
Supplementary material

1 Steady states and stability

The full model of eqs. (1) and (2) can be written

dxv
dt

= µv (N − xv − xc) −
θvxv

1 + ρvx2v
dxc
dt

= µc (N − xv − xc) −
θcxc

1 + ρcx2c
(S1)

In order to test our hypothesis, i.e.that inter-attraction between individuals is less pronounced in VS
than in CS,we take the extreme case where ρv = 0. Moreover, as µv (µc) is playing basically the same
role than the inverse of θv (θc) we can write at the steady state

0 = (N − xv − xc) − Θvxv

0 = (N − xv − xc) −
Θcxc

1 + ρcx2c
(S2)

where Θv = θv/µv, Θc = θc/µc
Solving for xc from the first equation (S2)

xc = N − xv (1 + Θv) (S3)

replacing (S3) in the second equation (S2) and rearanging, we obtain
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xv − ΘcN = 0 (S4)

Eq.(S4) admits up to three solutions. We determine them as well as their stability numerically. Figure
1 displays the bifurcation diagram of xv/(xv +xc) and xv as a function of N . All values of the parameters
(except ρc) are given by the data analyses (see main text). defined

2 Monte Carlo simulations

To integrate the effects arising from the fluctuations of the dynamics, we used Monte Carlo simulations
(Figure S1). The simulations were based on the differential system of equations (eqs. (2) and (S1)). The
different steps can be summarised as follows: (1) initial conditions: the number of individuals in each
shelter was fixed at 0 (xc = xv = 0), all individuals are outside the shelters (xe=N ) ; (2) decision process:
three states are possible for each individual: outside the shelters, in shelter c or in shelter v. At each time
step t, the position of each individual was checked. Then its probability of leaving the shelter C (or V )
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Figure S1: Schematic representation of the simulation.

and to start to explore depends on the comparison between the calculated value Qc (or Qv) and a random
number sampled from a uniform distribution between 0 and 1. If its value is less than or equal to Qc (or
Qv) the individual leaves (CS or V S) and goes outside. If not, it stays in shelter C (or V ).

The probabilities Qc and Qv are updated at each simulation step in relation to the number of indi-
viduals already present in shelters.

Each exploring cockroach xe has a probability µc (µv) to encounter and to join the site C (V ). Monte
Carlo simulations were run 1000 times (1000 realisations). Simulation results allowed us to follow the
progress towards the stationary state on sites C and V with respect to time. The distributions of the
numbers of individuals present on sites C and V at the stationary state were calculated.

Note than when both shelters are identical (e.g. two control shelters or two scented shelters), their
parameters are equal.

In case of the model ”agonistic behaviours” (see section 4 of the supplementary material), the proba-
bility of leaving the scented shelter Qvs (or leaving one of the two scented shelters in case of two scented
shelters) corresponds to the equation (S10)-(S11).

3 Steady states and stability of the symmetrical case

In the case of a symmetrical situation (two VS or two CS), the model is written as

dx1
dt

= µ (N − x1 − x2) −
θx1

1 + ρx21
dx2
dt

= µ (N − x1 − x1) −
θx2

1 + ρx22
(S5)

Dividing the two equations of eqs. (S5) at the steady states and rearranging one finds

x2 = x1 = x (S6a)

and

x2 =
1

ρx1
(S6b)
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corresponding to the homogenous solution where individuals split in the two shelters and to the inhomo-
geneous solution where individuals aggregate in one of the two shelters.

Replacing eq. (S6a) into the first equation of eqs. (S5) at the steady state, we end up with the
following algebraic equation for the homogenous solutions.

2ρx3 −Nρx2 + (2 + θ)x−N = 0 (S7a)

which has up to three solutions and is resolved numerically.
Similarly, replacing eq. (S6b) into the first equation of eqs. (S5) at the steady state, we have an

explicit form for the heterogenous solutions

ρ2x41 −Nρ2x31 + (θρ+ 2ρ) ∗ x21 −Nρx1 + 1 = 0 (S7b)

which accepts upt to four solutions and can be solved numerically.
Assuming that there is a linear dependence between θ and ρ, i.e.

θ = αρ+ β

Eqs. (S7a)-(S7b) can be rewritten as

2ρx3 −Nρx2 + (2 + αρ+ β)x−N = 0 (S8a)

ρ2x41 −Nρ2x31 + (αρ2 + βρ+ 2ρ) ∗ x21 −Nρx1 + 1 = 0 (S8b)

Eqs. (S7a), (S7b), (S8a) and (S8b) are solved numerically and the stability of the obtained solutions
are also tested numerically.

4 Alternative hypothesis : agonistic behaviours

The model that explores the alternative hypothesis of agonistic behaviours induced by vanillin is rather
similar to the ”social inhibition model”. The rates of joining the shelters are assumed to be the same
and only the rates at which individuals leave the shelters (Qc, Qv) are modified. In addition, we assumed
that the inter-attraction between individuals is not affected by vanillin and we fixed ρc = ρv = 1 and in
the case of the VS we added a term corresponding to the agonistic behaviour which increases with the
presence of vanillin :

Qc =
θc

1 + ρcx2c
(S9a)

Qv =
θv

1 + ρvx2v
+Av (S9b)

where Av = εvxv. Here, as only vanillin induces the agonistic behaviours, the leaving rate is adjusted by
a term where agonistic behaviours are proportional to the sheltered population. If the concentration of
vanillin is high, εv will be larger.
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The time evolution of the mean number of individuals inside ((xc, xv) and outside (xe) the shelters
can therefore be written as

dxc
dt

= µcxe −
θcxc

1 + ρx2c
dxv
dt

= µvxe −
(

θv
1 + ρx2v

+ εvxv

)
xv (S10)

where xe = N − xc − xv and N is total population.
The steady-state solutions of eqs.(S10) are of the same nature than those of eqs. (S1), i..e., for a

small number of individuals in the population, VS is preferred while for a large number (N = 16), CS is
selected.

In the case of two identical (vanillin-scented or control) shelters, eqs.(S10) become

dx1
dt

= µ (N − x1 − x2) −
(

θ

1 + ρx21
+ εx1

)
x1

dx2
dt

= µ (N − x1 − x2) −
(

θ

1 + ρx22
+ εx2

)
x2 (S11)

where ε = 0 for two control shelters and ε > 0 for two vanillin-scented ones.
Figure S2 shows the bifurcation diagram of the steady-state solutions x1/(x1 + x2) of eqs. (S11) as a

function of N for ε > 0 (corresponding to two vanillin-scented shelters). As seen, when N is low, the two
shelters are equally occupied (homogenous solution). From a first critical value of N , the homogenous
solution is still stable but coexists with the two inhomogeneous solutions (one of the two shelters is
preferred). Then, after a second critical value where the homogenous solution becomes unstable (i.e., is
inaccessible), only the inhomogeneous ones are available. A third critical value next occurs stabilising
again the homogenous solution while the inhomogeneous solutions still exist. Finally, the inhomogeneous
solutions disappear at a fourth critical value of N , where the homogenous solution exists on its own and
where the population splits between the two identical shelters. The latter case is different from the social
inhibition model of the previous subsections where a asymmetrical distribution of individuals between the
shelters was predicted.
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Figure S2: Bifurcation diagram of the steady-state solutions xv,1/(xv,1 + xv,2) of eqs. (S11) as a function
of N . Parameter values are µv = 0.003, θv = 0.07, ρ = 1 and ε = 1 × 10−4.
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