representation of bicycle commuters.

The study was conducted in Barcelona (a dense, Mediterranean/Southern European

city), adding evidence on these issues in a different context than the current literature.

The TAPAS Travel Survey sample is representative of Barcelona's population, taking

into account home-neighbourhood deprivation, and home and work-neighbourhood

Using questionnaire data, we could have misclassification error (information bias) of

The study used a cross-sectional design, which is not well-suited to assess the

bicycle commuting and physical activity due to the data being self-reported.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

STRENGHTS AND LIMITATIONS OF THIS STUDY

| 1              |    |
|----------------|----|
| 2<br>3<br>4    | 1  |
| 5<br>6         | 2  |
| 7<br>8<br>0    | 3  |
| 9<br>10<br>11  | 4  |
| 12<br>13       | 5  |
| 14<br>15       | 6  |
| 16<br>17       | 7  |
| 10<br>19<br>20 | 8  |
| 21<br>22       | 9  |
| 23<br>24       | 10 |
| 25<br>26<br>27 | 11 |
| 27<br>28<br>29 | 12 |
| 30<br>31       |    |
| 32<br>33       |    |
| 34<br>35       |    |
| 30<br>37<br>38 |    |
| 39<br>40       |    |
| 41<br>42       |    |
| 43<br>44       |    |
| 45<br>46       |    |
| 47<br>48<br>49 |    |
| 49<br>50<br>51 |    |
| 52<br>53       |    |
| 54<br>55       |    |
| 56<br>57       |    |
| 58<br>59       |    |
| 00             |    |

#### 

## 1 INTRODUCTION

Walking and bicycling for transport is increasingly being promoted due to its potential for increasing physical activity (PA) levels in the general population (1-3). Active commuting – walking and bicycling for travel to and/or from work or educational addresses - has been associated with multiple health benefits from reductions of cardiovascular risk (4,5), lowering of body weight (2,5), improvement of fitness, reduction of diabetes risk (3), and increasing levels of physical and mental well-being (6,7). Specifically, bicycle commuting has been inversely associated with all-cause mortality among both men and women in all age groups (8) and it seems likely to improve the health-related quality of life in previously-untrained healthy adults (9). Active commuting has been shown to have other societal benefits such as helping reduce air pollution, greenhouse gas emissions, and noise, and improving social interaction (10).

Perceived stress is a global and comprehensive stress construct that refers to the interaction between the individual and the environment in the presence of a stressor (11). The perception of an event as being stressful can result in a range of physiological, behavioural, and psychological changes, and can lead to cardiovascular disease, increased negative affect, lowered self-esteem, and lowered feelings of control. Hence, it is possible that mental health outcomes such as anxiety disorders and depression can be manifestations of chronic, perceived stress (12). Furthermore, others have suggested gender differences in stress-related variables. Women seem to be more likely to have daily stress, being more physiologically reactive to social rejection challenges (13), and be more impacted by life events (14). 

24 Some literature recognises commuting as a potential source of stress (15); however, active

25 commuters have been shown to have higher levels of satisfaction, lower stress, higher
#### **BMJ Open**

| 1  | relaxation and a heightened sense of freedom compared to car drivers (16-18). Recent              |
|----|---------------------------------------------------------------------------------------------------|
| 2  | qualitative research has suggested that commuting can be perceived as a relaxing or               |
| 3  | transitional time between home and work life, which can also be about enjoying pleasant           |
| 4  | landscape, nature and wildlife (19). Emerging literature has highlighted the relevance of a       |
| 5  | positive natural and built environment to increase bicycle commuting and to improve mental        |
| 6  | health outcomes. Bicycle lane connectivity, bikeability, separation of bicycling from other       |
| 7  | traffic, high population density, short trip distance, proximity of a cycle path, green space and |
| 8  | also walkability have been suggested as determinants of bicycling (20-24). Green space has        |
| 9  | also been associated with better self-perceived general health and better mental health (25,26).  |
| 10 |                                                                                                   |
| 11 | Several studies have examined the relationship between active commuting and commuting             |
| 12 | stress (stress directly related with the act of commuting) (17,18,27,28), but none of them have   |
| 13 | studied the relationship between solely bicycle commuting and perceived stress (global and        |
| 14 | comprehensive stress construct) in adults, nor taking into account environmental                  |
| 15 | determinants. Moreover, most studies of active commuting and its beneficial effects on            |
| 16 | mental health have been conducted in North America, where the urban design tends to be less       |
| 17 | dense than many parts of the world, or Northwest Europe (6,7,17,28–30). Consequently, a           |
| 18 | need exists to understand the relationship between bicycle commuting and perceived stress,        |
| 19 | particularly in dense, Mediterranean/Southern European urban environments.                        |
| 20 |                                                                                                   |
| 21 | The current study aimed to evaluate the relationship between bicycle commuting and                |
| 22 | perceived stress among the working or studying adult population of a dense,                       |
| 23 | Mediterranean/Southern European urban setting.                                                    |
| 24 |                                                                                                   |
|    |                                                                                                   |

#### 

# 1 MATERIALS AND METHODS

#### 2 Study population

This cross-sectional study was based on participants from the Transportation, Air Pollution and Physical ActivitieS (TAPAS) Travel Survey. TAPAS is a relatively large study aimed at investigating the risks and benefits of active commuting. Participant recruitment was conducted by trained interviewers on the streets of Barcelona city between June 2011 and May 2012. To ensure adequate geographic coverage, a total of 40 random points (four random points within each of the ten city districts across Barcelona) were sampled. Adult bicycle commuters and non-bicycle commuters were asked in the street to answer a few screening questions, and those who fulfilled the inclusion criteria (being older than 18 years of age; living in Barcelona city since 2006 or earlier; working or going to school in Barcelona city; being healthy enough to ride a bicycle for 20 minutes; having a commute distance greater than a 10-minute walk; and using at least one mode of transport other than walking to commute) were invited to respond to a telephone survey. Bicycle commuters were oversampled to ensure enough bicycle commuters in the study. Those solely commuting on foot were excluded as the main interest was in the contrast between motorized modes (private and public transportation) and the bicycle. Of the 18469 participants approached across the forty sampling random points, 6701 agreed to answer screening questions. Of these, 1508 met the inclusion criteria, and 871 participants completed the survey. After survey responses were checked by the research team, 815 still fulfilled the inclusion criteria and 789 had geocodable home address. After excluding one PA outlier (total of all walking, moderate and vigorous time variables >960 minutes/day), 788 participants remained. Further details on the recruitment is given elsewhere (31).

#### **BMJ Open**

| 1  | The study protocol was approved by the Clinical Research Ethical Committee of the Parc de        |
|----|--------------------------------------------------------------------------------------------------|
| 2  | Salut Mar (CEIC-Parc de Salut Mar), and written informed consent was obtained from all           |
| 3  | participants.                                                                                    |
| 4  |                                                                                                  |
| 5  | Bicycle commuting                                                                                |
| 6  | The TAPAS Travel Survey assessed the regular use of transport modes (32), including              |
| 7  | bicycles (33). Participants who indicated using a bicycle (private or from a public bicycle      |
| 8  | sharing system) to go to work or school at least once the week prior to survey administration    |
| 9  | were classified as "bicycle commuters". Participants who did not commute by bicycle in the       |
| 10 | week prior to survey administration were classified as "non-bicycle commuters".                  |
| 11 |                                                                                                  |
| 12 | As part of the sensitivity analyses, commuting behaviour was further classified according to     |
| 13 | bicycle commuting levels and bicycle commuting propensity (24). Classification of bicycle        |
| 14 | commuting levels was based on the days of bicycle commuting in the week prior to survey          |
| 15 | administration: "low-level" being three days or fewer, "medium-level" for four days, and         |
| 16 | "high-level" for five or more days. This measure could be interpreted as a proxy of bicycle      |
| 17 | commuting frequency. Bicycle commuting propensity classification took into account both          |
| 18 | frequency and willingness to commute by bicycle: the "bicycle commuters" were further            |
| 19 | classified as "frequent" (four or more days) or "infrequent" (three or less days), and the "non- |
| 20 | bicycle commuters" were classified as "willing" or "unwilling". The "willing" group were         |
| 21 | those "non-bicycle commuters" who indicated bicycling as "never or nearly never" their           |
| 22 | general transport mode, but who also indicated that they would consider bicycle commuting        |
| 23 | in Barcelona (by answering positively to "considering costs, travelling time, comfort and        |
| 24 | safety, how ready would you be to use the bicycle/Bicing (public bicycle-sharing system) for     |
| 25 | your trip to work or education centre?"). The "unwilling" group were those "non-bicycle          |
|    |                                                                                                  |

commuters" who indicated "never or nearly never" bicycling for travel and indicated that they
 would not consider bicycle commuting in Barcelona by answering negatively to the above
 question. More details of the bicycle commuting propensity classification are given elsewhere
 (24). This measure was included in the analysis to assess the effect on perceived stress by
 being willing to commute by bicycle.

#### **Perceived stress**

The last four questions of the TAPAS Travel Survey were the short version of the Perceived Stress Scale (PSS-4) (11), which is a well-validated psychological instrument to measure the degree to which situations in one's life over the past month are appraised as stressful. The instrument contains four statements, which measure how unpredictable, uncontrollable, and overloaded respondents feel that their lives are (Table S1). The higher the score on the PSS-4 (from 0 to 16), the greater the respondent perceives that their demands exceed their ability to cope. There are no cut-off scores. Instead, an individual's score is compared to a normative value (34). In the TAPAS Travel Survey the 5-point Likert scale was modified to a 4-point Likert scale, removing the midpoint option for consistency with other questions in the survey (using a 4-point Likert scale). The sample did not have high levels of perceived stress (Table S2); therefore, for an easier interpretation, participants with a PSS-4 score higher than 3 (median of the total sample) were classified as "stressed", and those equal or lower than 3 were classified as "non-stressed". The sensitivity of our results to this choice was examined further in sensitivity analyses by classifying the respondents with PSS-4 scores in the 75<sup>th</sup> percentile (P75) and above (a score higher than 4) and in the 90<sup>th</sup> percentile (P90) and above (a score of 6 and above) as stressed and all others as non-stressed.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

#### **BMJ Open**

#### **1** Other explanatory measures

Individual determinants of bicycle commuting and perceived stress such as physical activity levels (35), socio-demographic variables, and work or school addresses were also derived from the TAPAS Travel Survey to be used as potential confounders. In addition, the MEDEA Index (Mortalidad en áreas pequeñas Españolas y Desigualdades socioEconómicas y Ambientales, in Spanish; Environmental and socioEconomic Inequalities in Mortality in small Spanish areas, translated to English) was used as an area deprivation indicator assigned to each participants' address. MEDEA measures deprivation at the census tract level based on five domains including percentage of manual workers, temporary workers, total population with low education, young population with low education, and unemployment (36). Environmental determinants of bicycle commuting and perceived stress within a 400m buffer surrounding home and work/study addresses, and a Route-By-Area (RBA) surrounding predicted commute routes, were calculated to be used as potential confounders too. The number of public bicycle stations within a 400m buffer surrounding home and work/study addresses was calculated based on information from the Ajuntament de Barcelona -Informació de Base i Cartografia (IBC) (Barcelona City Council – Basic information and mapping). Greenness was calculated as a mean in Normalized Difference Vegetation Index (NDVI) via satellite imagery (LANDSAT 4 and 5, NASA). Mean NO<sub>2</sub> levels were estimated

20 using a land-use regression model developed for a previous project (37). Noise was calculated

as the proportion of street length above a 55 dB(A) threshold (38). A bikeability index was

22 calculated taking into account five factors shown to influence bicycling: bicycle facility

availability, bicycle facility quality, street connectivity, topography, and land use (39).

24 Commute distance did not use buffers and it was calculated in km following the street

| 1 | network of the shortest route from home address to work address. Further details of the |
|---|-----------------------------------------------------------------------------------------|
| 2 | environmental determinants calculation are given elsewhere (24).                        |

#### Statistical analyses

Descriptive univariate analyses were done for all study variables. Descriptive bivariate analyses were done using Chi square and U Mann Whitney tests to assess the relationship between determinants and bicycle commuting variables (bicycle commuting status, bicycle commuting levels, and bicycle commuting propensity); and using Poisson regression with robust variance models to assess the relationship between determinants and perceived stress. A Generalized Additive Model (GAM) was used to test linearity between perceived stress and total physical activity (Total PA), moderate-to-vigorous physical activity (MVPA), vigorous physical activity (VPA), and age (40). As there was no statistical evidence to reject linearity between perceived stress and Total PA (p-value = 0.382), MVPA (p-value = 0.503), VPA (p-val value = 0.163), and age (p-value = 0.228), these variables were included as continuous variables in the models assuming a linear relationship. Multivariate Poisson regression with robust variance models were used to assess the relationship between bicycle commuting and perceived stress. Four regression models were done: (1) unadjusted; (2) adjusted by individual determinants that showed a p-value <0.05 in the model; (3) adjusted by the individual determinants of model 2, as well as those found to be statistically significant within previous literature; (4) adjusted by the individual determinants of model 3 and environmental determinants that showed a p-value < 0.05 in the bivariate analyses. All multivariate regression models were conducted with a complete case analysis. Possible mediation by different levels of PA between bicycle commuting and perceived stress, and any interaction between gender and bicycle commuting were also tested with Poisson regression with robust variance models. The first descriptive statistical analyses (univariate, Chi square and U Mann

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

#### **BMJ Open**

| 1 | Whitney tests) were conducted in Stata version SE 12 (StataCorp LP, Texas USA), while |
|---|---------------------------------------------------------------------------------------|
| 2 | Poisson regression with robust variance models were conducted in Stata version SE 14  |
| 3 | (StataCorp LP, Texas USA).                                                            |

#### **RESULTS**

The included sample had an equal distribution of genders and the median age (P25-P75) was 36 (29-43) years (Table 1). The majority of participants were non-stressed (having a PSS-4 score of 3 or lower), were Spanish, had completed university studies or equivalent-level education, were living with their family or partner, with at least two employed people, and were not with children (64.34%). Among those living with children, ~8% had children younger than three years of age. The sample had positive self-perception of health (with only <1% of participants self-perceiving bad or very bad health), healthy weight (BMI of 18.5-24.9: 71.12%), and generally no chronic disease (92.26%). The majority of participants considered that they could release stress when riding a bicycle and that they enjoyed their trip more if they used a bicycle. Compared to non-bicycle commuters, bicycle commuters were statistically significantly (p-value<0.05) more likely to be: non-stressed; younger (35 years); men; have higher levels of PA; possess a university or equivalent-level education; live alone and/or with flat mates; live with one or less employed people; live with no children; and have better self-perception of health, and healthy weight, but more chronic diseases. Bicycle commuters had shorter commutes compared to non-bicycle commuters, and we observed a gradient between commute distance and bicycle commuting levels; shorter distances were travelled for those who bicycle commuted more frequently. This tendency was also seen with bicycle commuting propensity; shorter distances were travelled for those more willing to bicycle commute (Table S3). Bicycle commuters also had more public bicycle stations around the home and work/study addresses, lower average greenness around the home address, and higher levels of bikeability at home, work/study address, and on the commute route compared

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| 1 | to non-bicycle commuters (Table 1). These environmental determinants stayed statistically |
|---|-------------------------------------------------------------------------------------------|
| 2 | significant for bicycle commuting propensity, but not between bicycle commuting levels    |
| 3 | (Table S3).                                                                               |

Participants more likely to be stressed (p-value<0.05) were typically women, non-Spanish, living with one or less people employed, and had a chronic disease (Table 2). For environmental determinants, participants who had more public bicycle stations around their work/study area and higher levels of bikeability in the work/study address area as well as on the commute route were less likely to be stressed (p < 0.05). There was no statistically significant relationship between commute distance, greenness, NO<sub>2</sub> and noise, and perceived stress. The possible mediation of PA was not further explored as there was no statistically significant relationship between levels of PA (Total PA, MVPA and VPA) and perceived stress for the three different classifications of perceived stress (P50, P75, P90) [RR (95% CI): 1.00 (0.99, 1.00), all p-values>0.10] (Table 2, Table S4).

#### **BMJ Open**

#### 1 Table 1. Descriptive analyses of participant perceived stress and its determinants as a total

#### 2 sample and according to bicycle commuting status.

|                                                                                 | Total      | sample (799)   |             |                 |            |                      |         |
|---------------------------------------------------------------------------------|------------|----------------|-------------|-----------------|------------|----------------------|---------|
| Variables                                                                       | 1018       | sample (700)   | Non-bicycle | commuters (390) | Bicycle co | n-value <sup>a</sup> |         |
|                                                                                 | n          | %              | n           | %               | N          | %                    | p (ulue |
| Outcome                                                                         |            |                |             |                 |            |                      |         |
| Stressed (median) (Yes)                                                         | 280        | 35.53          | 162         | 41.97           | 118        | 30.33                | 0.001   |
|                                                                                 |            |                |             |                 |            |                      |         |
| Individual determinants                                                         |            |                |             |                 |            |                      |         |
| Age (median; P25-P75)                                                           | 36         | 29-43          | 37          | 30-45           | 35         | 29-41                | 0.025   |
| Total PA – min/week (median; P25-P75)                                           | 424.99     | 269.99-700.00  | 374.99      | 209.99-624.99   | 484.98     | 329.99-734.99        | < 0.001 |
| MVPA – min/week (median; P25-P75)                                               | 197.49     | 72.50-374.99   | 90.00       | 0-40            | 299.99     | 159.99-464.99        | < 0.001 |
| VPA – min/week (median; P25-P75)                                                | /2.50      | 0-180.00       | 35.00       | 0-134.99        | 105.00     | 0-225.00             | < 0.001 |
| Gender (Woman)                                                                  | 410        | 52.03          | 234         | 60.00           | 1/6        | 44.22                | < 0.001 |
| Country of birth (non-Spanish)                                                  | 97         | 12.31          | 41          | 10.51           | 50         | 14.11                | 0.125   |
| Education level (University studies completed or<br>equivalent-level education) | 104<br>551 | 13.20<br>69.92 | 247         | 63.33           | 304        | 76.38                | <0.001  |
| Living with family/partner                                                      | 635        | 80.58          | 327         | 83.85           | 308        | 77.58                | 0.026   |
| Employed people in household (2-5)                                              | 510        | 64.72          | 261         | 67.27           | 249        | 62.88                | 0.198   |
| MEDEA index                                                                     |            |                |             |                 |            |                      | 0.355   |
| 1st tertile (least deprived)                                                    | 263        | 33.38          | 130         | 33.33           | 133        | 33.42                |         |
| 2nd tertile                                                                     | 263        | 33.38          | 122         | 31.28           | 141        | 35.43                |         |
| 3rd tertile (most deprived)                                                     | 262        | 33.25          | 138         | 35.38           | 124        | 31.16                |         |
| Children in household (Yes)                                                     | 279        | 35.41          | 151         | 38.82           | 128        | 32.24                | 0.054   |
| Children <3 years in household (Yes)                                            | 64         | 8.12           | 36          | 9.25            | 28         | 7.07                 | 0.264   |
| Self-perceived health (Very good/Excellent)                                     | 323        | 40.99          | 140         | 35.90           | 183        | 45.98                | 0.004   |
| BMI (Overweight/Obese)                                                          | 212        | 26.9           | 124         | 31.96           | 88         | 22.11                | 0.002   |
| Chronic disease (Yes)                                                           | 61         | 7.74           | 25          | 0.41<br>70.47   | 30         | 9.05                 | 0.166   |
| Stress releasing (Agreement)                                                    | 620        | 83.30          | 302         | /9.4/<br>65.25  | 330        | 90.39                | < 0.001 |
| Bicycle trip enjoyment (Agreement)                                              | 029        | 19.82          | 249         | 05.55           | 380        | 90.20                | <0.001  |
| Environmental determinants                                                      | 2.05       |                | 4.00        | 2.25            | 2.25       | 1.70                 | -0.001  |
| Commute distance, estimated (km) (mean;SD)                                      | 3.85       | 2.05           | 4.38        | 2.25            | 3.35       | 1.70                 | < 0.001 |
| Public bicycle stations (mean;SD)                                               |            |                |             |                 |            |                      |         |
| Home, count in 400m buffer                                                      | 4.25       | 2.54           | 3.75        | 2.51            | 4.75       | 2.47                 | < 0.001 |
| Work/study, count in 400m buffer                                                | 4.92       | 3.11           | 4.50        | 3.13            | 5.33       | 3.04                 | < 0.001 |
| Greenness, NDVI [IQR, (mean;SD)]                                                |            |                |             |                 |            |                      |         |
| Home, average of 400m buffer                                                    | 0.79       | 1.07           | 0.91        | 1.08            | 0.68       | 1.06                 | < 0.001 |
| Work/study, average of 400m buffer                                              | 0.62       | 0.96           | 0.70        | 1.07            | 0.55       | 0.83                 | 0.086   |
| Commute route average of RBA                                                    | 0.97       | 0.96           | 1.07        | 1.06            | 0.87       | 0.85                 | 0.062   |
| $NO_2$ ppb (mean;SD)                                                            |            |                |             |                 |            |                      |         |
| Home, concentration in 400m buffer                                              | 76.20      | 17.52          | 75.16       | 17.12           | 77.21      | 17.87                | 0.058   |
| Work/study_concentration in 400m buffer                                         | 78.43      | 22.51          | 78.56       | 23.92           | 78.31      | 21.10                | 0.843   |
| Commute route concentration in RBA                                              | 84.40      | 16.97          | 84.24       | 16.82           | 84.55      | 17.13                | 0.987   |
| Noise >55dB (%) (mean:SD)                                                       |            |                |             |                 |            |                      |         |
| Home properties in 400m buffer                                                  | 78.63      | 11 40          | 78 77       | 10.99           | 78 50      | 11 79                | 0.823   |
| Wark (study, gran action in 400m buffer                                         | 79 59      | 14 66          | 79.09       | 14.86           | 80.07      | 14 46                | 0.369   |
| work/study, proportion in 400m butter                                           | 77 40      | 0.04           | 77.07       | 9 50            | 77.20      | 0.40                 | 0.009   |
| Commute route, proportion in RBA                                                | //.40      | 9.04           | //.31       | 0.30            | /7.50      | 9.48                 | 0.924   |
| Bikeability (mean;SD)                                                           |            |                |             |                 |            |                      | 0.004   |
| Home, concentration in 400m buffer                                              | 6.20       | 1.41           | 5.93        | 1.45            | 6.46       | 1.31                 | < 0.001 |
| Work/study, concentration in 400m buffer                                        | 6.56       | 1.39           | 6.31        | 1.54            | 6.79       | 1.17                 | < 0.001 |
| Commute route, concentration in RBA                                             | 6.70       | 1.12           | 6.45        | 1.20            | 6.94       | 0.98                 | < 0.001 |

1450-8

Commute Fource Concentration in RBA
For our control of the Concentration in RBA
For our concentration in RBA
For our concentratin RBA</

#### Table 2. Bivariate analyses of the relationship between participant determinants and

#### perceived stress.

| Variable                                      | Perceived stress (median)                      |         |  |  |  |  |  |  |
|-----------------------------------------------|------------------------------------------------|---------|--|--|--|--|--|--|
| variable                                      | RR (95% CI)                                    | p-value |  |  |  |  |  |  |
| Individual determinants                       |                                                |         |  |  |  |  |  |  |
|                                               | 1.00 (0.00 1.01)                               | 0.502   |  |  |  |  |  |  |
| Total DA min/week                             | $1.00 \ (0.99, 1.01)$<br>$1.00 \ (0.99, 1.00)$ | 0.502   |  |  |  |  |  |  |
| MVPA min/week                                 | $1.00 \ (0.99, 1.00)$<br>$1.00 \ (0.99, 1.00)$ | 0.009   |  |  |  |  |  |  |
| VPA min/week                                  | $1.00 \ (0.99, 1.00)$<br>$1.00 \ (0.99, 1.00)$ | 0.658   |  |  |  |  |  |  |
| Gender (Wemen)                                | $1.00 \ (0.99, 1.00)$<br>$1.55 \ (1.27, 1.80)$ | <0.001  |  |  |  |  |  |  |
| Country of hirth (Spain)                      | 1.33 (1.27, 1.69)<br>1.24 (1.05, 1.70)         | <0.001  |  |  |  |  |  |  |
| Working status (Student)                      | 1.34 (1.05, 1.70)<br>1.22 (0.05, 1.56)         | 0.017   |  |  |  |  |  |  |
| Education level (University studies completed | 1.22 (0.95, 1.50)                              | 0.115   |  |  |  |  |  |  |
| or Others)                                    | 0.02 (0.75 1.12)                               | 0.387   |  |  |  |  |  |  |
| Living with family/partner                    | $0.92  (0.73, 1.12) \\ 0.01  (0.72, 1.15)$     | 0.430   |  |  |  |  |  |  |
| Enving with family/particle                   | 0.91 (0.73, 1.13)<br>0.74 (0.62, 0.90)         | 0.439   |  |  |  |  |  |  |
| MEDEA index                                   | 0.74 (0.02, 0.90)                              | 0.002   |  |  |  |  |  |  |
| Ist tertile (least deprived)                  | 1.00                                           |         |  |  |  |  |  |  |
| 2nd tertile                                   | 1.00                                           | 0.537   |  |  |  |  |  |  |
| 2nd tentile (mont demnined)                   | 1.08 (0.03, 1.37)                              | 0.337   |  |  |  |  |  |  |
| Staterine (most deprived)                     | 1.18 (0.94, 1.48)                              | 0.162   |  |  |  |  |  |  |
| Children in nousenoid (Yes)                   | 0.90  (0.74, 1.11)                             | 0.550   |  |  |  |  |  |  |
| Children <3 years in nousenoid (Yes)          | 0.87 (0.60, 1.27)                              | 0.475   |  |  |  |  |  |  |
| Self-perceived health (Very good/Excellent)   | 0.87 (0.71, 1.06)                              | 0.157   |  |  |  |  |  |  |
| BMI (Overweight/Obese)                        | 0.95 (0.77, 1.18)                              | 0.669   |  |  |  |  |  |  |
| Chronic disease (Yes)                         | 1.38 (1.04, 1.83)                              | 0.024   |  |  |  |  |  |  |
| Stress releasing (Agreement)                  | 0.87 (0.68, 1.11)                              | 0.273   |  |  |  |  |  |  |
| Bicycle trip enjoyment (Agreement)            | 0.91 (0.72, 1.14)                              | 0.425   |  |  |  |  |  |  |
| Environmental determinants                    |                                                |         |  |  |  |  |  |  |
| Commute distance estimated (km)               | 1.02 (0.97 1.06)                               | 0.508   |  |  |  |  |  |  |
| Public bicycle stations                       | 1.02 (0.57, 1.00)                              | 0.000   |  |  |  |  |  |  |
| Home count in 400m buffer                     | 0.99 (0.95 1.02)                               | 0.503   |  |  |  |  |  |  |
| Work/study_count in 400m buffer               | 0.96 (0.93, 0.99)                              | 0.003   |  |  |  |  |  |  |
| Greenness NDVI                                | $(0.90 \ (0.95, 0.99)$                         | 0.024   |  |  |  |  |  |  |
| Home average of 400m huffer                   | 0.94 (0.85, 1.05)                              | 0 258   |  |  |  |  |  |  |
| Work/study average of 400m buffer             | 1.06 (0.05, 1.05)                              | 0.238   |  |  |  |  |  |  |
| Commute route, average of PBA                 | 0.00 (0.80 1.00)                               | 0.838   |  |  |  |  |  |  |
| NO pph                                        | (0.39) $(0.39, 1.09)$                          | 0.858   |  |  |  |  |  |  |
| Home concentration in 400m huffer             | 1.00 (0.00 1.01)                               | 0.827   |  |  |  |  |  |  |
| Work/study, concentration in 400m buffer      | 1.00 (0.99, 1.01)<br>1.00 (0.00, 1.00)         | 0.027   |  |  |  |  |  |  |
| Commute route, concentration in PPA           | 1.00 (0.99, 1.00)<br>1.00 (0.00, 1.00)         | 0.100   |  |  |  |  |  |  |
| Noise >55dD                                   | 1.00 (0.99, 1.00)                              | 0.516   |  |  |  |  |  |  |
| Home menories in 400m huffer                  | 1.00 (0.00 1.00)                               | 0.262   |  |  |  |  |  |  |
| Home, proportion in 400m buffer               | 1.00  (0.98, 1.00)<br>1.01  (0.00, 1.01)       | 0.303   |  |  |  |  |  |  |
| Commute neutron neutron in ADA                | 1.01 (0.99, 1.01)                              | 0.125   |  |  |  |  |  |  |
| Dilanchility                                  | 1.00 (0.98, 1.01)                              | 0.405   |  |  |  |  |  |  |
| Hama apparentiation in 400m huffer            | 1.00 (0.04 1.07)                               | 0.021   |  |  |  |  |  |  |
| nome, concentration in 400m buffer            | 1.00 (0.94, 1.07)                              | 0.931   |  |  |  |  |  |  |
| work/study, concentration in 400m buffer      | 0.92 (0.86, 0.98)                              | 0.009   |  |  |  |  |  |  |
| Commute route, concentration in RBA           | 0.91 (0.84, 0.98)                              | 0.018   |  |  |  |  |  |  |

PA, Physical Activity; MPA, Moderate-to-Vigorous Physical Activity; VPA, Vigorous Physical Activity; MEDEA, Mortalidad en áreas pequeñas Españolas y Desigualdades socioEconómicas y Ambientales, in Spanish (Environmental and socioEconomic Inequalities in Mortality in small Spanish areas, translated to English); BMI, Body Mass Index, NDVI, Normalized Difference Vegetation Index; RBA, Route-By-Area. Complete case analysis excluding missing data of the variables of final models (Table 3; n=771). The variables that still present missing data and are not included in the final models are: Total PA (5; 0.63%), People living with in household (1; 0.13%), Children in household (2; 0.25%), Children <3 per solution in household (3; 0.38), BMI (2; 0.25%); Stress releasing (15; 1.90%), Bicycle trip enjoyment (12; 1.52%), Commute distance (20; 2.54%), Greenness (20; 2.54%), NO<sub>2</sub> (20, 2.54%).

Page 15 of 35

#### **BMJ Open**

| 1  | Multivariate Poisson regression with robust variance analyses showed a statistically          |
|----|-----------------------------------------------------------------------------------------------|
| 2  | significant inverse relationship between bicycle commuting and perceived stress. Considering  |
| 3  | the total sample, bicycle commuters had a lower risk of being stressed compared to non-       |
| 4  | bicycle commuters [Model 1: RR (95%CI) = 0.73 (0.60, 0.89), p-value=0.001]. This              |
| 5  | relationship remained statistically significant in the adjusted models [Model 2: RR (95%CI) = |
| 6  | 0.75 (0.62, 0.91), p-value=0.003; Model 3: RR (95%CI) = 0.77 (0.63, 0.94), p-value=0.009;     |
| 7  | Model 4: RR (95%CI) = 0.80 (0.66, 0.99), p-value=0.036] (Table 3) and when using              |
| 8  | perceived stress cut-offs of either P75 or P90 (Table S5). Regarding bicycle commuting levels |
| 9  | in the total sample, those who bicycle commuted four days per week (considered "medium-       |
| 10 | level" of bicycle commuters) and those who bicycled five or more days per week ("high-        |
| 11 | level") had lower risk of being stressed than non-bicycle commuters ["Medium-level" -         |
| 12 | Model 1: RR (95%CI) = 0.46 (0.28, 0.78), p-value=0.004. "High-level" – Model 1: RR            |
| 13 | (95%CI) = 0.63 (0.49, 0.81), p-value<0.001]. These relationships remained statistically       |
| 14 | significant in the adjusted models ("Medium-level" - Model 2: RR (95%CI) = 0.45 (0.27,        |
| 15 | 0.74), p-value=0.002; Model 3: RR (95%CI) = 0.45 (0.27, 0.75), p-value=0.002; Model 4: RR     |
| 16 | (95%CI) = 0.48 (0.29, 0.80), p-value=0.005. "High-level" - Model 2: RR (95%CI) = 0.66         |
| 17 | (0.51, 0.85), p-value=0.001; Model 3: RR (95%CI) = 0.68 (0.52, 0.88), p-value=0.003; Model    |
| 18 | 4: RR (95%CI) = 0.71 (0.54, 0.92), p-value=0.010) (Table 3) and in the majority of perceived  |
| 19 | stress sensitivity analyses (using cut-offs of P75 and P90), with the exception of the        |
| 20 | unadjusted and fully adjusted models (Models 1 and 4) for "medium-level" bicycle              |
| 21 | commuters using P90 as a perceived stress cut-off ["Medium-level" - Model 1: RR (95%CI) =     |
| 22 | 0.15 (0.02, 1.05), p-value=0.056; Model 4: RR (95%CI) = 0.15 (0.02, 1.04), p-value=0.054]     |
| 23 | (Table S5). Regarding bicycle commuting propensity in the total sample, "frequent" bicycle    |
| 24 | commuters had lower risk of being stressed than "unwilling" non-bicycle commuters [Model      |
| 25 | 1: RR (95%CI) = 0.53 (0.41, 0.67), p-value<0.001]. This relationship remained statistically   |
|    |                                                                                               |

| 1  | significant in the adjusted models [Model 2: RR (95%CI) = 0.55 (0.43, 0.70), p-value<0.001;    |
|----|------------------------------------------------------------------------------------------------|
| 2  | Model 3: RR (95%CI) = 0.56 (0.43, 0.72), p-value<0.001; Model 4: RR (95%CI) = 0.58             |
| 3  | (0.45, 0.76), p-value<0.001] (Table 3) and when using perceived stress cut-offs of either P75  |
| 4  | or P90 (Table S5). Also, "willing" non-bicycle commuters had lower risk of being stressed      |
| 5  | than "unwilling" non-bicycle commuters [Model 1: RR (95%CI) = 0.72 (0.56, 0.94), p-            |
| 6  | value=0.014]. This relationship remained statistically significant in the adjusted models      |
| 7  | [Model 2: RR (95%CI) = 0.75 (0.58, 0.97), p-value=0.029; Model 3. RR (95%CI) = 0.74            |
| 8  | (0.57, 0.96), p-value=0.022; Model 4: RR (95%CI) = 0.75 (0.58, 0.97), p-value=0.031] (Table    |
| 9  | 3), but not when using perceived stress cut-offs of either P75 or P90 (Table S5).              |
| 10 |                                                                                                |
| 11 | When considering bicycle commuting levels within the bicycle commuters only sample,            |
| 12 | "medium-level" and "high-level" bicycle commuters had lower risk of being stressed than        |
| 13 | "low-level" bicycle commuters ["Medium-level" - Model 1: RR $(95\%$ CI) = 0.42 (0.24, 0.73),   |
| 14 | p-value=0.002. "High-level" - Model 1: RR (95%CI) = 0.57 (0.42, 0.77), p-value<0.001].         |
| 15 | These relationships remained statistically significant in the adjusted models (["Medium-level" |
| 16 | - Model 2: RR (95%CI) = 0.39 (0.23, 0.67), p-value=0.001; Model 3: RR (95%CI) = 0.39           |
| 17 | (0.23, 0.65), p-value<0.001; Model 4: RR (95%CI) = 0.38 (0.23, 0.65), p-value<0.001.           |
| 18 | "High-level" - Model 2: RR (95%CI) = 0.59 (0.44, 0.80), p-value=0.001; Model 3: RR             |
| 19 | (95%CI) = 0.59 (0.44, 0.80), p-value=0.001; Model 4: RR (95%CI) = 0.59 (0.44, 0.80), p-        |
| 20 | value=0.001) (Table 3) and when using perceived stress cut-offs of either P75 or P90 (Table    |
| 21 | S5). Regarding bicycle commuting propensity, "frequent" bicycle commuters had lower risk       |
| 22 | of being stressed than "infrequent" bicycle commuters [Model 1: RR $(95\%$ CI) = 0.54 (0.40,   |
| 23 | 0.72), p-value<0.001]. This relationship remained statistically significant in the adjusted    |
| 24 | models [Model 2: RR (95%CI) = 0.55 (0.41, 0.73), p-value<0.001; Model 3: RR (95%CI) =          |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| 17 of 35 |    | BMJ Open                                                                                      |
|----------|----|-----------------------------------------------------------------------------------------------|
|          |    | 17                                                                                            |
|          | 1  | 0.54 (0.41, 0.72), p-value<0.001; Model 4: RR (95%CI) = 0.54 (0.41, 0.72), p-value<0.001]     |
|          | 2  | (Table 3) and when using perceived stress cut-offs of either P75 or P90 (Table S5).           |
|          | 3  |                                                                                               |
|          | 4  | Considering bicycle commuting propensity within the non-bicycle commuters only sample,        |
|          | 5  | "willing" non-bicycle commuters had lower risk of being stressed than "unwilling" non-        |
|          | 6  | bicycle commuters [Model 1: RR (95%CI) = 0.72 (0.56, 0.94), p-value=0.015]. This              |
|          | 7  | relationship remained statistically significant in the adjusted models [Model 2: RR (95%CI) = |
|          | 8  | 0.73 (0.57, 0.95), p-value=0.020; Model 3: RR (95%CI) = 0.72 (0.56, 0.93), p-value=0.013;     |
|          | 9  | Model 4: RR (95%CI) = 0.74 (0.57, 0.95), p-value=0.020] (Table 3), but not when using         |
|          | 10 | perceived stress cut-offs of either P75 or P90 (Table S5).                                    |
|          | 11 |                                                                                               |
|          | 12 | In the fully adjusted models (Model 4), we found no statistically significant interactions    |
|          | 13 | between gender and being a bicycle commuter (p-value= 0.165), between gender and bicycle      |
|          | 14 | commuting levels (p-value=0.226, p-value=0.266, p-value=0.431), or between gender and         |
|          | 15 | bicycle commuting propensity (p-value=0.982, p-value=0.197, p-value=0.277) (results not       |
|          | 16 | shown).                                                                                       |
|          |    |                                                                                               |
|          |    |                                                                                               |
|          |    |                                                                                               |
|          |    |                                                                                               |
|          |    |                                                                                               |
|          |    |                                                                                               |
|          |    |                                                                                               |
|          |    |                                                                                               |

Table 3. Multivariate models assessing the relationship between bicycle commuting and participant perceived stress (median).

|                                         | Perceived stress (median)           |              |         |                                     |              |         |                                     |              |         |                                     |              |         |
|-----------------------------------------|-------------------------------------|--------------|---------|-------------------------------------|--------------|---------|-------------------------------------|--------------|---------|-------------------------------------|--------------|---------|
| Variable                                | Model 1 <sup>a</sup><br>RR (95% CI) |              | p-value | Model 2 <sup>b</sup><br>RR (95% CI) |              | p-value | Model 3 <sup>c</sup><br>RR (95% CI) |              | p-value | Model 4 <sup>d</sup><br>RR (95% CI) |              | p-value |
| All sample (771)                        |                                     | <u>`</u>     |         |                                     | 2            |         |                                     | · · · · ·    |         |                                     |              |         |
| Bicycle commuting status                |                                     |              |         |                                     |              |         |                                     |              |         |                                     |              |         |
| Non-bicycle commuters                   | 1.00                                |              |         | 1.00                                |              |         | 1.00                                |              |         | 1.00                                |              |         |
| Bicycle commuters                       | 0.73                                | (0.60, 0.89) | 0.001   | 0.75                                | (0.62, 0.91) | 0.003   | 0.77                                | (0.63, 0.94) | 0.009   | 0.80                                | (0.66, 0.99) | 0.036   |
| Bicycle commuting levels                |                                     |              |         |                                     |              |         |                                     |              |         |                                     |              |         |
| Non-bicycle commuters (0 days)          | 1.00                                |              |         | 1.00                                |              |         | 1.00                                |              |         | 1.00                                |              |         |
| Low-level bicycle commuters (1-3 days)  | 1.10                                | (0.87, 1.39) | 0.436   | 1.11                                | (0.88, 1.40) | 0.369   | 1.13                                | (0.89, 1.44) | 0.297   | 1.17                                | (0.92, 1.48) | 0.205   |
| Medium-level bicycle commuters (4 days) | 0.46                                | (0.28, 0.78) | 0.004   | 0.45                                | (0.27, 0.74) | 0.002   | 0.45                                | (0.27, 0.75) | 0.002   | 0.48                                | (0.29, 0.80) | 0.005   |
| High-level bicycle commuters (>=5 days) | 0.63                                | (0.49, 0.81) | < 0.001 | 0.66                                | (0.51, 0.85) | 0.001   | 0.68                                | (0.52, 0.88) | 0.003   | 0.71                                | (0.54, 0.92) | 0.010   |
| Bicycle commuting propensity            |                                     |              |         |                                     |              |         |                                     |              |         |                                     |              |         |
| Unwilling non-bicycle commuters         | 1.00                                |              |         | 1.00                                |              |         | 1.00                                |              |         | 1.00                                |              |         |
| Willing non-bicycle commuters           | 0.72                                | (0.56, 0.94) | 0.014   | 0.75                                | (0.58, 0.97) | 0.029   | 0.74                                | (0.57, 0.96) | 0.022   | 0.75                                | (0.58, 0.97) | 0.031   |
| Infrequent bicycle commuters            | 0.98                                | (0.76, 1.25) | 0.847   | 1.00                                | (0.78, 1.27) | 0.980   | 1.01                                | (0.79, 1.30) | 0.940   | 1.04                                | (0.81, 1.34) | 0.739   |
| Frequent bicycle commuters              | 0.53                                | (0.41, 0.67) | < 0.001 | 0.55                                | (0.43, 0.70) | < 0.001 | 0.56                                | (0.43, 0.72) | < 0.001 | 0.58                                | (0.45, 0.76) | < 0.001 |
| Bicycle commuters sample (387)          |                                     |              |         |                                     |              |         |                                     |              |         |                                     |              |         |
| Bicycle commuting levels                |                                     |              |         |                                     |              |         |                                     |              |         |                                     |              |         |
| Low-level bicycle commuters (1-3 days)  | 1.00                                |              |         | 1.00                                |              |         | 1.00                                |              |         | 1.00                                |              |         |
| Medium-level bicycle commuters (4 days) | 0.42                                | (0.24, 0.73) | 0.002   | 0.39                                | (0.23, 0.67) | 0.001   | 0.39                                | (0.23, 0.65) | < 0.001 | 0.38                                | (0.23, 0.65) | < 0.001 |
| High-level bicycle commuters (>=5 days) | 0.57                                | (0.42, 0.77) | < 0.001 | 0.59                                | (0.44, 0.80) | 0.001   | 0.59                                | (0.44, 0.80) | 0.001   | 0.59                                | (0.44, 0.80) | 0.001   |
| Bicycle commuters propensity            |                                     |              |         |                                     |              |         |                                     |              |         |                                     |              |         |
| Infrequent bicycle commuters            | 1.00                                |              |         | 1.00                                |              |         | 1.00                                |              |         | 1.00                                |              |         |
| Frequent bicycle commuters              | 0.54                                | (0.40, 0.72) | < 0.001 | 0.55                                | (0.41, 0.73) | < 0.001 | 0.54                                | (0.41, 0.72) | < 0.001 | 0.54                                | (0.41, 0.72) | < 0.001 |
| Non-bicycle commuters sample (384)      |                                     |              |         |                                     |              |         |                                     |              |         |                                     |              |         |
| Bicycle commuters propensity            |                                     |              |         |                                     |              |         |                                     |              |         |                                     |              |         |
| Unwilling non-bicycle commuters         | 1.00                                |              |         | 1.00                                |              |         | 1.00                                |              |         | 1.00                                |              |         |
| Willing non-bicycle commuters           | 0.72                                | (0.56, 0.94) | 0.015   | 0.73                                | (0.57, 0.95) | 0.020   | 0.72                                | (0.56, 0.93) | 0.013   | 0.74                                | (0.57, 0.95) | 0.020   |

Willing non-bicycle commuters 0.72 (0.36, 0.44) 0.013 0.75 (0.57, 0.93) 0.020 0.72 (0.36, 0.93) 0.020 0.72 (0.36, 0.93) 0.020 0.75 0.14 (0.37, 0.93) 0.020
<sup>a</sup>Unajuste<sup>b</sup> Majuste<sup>b</sup> Majuste

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

#### DISCUSSION

#### 2 Summary of results

We evaluated relationships between bicycle commuting and perceived stress while adjusting for several confounders in a representative sample of adults in Barcelona, Spain. We found statistically significant inverse relationships between several measures of bicycle commuting and perceived stress. Bicycle commuters who bicycled four or more days per week had lower risk of being stressed compared to those who bicycled less or did not bicycle commute at all. This relationship remained statistically significant in all sensitivity analyses and after controlling for individual and environmental confounders.

#### **Comparison with previous studies**

To our knowledge, this study is the first to assess whether a relationship exists between solely bicycle commuting and perceived stress. A few studies have focused on the relationship between active commuting (as a combination of both walking and bicycling) and mental health (6,7,29), but the relationship is still unclear. One study found a positive association of active commuting with well-being in adults (6), and another with better mental health in only men (29). Meanwhile, Humphreys and colleagues (7) found a positive relationship between time spent actively commuting and levels of physical well-being, but not with mental well-being. The relationship between physical activity and mental health has been studied more. It has been suggested that physical activity can reduce stress and anxiety on a daily basis while improving positive self-perception and mood (41–43), and it has been associated with lower depressive symptomatology and greater emotional well-being (44). These findings suggest that the physical activity gained during bicycle commuting (31) may act as a mediator in the relationship between bicycle commuting and perceived stress. Our results are consistent with

the general idea that active commuting is associated with better mental health, but in our case
physical activity did not act as a mediator in this relationship. Our sample was composed of
young, healthy, and active participants with relatively low PSS-4 levels of perceived stress,
which might have led to an underestimation of the relationship between PA and perceived
stress.

Qualitative research has suggested that choice of travel mode may affect well-being (19). The quantity of public bicycle (*Bicing*) stations and the amount of greenness has been related to bicycle commuting propensity (24), which could imply that commuting by bicycle provides people with more opportunities to "enjoy" or "experience" greenness than commuting in public transport or a car. At the same time, the availability of green space close to one's home has been shown to be related to better self-perceived general health and better mental health (25,26,45). Therefore, it seems that perceptual and environmental factors related to bicycle commuting could affect perceived stress, in the way that the more pleasant an environment to bicycle commuting is, the lower the perceived stress we will get. This general idea is consistent with our results which show an inverse relationship between perceived stress and bicycle-friendly environments (public bicycle stations and bikeability levels) in work/study address area and the commute route. Importantly, the relationship between bicycle commuting and perceived stress was unchanged after controlling for environmental confounders. Our results also showed that general attitude might have a role in this relationship, as we have seen that non-bicycle commuters willing to start bicycle commuting, compared to those unwilling, had lower risk of being stressed. This becomes unclear, however, as the relationship approaches statistical non-significance in sensitivity analyses.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| 1  |                                                                                                |
|----|------------------------------------------------------------------------------------------------|
| 2  | Limitations and strengths                                                                      |
| 3  | Our study has some limitations. Firstly, our study used a cross-sectional design, which is not |
| 4  | well-suited to assess the direction of causation, and we cannot exclude reverse causality or   |
| 5  | residual confounding. It has been suggested that stressed people can engage in unhealthy       |
| 6  | behaviours, such as poor dietary practices or a lack of physical activity (46). This reasoning |
| 7  | could be applied to a behaviour like bicycle commuting, where those individuals who are        |
| 8  | more stressed would bicycle less. Secondly, our measurement method may be prone to             |
| 9  | information bias. With the questionnaire data we could have random misclassification error of  |
| 10 | bicycle commuting and PA due to the data being self-reported. Therefore, the risk estimate     |
| 11 | and also the potential mediation by PA could be an under-estimation (47). The TAPAS Travel     |
| 12 | Survey only measured levels of PA without differentiating between travel PA (being most        |
| 13 | accurate for commute studies) and other types of PA (work, recreational). Furthermore, the     |
| 14 | modification of the 5-point PSS-4 Likert scale into a 4-point Likert scale could incorrectly-  |
| 15 | estimate the perceived stress.                                                                 |
| 16 |                                                                                                |
| 17 | This study has several strengths, too. The study has high internal validity, with a good       |
| 18 | representation of bicycle commuters. Related to participants' characteristics (socio-          |
| 19 | demographics), the TAPAS Travel Survey sample is representative of Barcelona's population.     |
| 20 | It was compared with data from the Catalan government's Barcelona Active Population            |
| 21 | Survey (Statistics and information service, Catalan government 2011) and no statistically      |
| 22 | significant differences between participants' deprivation index and home and work population   |
| 23 | density in both surveys were found (24,31). Finally, our study in a southern European city has |
| 24 | added evidence on these issues in a different context than the current literature.             |
| 25 |                                                                                                |
|    |                                                                                                |

#### 1 Future research

Our findings underscored the need for future research. There is a need to obtain a clear understanding of the relationship between bicycle commuting and perceived stress in longitudinal studies. The role of PA in this relationship seems unclear, and it is likely that other factors could affect the relationship between these two variables, especially those related to environmental determinants and personal attitudes. Further work related to determinants and mediators of bicycle commuting and perceived stress is needed.

#### 8 CONCLUSIONS

We found that healthy, adult bicycle commuters had lower risk of being stressed than commuters of other transport modes. Also, bicycle commuters who bicycled four or more days per week had a lower risk of being stressed than those who bicycled less than that. Environmental determinants such as the number of public bicycle stations and bikeability, and also personal attitudes, seem to have an influence on this relationship. Further research is needed in order to disentangle the relationship between bicycle commuting and perceived stress, and its determinants (individual and environmental) and potential mediators. Our findings suggest that decision-makers may promote bicycle commuting as a daily routine to reduce stress levels and improve public health and well-being.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

#### **BMJ Open**

#### ACKNOWLEDGEMENTS

2 The authors are grateful to the participants of TAPAS Travel Survey and the CREAL

- 3 technicians who recruited them and created geographical variables (MEDEA and
- 4 environmental determinants). We would like to acknowledge the ESCAPE project and its
- 5 contributors for the air quality data of Barcelona, as well as the Ajuntament de Barcelona for
- 6 the noise model data and street map information of Barcelona.

## 7 FUNDING

- 8 This study was performed as part of the TAPAS project < <u>http://www.tapas-program.org/</u>>,
- 9 funded by the Coca-Cola Foundation, the Agència de Gestió d'ajuts Universitaris i de Recerca
- 10 (AGAUR) and CREAL internal funding. Coca-Cola Foundation provided funding, but had no
- 11 role whatsoever in the design of the study or data collection, or interpretation of the results.

### 12 COMPETING INTERESTS

13 There are no conflicts of interest to be reported by the authors of this paper.

#### 14 AUTHOR'S CONTRIBUTION

- 15 MJN and AdN obtained the funding and designed the study. IAP conducted the analyses and
- 16 drafted this version of the paper and received input from all other authors. All authors read
- 17 and commented on the paper and agreed with the final version.

#### 18 DATA SHARING

- 19 Extra data is available by emailing the corresponding author (Ione Avila-Palencia:
- 20 ione.avila@isglobal.org).

|    | BMJ Open                                                                                    |
|----|---------------------------------------------------------------------------------------------|
|    | 24                                                                                          |
| 1  | REFERENCES                                                                                  |
| 2  | 1. Faulkner GEJ, Buliung RN, Flora PK, Fusco C. Active school transport, physical           |
| 3  | activity levels and body weight of children and youth: A systematic review. Prev Med.       |
| 4  | Elsevier Inc.; 2009;48(1):3-8.                                                              |
| 5  | 2. Wanner M, Götschi T, Martin-Diener E, Kahlmeier S, Martin BW. Active Transport,          |
| 6  | Physical Activity, and Body Weight in Adults: A Systematic Review. Am J Prev Med.           |
| 7  | 2012;42(5):493–502.                                                                         |
| 8  | 3. Saunders LE, Green JM, Petticrew MP, Steinbach R, Roberts H, Morris J, et al. What       |
| 9  | Are the Health Benefits of Active Travel? A Systematic Review of Trials and Cohort Studies. |
| 10 | Ruiz JR, editor. PLoS One. 2013;8(8):e69912.                                                |
| 11 | 4. Hamer M, Chida Y. Active commuting and cardiovascular risk: A meta-analytic              |
| 12 | review. Prev Med. 2008;46(1):9–13.                                                          |
| 13 | 5. Xu H, Wen LM, Rissel C. The relationships between active transport to work or            |
| 14 | school and cardiovascular health or body weight: a systematic review. Asia Pac J Public     |
| 15 | Health. 2013 Jul [cited 2016 Nov 7];25(4):298–315.                                          |
| 16 | 6. Martin A, Goryakin Y, Suhrcke M. Does active commuting improve psychological             |
| 17 | wellbeing? Longitudinal evidence from eighteen waves of the British Household Panel         |
| 18 | Survey. Prev Med. 2014;69:296–303.                                                          |
| 19 | 7. Humphreys DK, Goodman A, Ogilvie D. Associations between active commuting and            |
| 20 | physical and mental wellbeing. Prev Med. 2013;57(2):135–9.                                  |
| 21 | 8. Andersen LB, Schnohr P, Schroll M, Hein HO. All-Cause Mortality Associated With          |
| 22 | Physical Activity During Leisure Time, Work, Sports, and Cycling to Work. Arch Intern       |
| 23 | Med. 2000;160(11):1621.                                                                     |
|    |                                                                                             |
|    |                                                                                             |
|    |                                                                                             |

#### **BMJ Open**

| ^  | _ |
|----|---|
| ., | • |
| /  | • |
| _  | ~ |

| 1  | 9.      | de Geus B, Van Hoof E, Aerts I, Meeusen R. Cycling to work: influence on indexes of       |
|----|---------|-------------------------------------------------------------------------------------------|
| 2  | health  | in untrained men and women in Flanders. Coronary heart disease and quality of life.       |
| 3  | Scand   | I J Med Sci Sports. 2008;18(4):498–510.                                                   |
| 4  | 10.     | de Nazelle A, Nieuwenhuijsen MJ, Antó JM, Brauer M, Briggs D, Braun-Fahrlander            |
| 5  | C, et a | al. Improving health through policies that promote active travel: A review of evidence to |
| 6  | suppo   | ort integrated health impact assessment. Environ Int. 2011;37(4):766–77.                  |
| 7  | 11.     | Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. J Health         |
| 8  | Soc B   | ehav. 1983;24(4):385–96.                                                                  |
| 9  | 12.     | Katsarou AL, Triposkiadis F, Panagiotakos D. Perceived stress and vascular disease:       |
| 10 | where   | e are we now? Angiology. 2013;64(7):529–34.                                               |
| 11 | 13.     | Stroud LR, Salovey P, Epel ES. Sex differences in stress responses: Social rejection      |
| 12 | versus  | s achievement stress. Biol Psychiat. 2002;52(4):318–27.                                   |
| 13 | 14.     | Matud MP. Gender differences in stress and coping styles. Pers Indiv Differ.              |
| 14 | 2004;   | 37(7):1401–15.                                                                            |
| 15 | 15.     | Koslowsky M. Commuting Stress: Problems of Definition and Variable Identification.        |
| 16 | Appl    | Psychol An-Int Rev. 1997;46(2):153–73.                                                    |
| 17 | 16.     | St-Louis E, Manaugh K, van Lierop D, El-Geneidy A. The happy commuter: A                  |
| 18 | comp    | arison of commuter satisfaction across modes. Transportation research. Part F, Traffic    |
| 19 | psych   | ology and behaviour. 2014;26:160–70.                                                      |
| 20 | 17.     | Lajeunesse S, Rodríguez D a. Mindfulness, time affluence, and journey-based affect:       |
| 21 | Explo   | ring relationships. ransportation research. Part F, Traffic psychology and behaviour.     |
| 22 | 2012;   | 15(2):196–205.                                                                            |
| 23 | 18.     | Anable J, Gatersleben B. All work and no play? The role of instrumental and affective     |
| 24 | factor  | s in work and leisure journeys by different travel modes. Transportation research. Part   |
| 25 | A, Po   | licy and practice. 2005;39(2–3):163–81.                                                   |
|    |         |                                                                                           |

|    | BMJ Open                                                                                     |
|----|----------------------------------------------------------------------------------------------|
|    | 26                                                                                           |
| 1  | 19. Guell C, Ogilvie D. Picturing commuting: photovoice and seeking wellbeing in             |
| 2  | everyday travel. Qual Res. 2015;15(2)201-218.                                                |
| 3  | 20. Titze S, Stronegger WJ, Janschitz S, Oja P. Association of built-environment, social-    |
| 4  | environment and personal factors with bicycling as a mode of transportation among Austrian   |
| 5  | city dwellers. Prev Med. 2008;47(3):252-9.                                                   |
| 6  | 21. Brown BB, Smith KR, Hanson H, Fan JX, Kowaleski-Jones L, Zick CD.                        |
| 7  | Neighborhood design for walking and biking: physical activity and body mass index. Am J      |
| 8  | Prev Med; 2013;44(3):231–8.                                                                  |
| 9  | 22. Fraser SDS, Lock K. Cycling for transport and public health: a systematic review of      |
| 10 | the effect of the environment on cycling. Eur J Public Health. 2011;21(6).                   |
| 11 | 23. Grasser G, Van Dyck D, Titze S, Stronegger W. Objectively measured walkability and       |
| 12 | active transport and weight-related outcomes in adults: a systematic review. Int J Public    |
| 13 | Health; 2013;58(4):615–25.                                                                   |
| 14 | 24. Cole-Hunter T, Donaire-Gonzalez D, Curto a., Ambros a., Valentin a., Garcia-             |
| 15 | Aymerich J, et al. Objective correlates and determinants of bicycle commuting propensity in  |
| 16 | an urban environment. Transportation research. Part D Transport and environment.             |
| 17 | 2015;40(2):132–43.                                                                           |
| 18 | 25. Triguero-Mas M, Dadvand P, Cirach M, Martínez D, Medina A, Mompart A, et al.             |
| 19 | Natural outdoor environments and mental and physical health: Relationships and               |
| 20 | mechanisms. Environ Int. 2015;77:35–41.                                                      |
| 21 | 26. Dadvand P, Bartoll X, Basagaña X, Dalmau-Bueno A, Martinez D, Ambros A, et al.           |
| 22 | Green spaces and General Health: Roles of mental health status, social support, and physical |
| 23 | activity. Environ Int. 2016;91:161–7.                                                        |
| 24 | 27. Olsson LE, Gärling T, Ettema D, Friman M, Fujii S. Happiness and Satisfaction with       |
| 25 | Work Commute. Soc Indic Res. 2013;111(1):255-63.                                             |
|    |                                                                                              |
|    |                                                                                              |

#### **BMJ Open**

| 1  | 28.       | Gottholmseder G, Nowotny K, Pruckner GJ, Theurl E. Stress perception and             |
|----|-----------|--------------------------------------------------------------------------------------|
| 2  | commu     | nting. Health Econ. 2009;18(5):559–76.                                               |
| 3  | 29.       | Ohta M, Mizoue T, Mishima N, Ikeda M. Effect of the physical activities in leisure   |
| 4  | time ar   | nd commuting to work on mental health. J Occup Health. 2007;49(1):46-52.             |
| 5  | 30.       | Hansson E, Mattisson K, Björk J, Östergren P-O, Jakobsson K. Relationship between    |
| 6  | commu     | uting and health outcomes in a cross-sectional population survey in southern Sweden. |
| 7  | BMC F     | Public Health. 2011;11:834.                                                          |
| 8  | 31.       | Donaire-Gonzalez D, Nazelle A De, Cole-Hunter T, Curto A, Rodriguez D, Mendez        |
| 9  | M, et a   | 1. The Added Benefit of Bicycle Commuting on the Regular Amount of Physical          |
| 10 | Activit   | y Performed. Am J Prev Med. 2015;49(6):842–9.                                        |
| 11 | 32.       | Institut d'Estudis Regionals i Metropolitans de Barcelona. La Mobilitat quotidiana a |
| 12 | Catalu    | nya. Papers. Regió Metropolitana de Barcelona 2008.                                  |
| 13 | 33.       | Forsyth A, Krizek KJ, Agrawal AW, Stonebraker E. Reliability testing of the          |
| 14 | Pedesti   | rian and Bicycling Survey (PABS) method. J Phys Act Health. 2012;9(5):677–88.        |
| 15 | 34.       | Warttig SL, Forshaw MJ, South J, White AK. New, normative, English-sample data       |
| 16 | for the   | Short Form Perceived Stress Scale (PSS-4). J Health Psychol. 2013;18(12):1617-28.    |
| 17 | 35.       | Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE.                |
| 18 | Interna   | tional physical activity questionnaire: 12-country reliability and validity. Med Sci |
| 19 | Sport E   | Exerc. 2003;35(8):1381–95.                                                           |
| 20 | 36.       | Domínguez-Berjón MF, Borrell C, Cano-Serral G, Esnaola S, Nolasco A, Pasarín MI,     |
| 21 | et al. [O | Constructing a deprivation index based on census data in large Spanish cities (the   |
| 22 | MEDE      | A project)]. Gac Sanit. 2008 Jun;22(3):179-87.                                       |
| 23 | 37.       | Beelen R, Hoek G, Vienneau D, Eeftens M, Dimakopoulou K, Pedeli X, et al.            |
| 24 | Develo    | pment of NO2 and NOx land use regression models for estimating air pollution         |
|    |           |                                                                                      |
|    |           |                                                                                      |

| 1  | exposure in 36 study areas in Europe – The ESCAPE project. Atmospheric Environment.       |
|----|-------------------------------------------------------------------------------------------|
| 2  | 2013 Jun;72(2):10–23.                                                                     |
| 3  | 38. World Health Organisation. Guideline for Community Noise. 2011.                       |
| 4  | http://www.who.int/docstore/peh/noise/Commnoise4.htm (accessed 10 April 2015).            |
| 5  | 39. Winters M, Brauer M, Setton EM, Teschke K. Mapping bikeability: A spatial tool to     |
| 6  | support sustainable travel. Environ Plan B Plan Des. 2013;40(5):865–83.                   |
| 7  | 40. Hastie TJ, Tibshirani R. Generalized additive models. Stat Sci. 1990;1(3):297–318.    |
| 8  | 41. Fox KR. The influence of physical activity on mental well-being. Public Health Nutr.  |
| 9  | 1999;2(3A):411–8.                                                                         |
| 10 | 42. Sexton H, Søgaard a. J, Olstad R. How are mood and exercise related? Results from     |
| 11 | the Finnmark study. Soc Psych Psych Epid. 2001;36(7):348-53.                              |
| 12 | 43. Peluso MA, Guerra de Andrade LH. Physical activity and mental health: the             |
| 13 | association between exercise and mood. Clinics (Sao Paulo). 2005;60(1):61-70.             |
| 14 | 44. Galper DI, Trivedi MH, Barlow CE, Dunn AL, Kampert JB. Inverse association            |
| 15 | between physical inactivity and mental health in men and women. Med Sci Sports Exerc.     |
| 16 | 2006;38(1):173–8.                                                                         |
| 17 | 45. Maas J, Verheij RA, Groenewegen PP, De Vries S, Spreeuwenberg P. Green space,         |
| 18 | urbanity, and health: how strong is the relation? J Epidemiol Community Health.           |
| 19 | 2006;60(7):587–92.                                                                        |
| 20 | 46. Stults-Kolehmainen MA, Sinha R. The effects of stress on physical activity and        |
| 21 | exercise. Sports Med. 2014;44(1):81-121.                                                  |
| 22 | 47. Baron RM, Kenny D a. The moderator-mediator variable distinction in social            |
| 23 | psychological research: conceptual, strategic, and statistical considerations. J Pers Soc |
| 24 | Psychol. 1986;51(6):1173-82.                                                              |
| 25 |                                                                                           |
|    |                                                                                           |

## SUPPLEMENTARY MATERIAL

#### Table S1. PSS4 questions used in TAPAS Travel Survey

*Q218.* In the last month, how often have you felt that you were unable to control important things in your life?

| 0   | Never            |
|-----|------------------|
| 1   | Almost never     |
| 2   | Nearly always    |
| 3   | Always           |
| 997 | Don't Know       |
| 998 | Refuse to Answer |

# *Q219.* In the last month, how often have you felt confident about your ability to handle your personal problems?

0 Never
1 Almost never
2 Nearly always
3 Always
997 Don't Know
998 Refuse to Answer

Q220. In the last month, how often have you felt that things were going your way?

- Never
   Almost never
   Nearly always
   Always
   Always
   Don't Know
   Refuse to Answer
- *Q221.* In the last month, how often have you felt that difficulties were piling up so high that you could not overcome them?
  - Never
     Almost never
     Nearly always
     Always
  - 997 Don't Know
  - 998 Refuse to Answer

| PSS-4 score | n   | %      | Cumulative % |
|-------------|-----|--------|--------------|
| 0           | 90  | 11.61  | 11.61        |
| 1           | 125 | 16.13  | 27.74        |
| 2           | 129 | 16.65  | 44.39        |
| 3           | 151 | 19.48  | 63.87        |
| 4           | 144 | 18.58  | 82.45        |
| 5           | 38  | 4.90   | 87.35        |
| 6           | 33  | 4.26   | 91.61        |
| 7           | 12  | 1.55   | 93.16        |
| 8           | 28  | 3.61   | 96.77        |
| 9           | 5   | 0.65   | 97.42        |
| 10          | 11  | 1.42   | 98.84        |
| 11          | 3   | 0.39   | 99.23        |
| 12          | 4   | 0.52   | 99.74        |
| 13          | 1   | 0.13   | 99.87        |
| 14          | 1   | 0.13   | 100.00       |
| Total       | 775 | 100.00 |              |

Table S2. PSS4 score distribution in TAPAS Travel Survey sample

6 7 8

#### **BMJ Open**

#### Table S3. Descriptive analyses of participant perceived stress and its determinants

according to bicycle commuting levels and bicycle commuting propensity.

| 9  |                                                  |                          |                |             |                    |             |           |                      |        |               |                              |               |          |                |        |               |                      |  |
|----|--------------------------------------------------|--------------------------|----------------|-------------|--------------------|-------------|-----------|----------------------|--------|---------------|------------------------------|---------------|----------|----------------|--------|---------------|----------------------|--|
| 10 |                                                  | Bicycle commuting levels |                |             |                    |             |           |                      |        |               | Ricycle computing presentity |               |          |                |        |               |                      |  |
| 11 | Voriables                                        |                          | Low            | Me          | dium               | H           | ligh      |                      | U      | willing       | 1                            | Villing       | Infact   | propensity     | F      | requent       |                      |  |
| 12 | variables                                        | n                        | (109)          | ((          | 65)<br>%           | (2          | 224)<br>% | p-value <sup>a</sup> | n      | (230)         | n                            | (160)         | n        | quent (109)    | n      | (289)         | p-value <sup>a</sup> |  |
| 13 | Outcome                                          |                          |                | -           |                    | -           |           |                      |        |               |                              | ,.            |          |                |        | ,.            |                      |  |
| 14 | Stressed (median)(Yes)                           | 49                       | 45.37          | 12          | 19.05              | 57          | 26.15     | < 0.001              | 107    | 46.93         | 55                           | 34.81         | 49       | 45.37          | 69     | 24.56         | < 0.001              |  |
| 15 |                                                  |                          |                |             |                    |             |           |                      |        |               |                              |               |          |                |        |               |                      |  |
| 16 | Individual determinants                          |                          |                |             |                    |             |           |                      |        |               |                              |               |          |                |        |               |                      |  |
| 10 | Age (median; P25-P75)                            | 36                       | 28-42          | 36          | 28-45              | 35          | 29-41     | 0.777                | 37     | 30-46         | 36                           | 29.5-45       | 36       | 28-42          | 35     | 29-41         | 0.111                |  |
| 17 | Total PA - min/week (median: P25-P75)            | 494.99                   | 299.99-734.99  | 454.99      | 359.99-            | 484.99      | 339.99-   | 0.567                | 364.99 | 209.99-600.00 | 404.99                       | 209.99-629.99 | 494.99   | 299.99-734.99  | 480.00 | 339.99-744.99 | < 0.001              |  |
| 18 |                                                  | 240.00                   | 134.99-480.00  | 294.99      | 189.99-            | 300.00      | 177.49-   | 0.092                | 90.00  | 0-244.99      | 90.00                        | 0-240.00      | 240.00   | 134.99-480.00  | 300.00 | 179.99-450.00 | < 0.001              |  |
| 19 | MVPA – min/week (median; P25-P/5)                | 120.00                   | 0-224.99       | 90.00       | 390.00<br>0-199.99 | 102.50      | 4/9.99    | 0.386                | 45.00  | 0-150.00      | 0                            | 0-127.50      | 120.00   | 0-224.99       | 90.00  | 225.00        | < 0.001              |  |
| 20 | VPA – min/week (median; P25-P75)                 | 49                       | 44.95          | 33          | 50.77              | 94          | 41.96     | 0.446                | 151    | 65.65         | 83                           | 51.88         | 49       | 44.95          | 127    | 43.94         | -0.001               |  |
| 21 | Gender (woman)                                   | 19                       | 17.59          | 7           | 10.77              | 30          | 13.39     | 0.412                | 16     | 6.96          | 25                           | 15.63         | 19       | 17.59          | 37     | 12.80         | <0.001               |  |
| 21 | Country of birth (non-Spanish)                   | 17                       | 15.60          | 10          | 15.38              | 24          | 10.71     | 0.364                | 24     | 10.43         | 29                           | 18.13         | 17       | 15.60          | 34     | 11.76         | 0.014                |  |
| 22 | Education level (University studies completed or | 81                       | 74.31          | 50          | 76.92              | 173         | 77.23     | 0.836                | 161    | 70.00         | 86                           | 53 75         | 81       | 74 31          | 223    | 77.16         | <0.001               |  |
| 23 | equivalent-level education)                      | 00                       | 74.51          | 40          | 75.00              | 175         | 76.70     | 0.633                | 102    | 70.00         | 125                          | 04.20         | 01       | 74.51          | 220    | 76.20         | <0.001               |  |
| 24 | Living with family/partner                       | 60<br>60                 | 80.73<br>63.30 | 40          | 55.56              | 1/2         | 64.73     | 0.622                | 192    | 83.48         | 100                          | 68.00         | 60<br>60 | 80.73<br>63.30 | 180    | 62 72         | 0.114                |  |
| 25 | Employed people in household (2-5)               | 09                       | 03.30          |             | 55.50              | 14.3        | 04.73     | 0.410                | 132    | 00.09         | 109                          | 00.99         | 09       | 05.50          | 100    | 02.72         | 0.568                |  |
| 26 | MEDEA index                                      | 25                       | 22.11          | 22          | 25.29              | 75          | 22.49     | 0.027                | 81     | 25.22         | 40                           | 20.62         | 25       | 22.11          | 08     | 22.01         | 0.000                |  |
| 27 | 1st tertile (least deprived)                     | 29                       | 24.96          | 25          | 41.54              | 76          | 22.02     |                      | 66     | 28.70         | 56                           | 35.00         | 29       | 24.96          | 102    | 25.64         |                      |  |
| 20 | 2nd tertile                                      | 36                       | 22.02          | 15          | 22.08              | 72          | 22.50     |                      | 92     | 26.00         | 55                           | 24.28         | 36       | 22.02          | 105    | 20.45         |                      |  |
| 20 | 3rd tertile (most deprived)                      | 31                       | 28.44          | 15          | 28.13              | 79          | 35.27     | 0.340                | 9/     | 40.87         | 57                           | 35.85         | 31       | 28.44          | 97     | 33.68         | 0.128                |  |
| 29 | Children in household (Yes)                      | 3                        | 20.44          | 5           | 7.94               | 20          | 8.93      | 0.114                | 20     | 8 73          | 16                           | 10.00         | 3        | 2 75           | 25     | 8 71          | 0.158                |  |
| 30 | Children <3 years in household (Yes)             | 43                       | 39.45          | 27          | 41 54              | 113         | 50.45     | 0.123                | 90     | 39.13         | 50                           | 31.25         | 43       | 39.45          | 140    | 48 44         | 0.150                |  |
| 31 | Self-perceived health (Very good/Excellent)      |                          | 22.04          |             |                    |             | 21.00     | 0.969                | 50     | 21.00         | 51                           | 22.00         |          | 22.04          | 63     | 21.0          | 0.004                |  |
| 32 | BMI (Overweight/Obese)                           | 25                       | 22.94          | 14          | 21.54              | 49          | 21.88     | 0.158                | 73     | 31.88         | 7                            | 32.08         | 25       | 22.94          | 25     | 21.8          | 0.021                |  |
| 33 | Chronic disease (Yes)                            | 95                       | 87.16          | 62          | 98.41              | 100         | 90.05     | 0.047                | 163    | 72 44         | 130                          | 89.68         | 05       | 87.16          | 25     | 91.90         | 0.293                |  |
| 24 | Stress releasing (Agreement)                     | 103                      | 94.50          | 65          | 100.00             | 212         | 95.03     | 0.175                | 116    | 51.79         | 133                          | 84 71         | 103      | 94 50          | 201    | 96.85         | <0.001               |  |
| 34 | Bicycle trip enjoyment (Agreement)               | 105                      | 74.50          | 05          | 100.00             | 212         | 10.10     | 0.175                | 110    | 51.77         | 155                          | 04.71         | 105      | 94.50          | 211    | 70.05         | <0.001               |  |
| 35 |                                                  |                          |                |             |                    |             |           |                      |        |               |                              |               |          |                |        |               |                      |  |
| 36 | Environmental determinants                       | 3.73                     | 1.97           | 3.43        | 1.70               | 3.13        | 1.52      | 0.044                | 4.42   | 2.35          | 4.32                         | 2.11          | 3.73     | 1.97           | 3.20   | 1.56          | < 0.001              |  |
| 37 | Commute distance, estimated (km) (mean;SD)       |                          |                |             |                    |             |           |                      |        |               |                              |               |          |                |        |               |                      |  |
| 38 | Public bicycle stations (mean;SD)                | 4.61                     | 2.61           | 4.97        | 2.63               | 4.75        | 2.35      | 0.492                | 3.77   | 2.53          | 3.72                         | 2.49          | 4.61     | 2.61           | 4.80   | 2.41          | < 0.001              |  |
| 30 | Home, count in 400m buffer                       | 4.89                     | 2.96           | 5.89        | 3.11               | 5.39        | 3.05      | 0.124                | 4.36   | 2.96          | 4.71                         | 3.35          | 4.89     | 2.96           | 5.50   | 3.06          | < 0.001              |  |
| 40 | work/study, count in 400m burrer                 |                          |                |             |                    |             |           |                      |        |               |                              |               |          |                |        |               |                      |  |
| 40 | Using suggests of 400m buffer                    | 0.83                     | 1.30           | 0.75        | 0.98               | 0.59        | 0.94      | 0.635                | 0.90   | 1.03          | 0.91                         | 1.16          | 0.83     | 1.30           | 0.62   | 0.95          | 0.002                |  |
| 41 | Work/study, suggests of 400m buffer              | 0.60                     | 0.82           | 0.37        | 0.57               | 0.58        | 0.90      | 0.136                | 0.68   | 1.11          | 0.74                         | 1.01          | 0.60     | 0.82           | 0.53   | 0.84          | 0.328                |  |
| 42 | Commute route, average of PRA                    | 0.95                     | 0.94           | 0.76        | 0.83               | 0.87        | 0.81      | 0.322                | 1.10   | 1.11          | 1.02                         | 0.98          | 0.95     | 0.94           | 0.84   | 0.81          | 0.236                |  |
| 43 | NO. and (many SD)                                |                          |                |             |                    |             |           |                      |        |               |                              |               |          |                |        |               |                      |  |
| 44 | Home concentration in 400m huffer                | 74.76                    | 18.70          | 77.24       | 16.14              | 78.40       | 17.90     | 0.186                | 75.59  | 17.08         | 74.51                        | 17.20         | 74.76    | 18.70          | 78.14  | 17.49         | 0.063                |  |
| 45 | Work/ctudy_concentration in 400m buffer          | 76.49                    | 21.63          | 83.02       | 18.82              | 77.81       | 21.37     | 0.091                | 78.50  | 23.84         | 78.64                        | 24.11         | 76.49    | 21.63          | 79.00  | 20.90         | 0.727                |  |
| 46 | Commute route concentration in PPA               | 82.86                    | 16.10          | 87.47       | 15.22              | 84.51       | 18.08     | 0.127                | 85.22  | 17.34         | 82.76                        | 15.95         | 82.86    | 16.10          | 85.19  | 17.48         | 0.296                |  |
| 40 | Noise >55dP (magn:SD)                            |                          |                |             |                    |             |           |                      |        |               |                              |               |          |                |        |               |                      |  |
| 41 | Home proportion in 400m buffer                   | 78.73                    | 13.39          | 77.65       | 9.77               | 78.63       | 11.54     | 0.554                | 79.03  | 11.00         | 78.39                        | 11.01         | 78.73    | 13.39          | 78.41  | 11.16         | 0.847                |  |
| 48 | Work/study proportion in 400m buffer             | 81.64                    | 13.60          | 80.04       | 13.80              | 79.32       | 15.04     | 0.468                | 78.46  | 15.47         | 80.00                        | 13.94         | 81.64    | 13.60          | 79.48  | 14.75         | 0.434                |  |
| 49 | Commute route proportion in PBA                  | 78.62                    | 9.13           | 75.40       | 9.26               | 77.21       | 9.64      | 0.057                | 77.12  | 8.43          | 78.08                        | 8.78          | 78.62    | 9.13           | 76.80  | 9.57          | 0.160                |  |
| 50 | Bikeability (mean:SD)                            |                          |                |             |                    |             |           |                      |        |               |                              |               |          |                |        |               |                      |  |
| 51 | Home concentration in 400m buffer                | 6.29                     | 1.44           | 6.49        | 1.23               | 6.54        | 1.27      | 0.330                | 5.88   | 1.45          | 6.00                         | 1.45          | 6.29     | 1.44           | 6.53   | 1.26          | < 0.001              |  |
| 51 | Work/study, concentration in 400m buffer         | 6.82                     | 1.28           | 6.88        | 0.98               | 6.75        | 1.17      | 0.638                | 6.21   | 1.58          | 6.46                         | 1.47          | 6.82     | 1.28           | 6.78   | 1.13          | < 0.001              |  |
| 52 | Commute route, concentration in PBA              | 6.77                     | 1.10           | 7.02        | 0.93               | 6.99        | 0.93      | 0.236                | 6.36   | 1.22          | 6.58                         | 1.16          | 6.77     | 1.10           | 7.00   | 0.93          | < 0.001              |  |
| 53 | DA Dissolution in RDA                            | initen M                 | VDA Madana     | a to Misson |                    | A ativity X | IDA Maria |                      | A      |               | 1.1.1                        | /             | Deneão   |                | 1. 1   |               |                      |  |

Intration in RRA Internet in RRA PA, Physical Activity; MVPA, Moderate-to-Vigorous Physical Activity; VPA, Vigorous Physical Activity; MEDEA, Mortalidad en áreas pequeñas Españolas y Desigualdades socioEconómicas y Ambientales, in Spanish (Environmental and socioEconomic Inequalities in Mortality in small Spanish areas, translated to English); BMI, Body Mass Index; NDVI, Normalized Difference Vegetation Index; RBA, Route-By-Area. Data are n and %, unless otherwise noted. There are missing data in: Perceived stress (13; 1.65%), Total PA (5; 0.63%), Country of birth (1; 0.13%), Living with family/partner (1; 0.13%), Employed people in household (4; 0.51), Children in household (2; 0.25%), Children (3years old in household (3; 0.38), BMI (2; 0.25%); Stress releasing (15; 1.90%), Bicycle trip enjoyment (12; 1.52%), Commute distance (20; 2.54%), Greenness (20; 2.54%), NO<sub>2</sub> (20; 2.54%), <sup>a</sup>Chi square test, except for Age, Total PA, MVPA, VPA, and all the Environmental determinants (U Mann Whitney test).

57 58

- 59
- 60

#### Table S4. Sensitivity bivariate analyses of the relationship between participant

#### determinants and perceived stress (P75, P90).

| Variable                                         |      | Perceived stress | s (P75) | Perceived stress (P90) |               |         |  |
|--------------------------------------------------|------|------------------|---------|------------------------|---------------|---------|--|
| Valladic                                         | RI   | R (95% CI)       | p-value | RI                     | R (95% CI)    | p-value |  |
|                                                  |      |                  |         |                        |               |         |  |
| Individual determinants                          | 1.00 | (0.00, 1.02)     | 0.703   | 1.00                   | (0.07.1.02)   | 0.662   |  |
| Age                                              | 1.00 | (0.99, 1.02)     | 0.793   | 1.00                   | (0.97, 1.02)  | 0.002   |  |
| Total PA - min/week                              | 1.00 | (0.99, 1.00)     | 0.113   | 1.00                   | (0.99, 1.00)  | 0.802   |  |
| MVPA - min/week                                  | 1.00 | (0.99, 1.00)     | 0.197   | 1.00                   | (0.99, 1.00)  | 0.701   |  |
| VPA - min/week                                   | 1.00 | (0.99, 1.00)     | 0.382   | 1.00                   | (0.99, 1.00)  | 0.743   |  |
| Gender (Woman)                                   | 1.41 | (1.03, 1.93)     | 0.032   | 1.69                   | (1.04, 2.76)  | 0.035   |  |
| Country of birth (non-Spanish)                   | 1.16 | (0.75, 1.78)     | 0.515   | 1.14                   | (0.58, 2.24)  | 0.695   |  |
| Education level (University studies completed or | 1.40 | (0.99, 2.14)     | 0.051   | 1.04                   | (0.55, 2.04)  | 0.904   |  |
| equivalent-level education)                      | 0.78 | (0.57, 1.07)     | 0.119   | 0.80                   | (0.49, 1.30)  | 0.369   |  |
| Living with family/partner                       | 1.00 | (0.68, 1.47)     | 0.987   | 0.94                   | (0.53, 1.68)  | 0.841   |  |
| Employed people in household (2-5)               | 0.67 | (0.50, 0.91)     | 0.011   | 0.75                   | (0.47, 1.20)  | 0.231   |  |
| MEDEA index                                      |      |                  |         |                        |               |         |  |
| 1st tertile (least deprived)                     | 1.00 |                  |         | 1.00                   |               |         |  |
| 2nd tertile                                      | 1.42 | (0.96, 2.11)     | 0.081   | 1.85                   | (0.99, 3.46)  | 0.054   |  |
| 3rd tertile (most deprived)                      | 1.45 | (0.97, 2.14)     | 0.067   | 1.77                   | (0.94, 3.33)  | 0.076   |  |
| Children in household (Yes)                      | 1.05 | (0.76, 1.44)     | 0.778   | 0.92                   | (0.56, 1.51)  | 0.743   |  |
| Children <3 years in household (Yes)             | 0.61 | (0.30, 1.25)     | 0.180   | 0.54                   | (0.17, 1.68)  | 0.289   |  |
| Self-perceived health (Very good/Excellent)      | 0.65 | (0.47, 0.91)     | 0.011   | 0.88                   | (0.55, 1.42)  | 0.604   |  |
| BMI (Overweight/Obese)                           | 1.08 | (0.77, 1.51)     | 0.664   | 1.03                   | (0.61, 1.73)  | 0.922   |  |
| Chronic disease (Yes)                            | 1.58 | (1.01, 2.48)     | 0.047   | 1.66                   | (0.83, 3.32)  | 0.150   |  |
| Stress releasing (Agreement)                     | 0.85 | (0.57, 1.27)     | 0.423   | 0.94                   | (0.49, 1.79)  | 0.850   |  |
| Bicycle trip enjoyment (Agreement)               | 0.74 | (0.52, 1.04)     | 0.085   | 0.79                   | (0.46, 1.37)  | 0.409   |  |
| Environmental determinants                       |      |                  |         |                        |               |         |  |
| Commute distance, estimated (km)                 | 1.07 | (0.99, 1.14)     | 0.053   | 1.03                   | (0.92, 1.15)  | 0.620   |  |
| Public bicycle stations                          |      |                  |         |                        |               |         |  |
| Home, count in 400m buffer                       | 0.99 | (0.93, 1.06)     | 0.770   | 0.94                   | (0.84, 1.04)  | 0.253   |  |
| Work/study_count in 400m buffer                  | 0.96 | (0.91, 1.01)     | 0.103   | 0.96                   | (0.89, 1.03)  | 0.242   |  |
| Greenness, NDVI                                  |      |                  |         |                        |               |         |  |
| Home average of 400m buffer                      | 0.95 | (0.79, 1.14)     | 0.557   | 1.04                   | (0.81, 1.33)  | 0.768   |  |
| Work/study_average of 400m buffer                | 1.09 | (0.94, 1.27)     | 0.262   | 0.99                   | (0.74, 1.32)  | 0.936   |  |
| Commute route average of RBA                     | 1.04 | (0.88, 1.22)     | 0.655   | 1.18                   | (0.95, 1.47)  | 0.138   |  |
| NO <sub>2</sub> pph                              |      | (0100) 1122)     |         |                        | (0.70, 0.00)  |         |  |
| Home concentration in 400m buffer                | 1.00 | (0.99, 1.00)     | 0.390   | 1.00                   | (0.98, 1.01)  | 0.728   |  |
| Work/study_concentration in 400m buffer          | 0.99 | (0.99, 1.00)     | 0.042   | 0.99                   | (0.98, 1.00)  | 0.076   |  |
| Commute route, concentration in RBA              | 1.00 | (0.99, 1.01)     | 0.474   | 0.99                   | (0.97, 1.00)  | 0.138   |  |
| Noise >55dB                                      | 1.00 | (0.99, 1.01)     | 0.777   | 0.77                   | -(0.27, 1.00) | 0.150   |  |
| Home proportion in 400m buffer                   | 1.01 | (0.99, 1.02)     | 0.483   | 1.00                   | (0.98, 1.03)  | 0.845   |  |
| Work/study, proportion in 400m buffer            | 1.01 | (0.99, 1.02)     | 0.549   | 1.00                   | (0.98, 1.03)  | 0.835   |  |
| Commute route proportion in DDA                  | 1.00 | (0.99, 1.01)     | 0.54    | 1.00                   | (0.98, 1.02)  | 0.035   |  |
| Commute route, proportion in KBA                 | 1.00 | (0.90, 1.01)     | 0.034   | 1.01                   | (0.90, 1.04)  | 0.444   |  |
| Bikeability                                      | 0.07 | (0.87 1.08)      | 0.522   | 0.02                   | (0.78 1.00)   | 0.254   |  |
| Home, concentration in 400m burier               | 0.97 | (0.87, 1.00)     | 0.552   | 0.92                   | (0.76, 1.09)  | 0.330   |  |
| work/study, concentration in 400m buffer         | 0.92 | (0.82, 1.02)     | 0.108   | 0.89                   | (0.75, 1.07)  | 0.210   |  |
| Commute route concentration in RBA               | 0.88 |                  | 0.055   | 0.81                   | (U NN (U 99)  | 0.042   |  |

Commute route, concentration in RBA 0.68 (0.77, 1.00) 0.03 0.61 (0.06, 0.27) 0.042 PA, Physical Activity; MVPA, Moderate-to-Vigorous Physical Activity; VPA, Vigorous Physical Activity; MEDEA, Mortalidad en áreas pequeñas Españolas y Desigualdades socioEconómicas y Ambientales, in Spanish (Environmental and socioEconomic Inequalities in Mortality in small Spanish areas, translated to English); BMI, Body Mass Index; NDVI, Normalized Difference Vegetation Index; RBA, Route-By-Area. Complete case analysis excluding missing data of the variables of final models (Table S5; n=771). The variables that still present missing data and are not included in the final models are: Total PA (5; 0.63%), People living with in household (1; 0.13%), Children in household (2; 0.25%), Children <3years old in household (3; 0.38), BMI (2; 0.25%); Stress releasing (15; 1.90%), Bicycle trip enjoyment (12; 1.52%), Commute distance (20; 2.54%), Greenness (20; 2.54%), NO<sub>2</sub>(20; 2.54%).

#### BMJ Open

## **Table S5**. Sensitivity analyses with multivariate models assessing the relationship between bicycle commuting and participant

perceived stress (P75, P90).

| 7  |                                         | <u>.</u>  |                      |            |          |                      |              | <u>.</u>   |                            |            |            |                      |              |             |                      |             |             |                      |              |            |                      |               |      |                              |         |
|----|-----------------------------------------|-----------|----------------------|------------|----------|----------------------|--------------|------------|----------------------------|------------|------------|----------------------|--------------|-------------|----------------------|-------------|-------------|----------------------|--------------|------------|----------------------|---------------|------|------------------------------|---------|
| 8  | Variable                                |           | Model 1 <sup>a</sup> |            |          | fodel 2 <sup>b</sup> | Perceived    | stress (P7 | 5)<br>Model 3 <sup>c</sup> |            |            | Iodel 4 <sup>d</sup> |              |             | Model 1 <sup>a</sup> |             |             | Model 2 <sup>b</sup> | Perceived st | ress (P90) | fodel 3 <sup>c</sup> |               |      | odel 4 <sup>d</sup>          |         |
| 9  |                                         | RR        | (95% CI)             | p-value    | RR       | (95% CI)             | p-value      | RI         | R (95% CI)                 | p-value    | RR         | (95% CI)             | p-value      | RF          | (95% CI)             | p-value     | RR          | (95% CI)             | p-value      | RR         | (95% CI)             | p-value       | RR   | (95% CI)                     | p-value |
| 10 | All sample (771)                        |           |                      |            |          |                      |              |            |                            |            |            |                      |              |             |                      |             |             |                      |              |            |                      |               |      |                              |         |
| 11 | Non-bicycle commuters                   | 1.00      |                      |            | 1.00     |                      |              | 1.00       |                            |            | 1.00       |                      |              | 1.00        |                      |             | 1.00        |                      |              | 1.00       |                      |               | 1.00 |                              |         |
| 12 | Bicycle commuters                       | 0.58      | (0.42, 0.79)         | 0.001      | 0.58     | (0.42, 0.79)         | 0.001        | 0.61       | (0.44, 0.85)               | 0.004      | 0.64       | (0.46, 0.90)         | 0.011        | 0.54        | (0.33, 0.89)         | 0.014       | 0.56        | (0.34, 0.93)         | 0.025        | 0.52       | (0.31, 0.88)         | 0.014         | 0.56 | (0.33, 0.95)                 | 0.032   |
| 12 | Bicycle commuting levels                |           |                      |            |          |                      |              |            |                            |            |            |                      |              |             |                      |             |             |                      |              |            |                      |               |      |                              |         |
| 13 | Non-bicycle commuters (0 days)          | 1.00      |                      |            | 1.00     |                      |              | 1.00       |                            |            | 1.00       |                      |              | 1.00        |                      |             | 1.00        |                      |              | 1.00       |                      |               | 1.00 |                              |         |
| 14 | Low-level bicycle commuters (1-3 days)  | 1.04      | (0.71, 1.54)         | 0.832      | 1.03     | (0.70, 1.53)         | 0.868        | 1.08       | (0.73, 1.59)               | 0.708      | 1.10       | (0.74, 1.64)         | 0.626        | 1.20        | (0.68, 2.11)         | 0.535       | 1.22        | (0.68, 2.21)         | 0.505        | 1.14       | (0.63, 2.07)         | 0.662         | 1.18 | (0.65, 2.14)                 | 0.589   |
| 15 | Medium-level bicycle commuters (4 days) | 0.22      | (0.07, 0.66)         | <0.007     | 0.20     | (0.07, 0.62)         | 0.005        | 0.21       | (0.07, 0.65)               | 0.007      | 0.22       | (0.07, 0.68)         | 0.009        | 0.15        | (0.02, 1.05)         | 0.056       | 0.14        | (0.02, 1.00)         | 0.050        | 0.14       | (0.02, 0.95)         | 0.044         | 0.15 | (0.02, 1.04)<br>(0.17, 0.73) | 0.054   |
| 16 | Bicycle commuting propensity            | 0.15      | (0.2), 0.70)         | -0.001     | 0.10     | (0.50, 0.72)         | 0.001        | 0.50       | (0.02, 0.10)               | 0.005      | 0.02       | (0.00, 0.02)         | 0.005        | 0.01        | (0110, 0170)         | 0.001       | 0.50        | (0.17, 0.75)         | 0.000        | 0.55       | (0.15, 0.05)         | 0.001         | 0.55 | (0.17, 0.75)                 | 0.000   |
| 17 | Unwilling non-bicycle commuters         | 1.00      |                      |            | 1.00     |                      |              | 1.00       |                            |            | 1.00       |                      |              | 1.00        |                      |             | 1.00        |                      |              | 1.00       |                      |               | 1.00 |                              |         |
| 10 | Willing non-bicycle commuters           | 0.71      | (0.47, 1.06)         | 0.090      | 0.74     | (0.49, 1.10)         | 0.135        | 0.71       | (0.48, 1.06)               | 0.095      | 0.72       | (0.48, 1.08)         | 0.116        | 0.66        | (0.35, 1.22)         | 0.183       | 0.70        | (0.38, 1.30)         | 0.255        | 0.70       | (0.37, 1.30)         | 0.253         | 0.71 | (0.38, 1.35)                 | 0.298   |
| 18 | Infrequent bicycle commuters            | 0.92      | (0.61, 1.38)         | 0.684      | 0.92     | (0.61, 1.39)         | 0.695        | 0.94       | (0.63, 1.43)               | 0.788      | 0.97       | (0.64, 1.48)         | 0.890        | 1.03        | (0.57, 1.87)         | 0.926       | 1.07        | (0.57, 2.01)         | 0.831        | 1.00       | (0.53, 1.88)         | 0.991         | 1.04 | (0.54, 1.98)                 | 0.915   |
| 19 | Frequent bicycle commuters              | 0.35      | (0.23, 0.54)         | <0.001     | 0.36     | (0.23, 0.55)         | < 0.001      | 0.38       | (0.24, 0.59)               | <0.001     | 0.40       | (0.25, 0.62)         | <0.001       | 0.25        | (0.12, 0.52)         | < 0.001     | 0.27        | (0.13, 0.56)         | < 0.001      | 0.25       | (0.12, 0.52)         | <0.001        | 0.27 | (0.13, 0.56)                 | <0.001  |
| 20 | Bicycle commuters sample (387)          |           |                      |            |          |                      |              |            |                            |            |            |                      |              |             |                      |             |             |                      |              |            |                      |               |      |                              |         |
| 21 | Low-level bicycle commuters (1-3 days)  | 1.00      |                      |            | 1.00     |                      |              | 1.00       |                            |            | 1.00       |                      |              | 1.00        |                      |             | 1.00        |                      |              | 1.00       |                      |               | 1.00 |                              |         |
| 22 | Medium-level bicycle commuters (4 days) | 0.21      | (0.06, 0.66)         | 0.008      | 0.19     | (0.06, 0.61)         | 0.005        | 0.19       | (0.06, 0.60)               | 0.005      | 0.19       | (0.06, 0.60)         | 0.004        | 0.12        | (0.02, 0.92)         | 0.041       | 0.11        | (0.02, 0.83)         | 0.032        | 0.11       | (0.02, 0.80)         | 0.028         | 0.11 | (0.02, 0.76)                 | 0.026   |
| 22 | High-level bicycle commuters (>=5 days) | 0.43      | (0.26, 0.73)         | 0.002      | 0.44     | (0.26, 0.75)         | 0.002        | 0.44       | (0.26, 0.75)               | 0.002      | 0.44       | (0.26, 0.73)         | 0.002        | 0.28        | (0.12, 0.65)         | 0.003       | 0.28        | (0.12, 0.65)         | 0.003        | 0.27       | (0.12, 0.64)         | 0.003         | 0.27 | (0.12, 0.60)                 | 0.001   |
| 23 | Bicycle commuters propensity            | 1.00      |                      |            | 1.00     |                      |              | 1.00       |                            |            | 1.00       |                      |              | 1.00        |                      |             | 1.00        |                      |              | 1.00       |                      |               | 1.00 |                              |         |
| 24 | Infrequent bicycle commuters            | 0.38      | (0.23, 0.64)         | < 0.001    | 0.38     | (0.23, 0.63)         | < 0.001      | 0.38       | (0.23, 0.63)               | < 0.001    | 0.38       | (0.23, 0.62)         | < 0.001      | 0.25        | (0.11, 0.55)         | 0.001       | 0.24        | (0.11, 0.55)         | 0.001        | 0.24       | (0.10, 0.54)         | 0.001         | 0.23 | (0.11, 0.51)                 | < 0.001 |
| 25 | Non-bicycle commuters sample (384)      |           |                      |            |          |                      |              |            |                            |            |            |                      |              |             |                      |             |             |                      |              |            |                      |               |      |                              |         |
| 26 | Bicycle commuters propensity            |           |                      |            |          |                      |              |            |                            |            |            |                      |              |             |                      |             |             |                      |              |            |                      |               |      |                              |         |
| 27 | Unwilling non-bicycle commuters         | 1.00      |                      |            | 1.00     |                      |              | 1.00       |                            |            | 1.00       |                      |              | 1.00        |                      |             | 1.00        |                      |              | 1.00       |                      |               | 1.00 |                              |         |
| 28 | Willing non-bicycle commuters           | 0.71      | (0.47, 1.06)         | 0.090      | 0.72     | (0.48, 1.07)         | 0.106        | 0.67       | (0.45, 1.00)               | 0.051      | 0.69       | (0.46, 1.03)         | 0.068        | 0.66        | (0.35, 1.22)         | 0.183       | 0.68        | (0.36, 1.26)         | 0.222        | 0.68       | (0.36, 1.26)         | 0.221         | 0.71 | (0.37, 1.36)                 | 0.300   |
| 20 | <sup>d</sup> Adjusted by Age, G         | Gender, C | Country of birth,    | , Employed | people i | n household, C       | Chronic dise | ease, Self | -perceived heal            | lth, MVPA, | , Public b | icycle stations      | at work/stud | dy, Bikeabi | lity at work/stu     | udy, Bikeab | ility at co | ommute route.        | viouerate-to | - vigorou  | is r ilysical Ac     | livity (ivi v | ΓA). |                              |         |
| 29 |                                         |           |                      |            |          |                      |              |            |                            |            |            |                      |              |             |                      |             |             |                      |              |            |                      |               |      |                              |         |
| 30 |                                         |           |                      |            |          |                      |              |            |                            |            |            |                      |              |             |                      |             |             |                      |              |            |                      |               |      |                              |         |
| 31 |                                         |           |                      |            |          |                      |              |            |                            |            |            |                      |              |             |                      |             |             |                      |              |            |                      |               |      |                              |         |
| 32 |                                         |           |                      |            |          |                      |              |            |                            |            |            |                      |              |             |                      |             |             |                      |              |            |                      |               |      |                              |         |
| 33 |                                         |           |                      |            |          |                      |              |            |                            |            |            |                      |              |             |                      |             |             |                      |              |            |                      |               |      |                              |         |
| 31 |                                         |           |                      |            |          |                      |              |            |                            |            |            |                      |              |             |                      |             |             |                      |              |            |                      |               |      |                              |         |
| 25 |                                         |           |                      |            |          |                      |              |            |                            |            |            |                      |              |             |                      |             |             |                      |              |            |                      |               |      |                              |         |
| 30 |                                         |           |                      |            |          |                      |              |            |                            |            |            |                      |              |             |                      |             |             |                      |              |            |                      |               |      |                              |         |
| 36 |                                         |           |                      |            |          |                      |              |            |                            |            |            |                      |              |             |                      |             |             |                      |              |            |                      |               |      |                              |         |
| 37 |                                         |           |                      |            |          |                      |              |            |                            |            |            |                      |              |             |                      |             |             |                      |              |            |                      |               |      |                              |         |
| 38 |                                         |           |                      |            |          |                      |              |            |                            |            |            |                      |              |             |                      |             |             |                      |              |            |                      |               |      |                              |         |
| 39 |                                         |           |                      |            |          |                      |              |            |                            |            |            |                      |              |             |                      |             |             |                      |              |            |                      |               |      |                              |         |
| 10 |                                         |           |                      |            |          |                      |              |            |                            |            |            |                      |              |             |                      |             |             |                      |              |            |                      |               |      |                              |         |
| 40 |                                         |           |                      |            |          |                      |              |            |                            |            |            |                      |              |             |                      |             |             |                      |              |            |                      |               |      |                              |         |
| 41 |                                         |           |                      |            |          |                      |              |            |                            |            |            |                      |              |             |                      |             |             |                      |              |            |                      |               |      |                              |         |
| 42 |                                         |           |                      |            |          |                      |              |            |                            |            |            |                      |              |             |                      |             |             |                      |              |            |                      |               |      |                              |         |
| 43 |                                         |           |                      |            |          |                      |              |            |                            |            |            |                      |              |             |                      |             |             |                      |              |            |                      |               |      |                              |         |
| 44 |                                         |           |                      |            |          |                      |              |            |                            |            |            |                      |              |             |                      |             |             |                      |              |            |                      |               |      |                              |         |
| 45 |                                         |           |                      |            |          |                      |              |            |                            |            |            |                      |              |             |                      |             |             |                      |              |            |                      |               |      |                              |         |
| 16 |                                         |           |                      |            |          | or noo               | rovio        |            | du bite                    | u//bm      | ione       | hmin                 | omloit       | alaha       |                      | lines       | vhtm        |                      |              |            |                      |               |      |                              |         |
| 40 |                                         |           |                      |            | r        | or heer              | revie        | W OF       | ny - nttp                  | .//bin     | Johei      | i.omj.c              | UII/SIT      |             | urguide              | mes.        | XIIII       |                      |              |            |                      |               |      |                              |         |
| 47 |                                         |           |                      |            |          |                      |              |            |                            |            |            |                      |              |             |                      |             |             |                      |              |            |                      |               |      |                              |         |
| 48 |                                         |           |                      |            |          |                      |              |            |                            |            |            |                      |              |             |                      |             |             |                      |              |            |                      |               |      |                              |         |
| 10 |                                         |           |                      |            |          |                      |              |            |                            |            |            |                      |              |             |                      |             |             |                      |              |            |                      |               |      |                              |         |

| STROBE Statement— | -checklist of item | s that should | be included in | n reports of | observational | studies |
|-------------------|--------------------|---------------|----------------|--------------|---------------|---------|
|                   |                    |               |                |              |               |         |

|                              | Item<br>No | Recommendation                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Reported in page     |
|------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Title and<br>abstract        | 1          | ( <i>a</i> ) Indicate the study's design with a commonly used term in the title or the abstract                                                                                                                                                                                                                                                                                                                                                                            | Page 2               |
|                              |            | ( <i>b</i> ) Provide in the abstract an informative and balanced summary of what was done and what was found                                                                                                                                                                                                                                                                                                                                                               | Page 2               |
| Introduction                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |
| Background/rati<br>onale     | 2          | Explain the scientific background and rationale for the investigation being reported                                                                                                                                                                                                                                                                                                                                                                                       | Pages 4, 5           |
| Objectives                   | 3          | State specific objectives, including any prespecified hypotheses                                                                                                                                                                                                                                                                                                                                                                                                           | Page 5               |
| Methods                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |
| Study design                 | 4          | Present key elements of study design early in the paper                                                                                                                                                                                                                                                                                                                                                                                                                    | Page 6               |
| Setting                      | 5          | Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection                                                                                                                                                                                                                                                                                                                                            | Pages 6, 7           |
| Participants                 | 6          | (a) Cohort study—Give the eligibility criteria, and the sources and methods<br>of selection of participants. Describe methods of follow-up<br><i>Case-control study</i> —Give the eligibility criteria, and the sources and<br>methods of case ascertainment and control selection. Give the rationale for<br>the choice of cases and controls<br><i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and<br>methods of selection of participants | Pages 6, 7           |
|                              |            | (b) Cohort study—For matched studies, give matching criteria and number<br>of exposed and unexposed<br><i>Case-control study</i> —For matched studies, give matching criteria and the<br>number of controls per case                                                                                                                                                                                                                                                       | -                    |
| Variables                    | 7          | Clearly define all outcomes, exposures, predictors, potential confounders,<br>and effect modifiers. Give diagnostic criteria, if applicable                                                                                                                                                                                                                                                                                                                                | Pages 7, 8, 9,<br>10 |
| Data sources/<br>measurement | 8*         | For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group                                                                                                                                                                                                                                                                                       | Pages 7, 8, 9,<br>10 |
| Bias                         | 9          | Describe any efforts to address potential sources of bias                                                                                                                                                                                                                                                                                                                                                                                                                  | Pages 6, 7           |
| Study size                   | 10         | Explain how the study size was arrived at                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pages 6, 7           |
| Quantitative variables       | 11         | Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why                                                                                                                                                                                                                                                                                                                                               | Pages 7, 8, 9,<br>10 |
| Statistical methods          | 12         | ( <i>a</i> ) Describe all statistical methods, including those used to control for confounding                                                                                                                                                                                                                                                                                                                                                                             | Page 10              |
|                              |            | (b) Describe any methods used to examine subgroups and interactions                                                                                                                                                                                                                                                                                                                                                                                                        | Page 10              |
|                              |            | (c) Explain how missing data were addressed                                                                                                                                                                                                                                                                                                                                                                                                                                | Page 10              |
|                              |            | (d) Cohort study—If applicable, explain how loss to follow-up was<br>addressed<br>Case-control study—If applicable, explain how matching of cases and<br>controls was addressed<br>Cross-sectional study—If applicable, describe analytical methods taking<br>account of sampling strategy                                                                                                                                                                                 | Page 10              |
|                              |            | ( <u>e</u> ) Describe any sensitivity analyses                                                                                                                                                                                                                                                                                                                                                                                                                             | Pages 7, 8, 10       |

Continued on next page

| Results          |     |                                                                                                                                                                                                         | Reported in<br>page      |
|------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Participants     | 13* | (a) Report numbers of individuals at each stage of study—eg numbers<br>potentially eligible, examined for eligibility, confirmed eligible, included in<br>the study, completing follow-up, and analysed | Page 6                   |
|                  |     | (b) Give reasons for non-participation at each stage                                                                                                                                                    | Page 6                   |
|                  |     | (c) Consider use of a flow diagram                                                                                                                                                                      | In previous papers       |
| Descriptive      | 14* | (a) Give characteristics of study participants (eg demographic, clinical,                                                                                                                               | Pages 10, 11,            |
| data             |     | social) and information on exposures and potential confounders                                                                                                                                          | 12, 13, 14               |
|                  |     | (b) Indicate number of participants with missing data for each variable of interest                                                                                                                     | Pages 6, 13, 14          |
|                  |     | (c) <i>Cohort study</i> —Summarise follow-up time (eg, average and total amount)                                                                                                                        | -                        |
| Outcome data     | 15* | Cohort study—Report numbers of outcome events or summary measures                                                                                                                                       | -                        |
|                  |     | Case-control study—Report numbers in each exposure category, or summary measures of exposure                                                                                                            | -                        |
|                  |     | Cross-sectional study—Report numbers of outcome events or summary measures                                                                                                                              | Pages 10, 11, 12, 13, 14 |
| Main results     | 16  | (a) Give unadjusted estimates and, if applicable, confounder-adjusted                                                                                                                                   | Pages 15, 16,            |
|                  |     | estimates and their precision (eg, 95% confidence interval). Make clear                                                                                                                                 | 17                       |
|                  |     | which confounders were adjusted for and why they were included                                                                                                                                          |                          |
|                  |     | (b) Report category boundaries when continuous variables were categorized                                                                                                                               | Pages 7, 8               |
|                  |     | (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period                                                                                        | -                        |
| Other analyses   | 17  | Report other analyses done—eg analyses of subgroups and interactions, and                                                                                                                               | Pages 3, 4, 5            |
|                  |     | sensitivity analyses                                                                                                                                                                                    | of                       |
|                  |     |                                                                                                                                                                                                         | Supplementary material   |
| Discussion       |     |                                                                                                                                                                                                         |                          |
| Key results      | 18  | Summarise key results with reference to study objectives                                                                                                                                                | Page 18                  |
| Limitations      | 19  | Discuss limitations of the study, taking into account sources of potential bias<br>or imprecision. Discuss both direction and magnitude of any potential bias                                           | Page 20                  |
| Interpretation   | 20  | Give a cautious overall interpretation of results considering objectives,                                                                                                                               | Pages 18, 19,            |
|                  |     | limitations, multiplicity of analyses, results from similar studies, and other relevant evidence                                                                                                        | 20, 21                   |
| Generalisability | 21  | Discuss the generalisability (external validity) of the study results                                                                                                                                   | Pages 20                 |
| Other informati  | on  |                                                                                                                                                                                                         |                          |
| Funding          | 22  | Give the source of funding and the role of the funders for the present study<br>and, if applicable, for the original study on which the present article is based                                        | Page 22                  |

\*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

**Note:** An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.