Supporting Information for:

Fluorinated Amine Stereotriads via Allene Amination

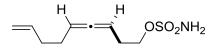
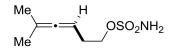
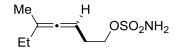

Lu Liu, Nels C. Gerstner, Lucas J. Oxtoby, Ilia A. Guzei and Jennifer M. Schomaker* Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706-1396, United States

Table of Contents.		S-1
I.	General Information	S-2
II.	Preparation of homoallenic sulfamates	S-3
III.	One-pot synthesis of enesulfamates from homoallenic sulfamates	S-7
IV.	One-pot synthesis of F-N-O triads from enesulfamates	S-17
V.	References	S-52
VI.	NMR spectra	S-53
VII.	X-ray Crystallographic Data	S-157
VIII.	References for X-ray	S-192

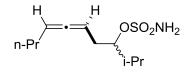

I. General Information. All glassware was either oven-dried overnight at 130 °C or flamedried under a stream of dry nitrogen prior to use. Unless otherwise specified, reagents were used as obtained from the vendor without further purification. Tetrahydrofuran and diethyl ether were freshly distilled from purple Na/benzophenone ketyl. Dichloromethane, acetonitrile, toluene, and benzene were dried over CaH₂ and freshly distilled prior to use. All other solvents were purified in accordance with "Purification of Laboratory Chemicals".¹ Air- and moisture- sensitive reactions were performed using standard Schlenk techniques under an atmosphere of nitrogen. Analytical thin layer chromatography (TLC) was performed utilizing pre-coated silica gel 60 F_{254} plates containing a fluorescent indicator, while preparative chromatography was performed using SilicaFlash P60 silica gel (230-400 mesh) via Still's method.² Unless otherwise stated, the mobile phases for column chromatography were mixtures of hexanes/ethyl acetate. Columns were typically run using a gradient method, beginning with 100% hexanes and gradually increasing the polarity using ethyl acetate. Various stains were used to visualize reaction products, including KMnO₄ and ceric ammonium molybdate (CAM stain).

¹H NMR and ¹³C NMR spectra were obtained using either a Bruker-400, Bruker Callisto-500, Bruker Persephone-500, or Bruker Phoebe-600 spectrometers. ¹⁹F NMR was obtained using Bruker-400, Bruker Persephone-500, or Bruker Phoebe-600 spectrometers. For ¹H NMR, chemical shifts are reported relative to residual protiated solvent peaks (δ 7.26, 7.15 and 7.09 ppm for CDCl₃, C₆D₆ and CD₃C₆D₅ respectively). ¹³C NMR spectra were measured at either 151, 126 MHz, or 101 MHz on the same instruments noted above for recording ¹H NMR spectra. Chemical shifts were again reported in accordance to residual protiated solvent peaks (δ 77.2, 128.0 and 137.9 ppm for CDCl₃, C₆D₆, and CD₃C₆D₅, respectively). For ¹⁹F NMR, chemical shifts are reported referenced to ¹H NMR. Accurate mass measurements were acquired at the University of Wisconsin, Madison using a Micromass LCT (electrospray ionization, time-offlight analyzer or electron impact methods). The NMR and Mass Spectrometry facilities are funded by the NSF (CHE-9974839, CHE-9304546, CHE-9208463, CHE-9629688) and the University of Wisconsin, as well as the NIH (RR08389-01). The Q Exactive Plus mass spectrometer was funded through the NIH (1S10OD020022-1).

II. Preparation of homoallenic sulfamates. General procedure: The following procedure is taken from a literature procedure published by Du Bois.³ Formic acid (2.2 equiv) was added slowly to a rapidly stirred solution of neat chlorosulfonyl isocyanate (CSI, 2.2 equiv) at 0 °C. During the addition process, vigorous gas evolution and solidification of the reaction mixture to a white solid were observed. Dry acetonitrile was added to the resulting white solid to make 0.55 M solution of CSI. The reaction mixture was warmed to 23 °C. After stirring overnight, the mixture was cooled to 0 °C and a solution of the corresponding homoallenic alcohol (1.0 equiv) in N,N-dimethylacetamide (DMA, same volume as for acetonitrile) was added via syringe. The reaction was warmed to room temperature and stirred until TLC indicated completion of the reaction. The reaction mixture was guenched by adding H_2O , and poured into a separatory funnel containing Et₂O. The aqueous layer was extracted three times with Et₂O and the combined organic layers were washed five times with H₂O, once with brine and dried over Na₂SO₄. The solution was decanted and concentrated by rotary evaporation, yielding a crude product that was purified by silica gel chromatography (Et₂O/hexanes, with gradient) to afford the homoallenic sulfamates.

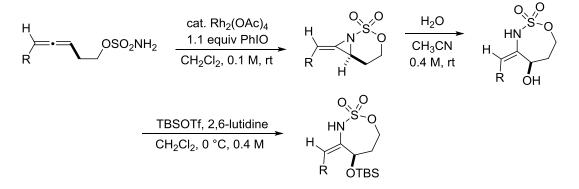


Precursor to compound 13. An oven-dried two-necked round-bottom flask fitted with a stir bar was charged with chlorosulfonyl isocyanate (4.10 g, 29.0 mmol, 2.0 equiv) and cooled to 0 °C. Formic acid (1.33 g, 28.9 mmol, 2.0 equiv) was added dropwise to the same flask over ca. two minutes, followed by addition of 29 mL distilled CH₃CN. The reaction mixture was warmed to room temperature and stirred for 15 hours. The reaction was then cooled to 0 °C again and 1.97 g (14.3 mmol, 1.0 equiv) of the alcohol in 29 mL of DMA was added all at once via syringe to the reaction. The reaction was warmed to room temperature and stirred for 45 minutes. The reaction mixture was quenched by adding 40 mL H₂O, then poured into a separatory funnel containing an equal volume of Et₂O. The aqueous layer was extracted three times with 30 mL portions of Et₂O and the combined organic layers were washed seven times with 10 mL H_2O for each wash. The organic layer was then washed once with brine and dried over Na₂SO₄. After silica gel chromatography (carried out using a gradient method with initial starting mobile phase consisting of 1:9 Et₂O:hexanes, with a gradual increase to a ratio of 1:1 Et₂O:hexanes in 10% increments; CAM stain), 1.87 g (8.61 mmol, 60% yield) of the sulfamate was obtained as a clear oil. ¹H NMR (500 MHz, CDCl₃) δ 5.83 (ddt, J = 16.8, 10.2, 6.4 Hz, 1H), 5.20 (qt, J = 6.2, 2.9 Hz, 1H), 5.11 (qt, J = 6.4, 3.0 Hz, 1H), 5.04 (dq, J = 17.1, 1.7 Hz, 1H), 5.01 – 4.97 (m, 1H), 4.84 – $4.72 \text{ (m, 2H)}, 4.26 \text{ (t, } J = 6.8 \text{ Hz}, 2\text{H}), 2.44 \text{ (qd, } J = 6.7, 2.9 \text{ Hz}, 2\text{H}), 2.20 - 2.14 \text{ (m, 2H)}, 2.14 + 2.14 \text{ (m, 2H)}, 2.14 + 2.14 \text{ (m, 2H)}, 2.14 + 2.14 \text{ (m,$ 2.06 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 204.9, 138.1, 115.2, 91.9, 86.1, 70.6, 33.2, 28.6, 28.1. HRMS (ESI) m/z calculated for C₉H₁₅NO₃S [M+NH₄]⁺ 235.1111, found 235.1110.

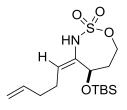


Precursor to compound 16. An oven-dried three-necked round bottom flask fitted with a stir bar was charged with chlorosulfonyl isocyanate (13.8 g, 97.5 mmol, 2.2 equiv) and cooled to 0

°C. Formic acid (4.50 g, 97.8 mmol, 2.2 equiv) was added dropwise to the same flask over ca. 10 minutes, followed by addition of 81 mL distilled CH₃CN. The reaction mixture was warmed to room temperature and stirred for 12 hours. The reaction was then cooled to 0 °C and 4.98 g (44.4 mmol, 1.0 equiv) of the alcohol in 81 mL of DMA was added all at once via syringe. The mixture was warmed to room temperature and stirred for ca. 2.5 hours. The reaction mixture was quenched by adding 130 mL H_2O , and poured into a separatory funnel containing an equal volume of Et₂O. The aqueous layer was extracted three times with Et₂O and the combined organic layers were washed five times with 45 mL portions of H₂O. The organic layer was then washed once with brine and dried over Na₂SO₄. After silica gel chromatography (carried out using a gradient method with initial starting mobile phase consisting of 0:1 Et₂O:hexanes, with a gradual increase to a ratio of 1:1 in 10% increments; CAM stain), 6.79 g (35.5 mmol, 80% yield) of the sulfamate was yielded as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 4.95 (qq, J = 6.0, 2.9 Hz, 1H), 4.75 (bs, 2H), 4.24 (t, J = 6.9 Hz, 2H), 2.40 (q, J = 6.8 Hz, 2H), 1.69 (d, J = 2.9 Hz, 6H). ^{13}C NMR (126 MHz, CDCl_3) δ 202.8, 96.8, 83.5, 70.8, 28.8, 20.7. HRMS (ESI) m/z calculated for C₇H₁₃NO₃S [M+Na]⁺ 214.0508, found 214.0508.

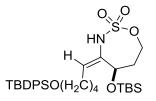


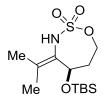
Precursor to compound 17. An oven-dried three-necked round bottom flask fitted with a stir bar was charged with chlorosulfonyl isocyanate (18.7 g, 132 mmol, 2.2 equiv) and cooled to 0 °C. Formic acid (6.10 g, 133 mmol, 2.2 equiv) was added dropwise to the same flask over ca. 15 minutes, followed by addition of 110 mL distilled CH₃CN. The reaction mixture was warmed to room temperature and stirred for 12 hours. The reaction was then cooled to 0 °C and 7.56 g (59.9 mmol, 1.0 equiv) of the alcohol in 110 mL of DMA was added all at once *via* syringe. The mixture was warmed to room temperature and stirred for 3 hours. The reaction mixture was quenched by adding 180 mL H₂O, and poured into a separatory funnel containing an equal volume of Et₂O. The aqueous layer was extracted three times with Et₂O and the combined organic layers were washed five times with ca. 60 mL portions of H₂O. The organic layer was then washed once with brine and dried over Na₂SO₄. After silica gel chromatography (carried out using a gradient method with initial starting mobile phase consisting of 0:1 Et₂O:hexanes, with a gradual increase to a ratio of 1:1 in 10% increments; CAM stain), 6.51 g of the homoallenic enesulfamate (31.7 mmol, 53%) was obtained as a clear, light yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 5.05 (th, *J* = 6.0, 2.9 Hz, 1H), 4.77 (bs, 2H), 4.24 (t, *J* = 6.9 Hz, 2H), 2.41 (q, *J* = 6.8 Hz, 2H), 1.94 (qd, *J* = 7.4, 3.2 Hz, 2H), 1.69 (d, *J* = 2.8 Hz, 3H), 0.99 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 202.0, 103.1, 85.5, 70.9, 29.0, 27.0, 19.2, 12.3. HRMS (ESI) m/z calculated for C₈H₁₅NO₃S [M-H]⁻ 204.0700, found 204.0702.


Precursor to compound 20. An oven-dried three-necked round bottom flask fitted with a stir bar was charged with chlorosulfonyl isocyanate (1.79 g, 12.7 mmol, 2.4 equiv) and cooled to 0 °C. Formic acid (0.573 g, 12.5 mmol, 2.3 equiv) was added dropwise to the same flask over ca. 1 minute, followed by addition of 11.4 mL distilled CH₃CN. The reaction mixture was warmed to room temperature and stirred for 12 hours. The reaction was then cooled to 0 °C and 0.894 g (5.32 mmol, 1.0 equiv) of the alcohol in 11.4 mL of DMA was added all at once *via* syringe. The reaction was warmed to room temperature and stirred for 3 hours. The reaction mixture was quenched by adding 20 mL H₂O, and poured into a separatory funnel containing an equal volume of Et₂O. The aqueous layer was extracted three times with Et₂O and the combined organic layers were washed five times with ca. 6 mL portions of H₂O. The organic layer was washed once with brine and dried over Na₂SO₄. After silica gel chromatography (carried out using a gradient method with an initial starting mobile phase consisting of 0:1 Et₂O:hexanes, with a gradual increase to a ratio of 1:1 in 10% increments; CAM stain), 0.855 g (3.46 mmol, 65%) of the homoallenic sulfamate was obtained as a diastereomeric mixture with a ratio close to 1:1. The product is a clear oil. ¹H NMR (500 MHz, CDCl₃) δ 5.17 – 5.03 (m, 2H), 4.65 (bs, 2H), 4.47 (qd, J = 6.1, 1.3 Hz, 1H), 2.48 – 2.43 (m, 2H), 2.17 – 2.05 (m, 1H), 2.01 – 1.94 (m, 2H), 1.43 (h, J = 7.3 Hz, 2H), 0.99 (ddd, J = 8.7, 6.8, 2.3 Hz, 6H), 0.93 (t, J = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 205.5, 205.4, 91.6, 91.5, 89.3, 89.2, 85.9, 85.7, 31.7, 31.4, 31.0, 31.0, 30.9, 30.9, 22.5, 22.5, 18.5, 18.4, 17.5, 17.3, 13.8, 13.8. HRMS (ESI) m/z calculated for C₁₁H₂₁NO₃S [M-H]⁻ 246.1169, found 246.1170.

III. One-pot synthesis of enesulfamates from homoallenic sulfamates.

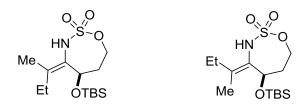
<u>General procedure</u>: To a flame-dried round bottom flask equipped with a stir bar was added the corresponding homoallenic sulfamate (1.0 equiv) and $Rh_2(OAc)_4$ (0.0075 equiv). Dry CH_2Cl_2 was added to prepare a 0.1 M solution. The mixture was stirred vigorously at room temperature for 5 min to yield a green-blue solution. Iodosylbenzene (1.1 equiv) was added in one portion,


and the resulting mixture was stirred at room temperature for approximately 1 hour (for trisubstituted homoallenic sulfamte, the stirring time was increased to 75 minutes). Upon completion, the solution was concentrated by rotary evaporation. CH₃CN was added to the residue to prepare a 0.4 M solution, followed by the addition of Millipore water (20 equiv). The solution was stirred at room temperature for approximately 1 hour, poured into an Erlenmeyer flask and diluted by a factor of 2-3 with CH_2Cl_2 . The solution was dried over Na_2SO_4 until the initially cloudy solution turned clear. The resulting solution was decanted and the residue was washed twice with CH₂Cl₂. The organic portions were combined and concentrated by rotary evaporation. Dry CH₂Cl₂ (0. 4 M) was then added to the residue to prepare a 0.4 M solution, which was cooled to 0 °C. A single portion of 2,6-lutidine (1.2 equiv) was added, followed by the slow addition of TBSOTf (1.2 equiv). The reaction was stirred at 0 °C for 30 minutes. The mixture was then quenched by addition of saturated NH₄Cl solution. The aqueous layer was extracted three times with CH₂Cl₂, and the combined organic layers were washed once with brine. The organic layer was dried over Na₂SO₄ and concentrated by rotary evaporation to yield a crude oil that is purified by silica gel chromatography to afford the (E)-enesultamate, typically as a clear oil.

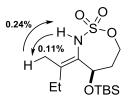

Compound 13. To a flame-dried round bottom flask equipped with a stir bar was added the corresponding homoallenic sulfamate (0.503 g, 2.31 mmol, 1.0 equiv) and $Rh_2(OAc)_4$ (0.0110 g, 0.0249 mmol, 0.0108 equiv). A portion of 23 mL dry CH_2Cl_2 was added to prepare a 0.1 M

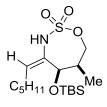
solution. Iodosylbenzene (0.610 g, 2.77 mmol, 1.2 equiv) was added in one portion. After vigorous stirring at room temperature for 25 minutes, 0.680 g of 4 Å MS was added to the reaction mixture. After another 10 minutes, the reaction mixture was filtered through a pad of celite. The celite cake was rinsed with CH2Cl2 and CH2Cl2 was removed from the combined organics in vacuo. To the crude aziridine product was added 5.8 mL CH₃CN, followed by 0.25 mL (0.25 g, 0.0139 mmol, 0.006 equiv) Millipore water. After 2.5 hours of stirring at room temperature, ¹H NMR showed the full consumption of the aziridine. The reaction mixture was diluted with ca. 20 mL with CH₂Cl₂ and dried over Na₂SO₄ until the initially cloudy solution turned clear. The resulting solution was decanted and the residue was washed twice with CH₂Cl₂. The organic portions were combined and concentrated by rotary evaporation. A portion of 5.8 mL of dry CH₂Cl₂ was added to the residue to prepare a 0.4 M solution, which was cooled to 0 °C. A single portion of 2,6-lutidine (0.248 g, 2.32 mmol, 1.0 equiv) was added, followed by dropwise addition of TBSOTf (0.610 g, 2.31 mmol, 1.0 equiv) over ca. 1 minute. The reaction was stirred at 0 °C for 90 minutes. The mixture was quenched by addition of saturated NH₄Cl solution. The aqueous layer was extracted three times with CH₂Cl₂, and the combined organic layers were washed once with brine. The organic layer was dried over Na₂SO₄ and concentrated by rotary evaporation to yield a crude oil that was purified by silica gel chromatography (carried out using a gradient method with the initial starting mobile phase consisting of 0:1 EtOAc:hexanes, with a gradual increase to a ratio of 2:23 in 1% increments; KMnO₄ stain) to afford 0.375 g (1.08 mmol, 47% yield) of **13** as clear oil. ¹H NMR (500 MHz, CDCl₃) δ 6.36 (s, 1H), 5.86 - 5.71 (m, 2H), 5.09 - 5.04 (m, 1H), 5.03 (dd, J = 10.1, 1.7 Hz, 1H), 4.80 (t, J = 3.2 Hz, 1H), 4.69 (t, J = 12.6 Hz, 1H), 4.16 (dt, J = 13.0, 3.2 Hz, 1H), 2.24 – 2.16 (m, 4H), 2.12 (ddt, J = 13.0, 3.2 Hz, 1H), 2.24 – 2.16 (m, 4H), 2.12 (ddt, J = 13.0, 3.2 Hz, 1H), 3.16 (dt, J = 13.0, 3.16 (dt, J = 115.1, 12.3, 3.0 Hz, 2H), 1.84 (dt, J = 15.0, 3.3 Hz, 1H), 0.90 (s, 9H), 0.10 (s, 3H), 0.08 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 137.1, 131.9, 129.4, 116.2, 64.9, 64.7, 37.9, 33.2, 26.5, 25.8, 18.2,
-4.7, -4.9. HRMS (ESI) m/z calculated for C₁₅H₂₉NO₄SSi [M+NH₄]⁺ 365.1925, found 365.1924.



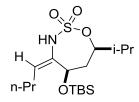
Compound 14. To a flame-dried round bottom flask equipped with a stir bar was added the corresponding homoallenic sulfamate (2.00 g, 4.23 mmol, 1.0 equiv) and Rh₂(OAc)₄ (0.0198 g, 0.0448 mmol, 0.0075 equiv). 42.2 mL of dry CH₂Cl₂ was added to prepare a 0.1 M solution. The mixture was stirred vigorously at room temperature for 5 minutes to yield a green-blue solution. Iodosylbenzene (1.02 g, 4.65 mmol, 1.1 equiv) was added in one portion, and the resulting mixture was stirred at room temperature for ca. 1 hour. The solution was then concentrated by rotary evaporation. A portion of 42.2 mL of CH₃CN was added to the residue to prepare a 0.4 M solution, followed by addition of Millipore water (3.80 g, 211 mmol, 20.0 equiv). The solution was stirred at room temperature for 1 hour, poured into an Erlenmeyer flask and diluted with 120 mL CH₂Cl₂. The solution was dried over Na₂SO₄ until the initially cloudy solution turned clear. The resulting solution was decanted and the residue was washed twice with CH₂Cl₂. The organic portions were combined and concentrated by rotary evaporation. A 10.5 mL portion of dry CH₂Cl₂ was then added to the residue to prepare a 0.4 M solution, which was cooled to 0 °C. A single portion of 2,6-lutidine (1.10 g, 10.3 mmol, 2.4 equiv) was added, followed by dropwise addition of TBSOTf (2.30 g, 8.71 mmol, 2.1 equiv) over ca. 5 minutes. The reaction was stirred at 0 °C for 30 minutes. The mixture was then quenched by addition of saturated NH₄Cl solution. The aqueous layer was extracted three times with CH₂Cl₂, and the combined organic layers were washed once with brine. The organic layer was dried over Na₂SO₄ and concentrated by rotary evaporation to yield a crude oil that was purified by silica gel chromatography (carried out using a gradient method with initial starting mobile phase consisting of 0:1 EtOAc:hexanes, with a gradual increase to a ratio of 3:17 in 3% increments; KMnO₄ stain) to afford 1.09 g (1.80 mmol, 43%) of **14** as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.68 – 7.64 (m, 4H), 7.45 – 7.35 (m, 6H), 6.35 (bs, 1H), 5.73 (t, *J* = 7.8 Hz, 1H), 4.78 (t, *J* = 3.1 Hz, 1H), 4.67 (t, *J* = 12.6 Hz, 1H), 4.13 (dt, *J* = 13.0, 3.2 Hz, 1H), 3.66 (t, *J* = 5.8 Hz, 2H), 2.14 – 2.01 (m, 3H), 1.81 (dt, *J* = 15.3, 3.3 Hz, 1H), 1.62 – 1.48 (m, 4H), 1.04 (s, 9H), 0.89 (s, 9H), 0.09 (s, 3H), 0.06 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 135.7, 134.0, 134.0, 131.5, 130.2, 129.7, 127.8, 64.8, 64.7, 63.6, 37.8, 32.3, 27.0, 26.6, 25.8, 25.6, 19.4, 18.2, -4.8, -4.9. HRMS (ESI) m/z calculated for C₃₁H₄₉NO₅SSi₂ [M+NH₄]⁺ 621.3208, found 621.3204.


Compound 16. To a flame-dried round bottom flask equipped with a stir bar was added the corresponding homoallenic sulfamate (0.102 g, 0.531 mmol, 1.0 equiv) and $Rh_2(OAc)_4$ (0.0034 g, 0.0077 mmol, 0.0145 equiv). A 5 mL portion of dry CH_2Cl_2 was added to prepare a 0.1 M solution. The mixture was stirred vigorously at room temperature for 5 minutes to yield a greenblue solution. Iodosylbenzene (0.128 g, 0.583 mmol, 1.1 equiv) was added in one portion, and the resulting mixture was stirred at room temperature for 1 hour. The solution was then concentrated by rotary evaporation. A 2.1 mL portion of CH_3CN was added to the residue to prepare a 0.25 M solution, followed by addition of Millipore water (0.20 g, 11.1 mmol, 21.0 equiv). The solution was stirred at room temperature for 1 hour, poured into an Erlenmeyer flask


and diluted with 6 mL CH₂Cl₂. The solution was dried over Na₂SO₄ until the initially cloudy solution turned clear. The resulting solution was decanted and the residue was washed twice with CH₂Cl₂. The organic portions were combined and concentrated by rotary evaporation. A 1.3 mL portion of dry CH₂Cl₂ was then added to the residue to prepare a 0.4 M solution, which was cooled to 0 °C. A single portion of 2,6-lutidine (0.0920 g, 0.859 mmol, 1.6 equiv) was added, followed by dropwise addition of TBSOTf (0.138 g, 0.621 mmol, 1.2 equiv) over ca. 1 minute. The reaction was stirred at 0 °C for 30 minutes. The mixture was quenched by addition of saturated NH₄Cl solution. The aqueous layer was extracted three times with CH₂Cl₂ and the combined organic layers were washed once with brine. The organic layer was dried over Na_2SO_4 and concentrated by rotary evaporation to yield a crude oil that was purified by silica gel chromatography (carried out using a gradient method with initial starting mobile phase consisting of 0:1 EtOAc:hexanes, with a gradual increase to a ratio of 3:17 in 3% increments) to yield 53.2 mg of the enesulfamate (0.165 mmol, 31%) as a white solid. ¹H NMR (500 MHz, $CDCl_3$) δ 6.20 (bs, 1H), 4.87 (t, J = 3.1 Hz, 1H), 4.70 (t, J = 12.5 Hz, 1H), 4.14 (dt, J = 12.9, 3.2) Hz, 1H), 2.08 (ddt, J = 15.2, 12.3, 3.2 Hz, 1H), 1.92 (s, 3H), 1.81 (dt, J = 14.8, 3 Hz, 1H), 1.76 (s, 3H), 0.89 (s, 9H), 0.08 (s, 3H), 0.05 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 133.7, 125.4, 65.8, 64.5, 37.0, 25.8, 20.6, 19.0, 18.2, -4.8, -5.0. HRMS (ESI) m/z calculated for C13H27NO4SSi [M-H]⁻ 320.1357, found 320.1358.

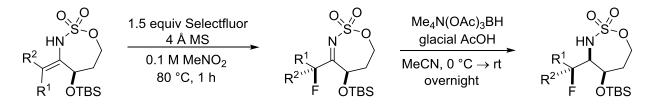
Compound 17. To a flame-dried round bottom flask equipped with a stir bar was added the corresponding homoallenic sulfamate (1.52 g, 7.39 mmol, 1.0 equiv) and Rh₂(OAc)₄ (0.0274 g, 0.0620 mmol, 0.0084 equiv). A 78 mL portion of dry CH₂Cl₂ was added to prepare a 0.1 M solution. The mixture was stirred vigorously at room temperature for 5 minutes to yield a greenblue solution. Iodosylbenzene (1.78 g, 8.09 mmol, 1.1 equiv) was added in one portion, and the resulting mixture was stirred at room temperature for 1.5 hour. The solution was then concentrated by rotary evaporation. A 18.3 mL portion of CH₃CN was added to the residue to prepare a 0.4 M solution, followed by addition of Millipore water (2.60 g, 144 mmol, 20.0 equiv). The solution was stirred at room temperature for 1 hour, poured into an Erlenmeyer flask and diluted with ca. 60 mL CH₂Cl₂. The solution was dried over Na_2SO_4 until the initially cloudy solution turned clear. The resulting solution was decanted and the residue was washed twice with CH₂Cl₂. The organic portions were combined and concentrated by rotary evaporation. A portion of 18 mL of dry CH₂Cl₂ was then added to the residue to prepare a 0.4 M solution, which was cooled to 0 °C. A single portion of 2,6-lutidine (0.920 g, 8.59 mmol, 1.2 equiv) was added, followed by dropwise addition of TBSOTf (3.07 g, 11.6 mmol, 1.6 equiv) over ca. 10 minutes. The reaction was stirred at 0 °C for 30 minutes. The mixture was quenched by addition of saturated NH₄Cl solution. The aqueous layer was extracted three times with CH₂Cl₂ and the combined organic layers were washed once with brine. The organic layer was dried over Na₂SO₄ and concentrated by rotary evaporation to yield a crude oil that was purified by silica gel chromatography (carried out using a gradient method with initial starting mobile phase consisting of 0:1 EtOAc: hexanes, with a gradual increase to a ratio of 1:19 in 1% increments; KMnO₄ stain). The product was obtained as 0.546 g (1.63 mmol, 22%) of enesulfamate 17 isolated as an isomeric mixture (*E*:*Z* ratio = 6:1). ¹H NMR (500 MHz, CDCl₃) δ 6.22 (bs, 0.85H),

6.15 (bs, 0.15H), 4.88 (t, J = 3.0 Hz, 0.85H), 4.83 (t, J = 3.0 Hz, 0.15H), 4.68 (t, J = 12.5 Hz, 1H), 4.13 (dt, J = 12.9, 3.3 Hz, 1H), 2.55 (dq, J = 14.9, 7.6 Hz, 0.15H), 2.23 (dq, J = 14.9, 7.6 Hz, 0.15H), 2.18 – 1.99 (m, 2.7H), 1.90 (s, 2.55H), 1.82 (dt, J = 15.0, 3.6 Hz, 1H), 1.73 (s, 0.45H), 1.04 (t, J = 7.6 Hz, 2.55H), 0.99 (t, J = 7.5 Hz, 0.45H), 0.88 (s, 9H), 0.08 (s, 3H), 0.04 (s, 3H). *E* isomer: ¹³C NMR (126 MHz, CDCl₃) δ 139.1, 125.2, 65.6, 64.4, 37.5, 25.9, 25.8, 18.1, 17.7, 12.7, -4.7, -4.9. *Z* isomer: ¹³C NMR (126 MHz, CDCl₃) δ 138.8, 124.9, 65.9, 64.5, 36.9, 26.4, 18.2, 16.1, 11.8, -4.8, -5.0. HRMS (ESI) m/z calculated for C₁₄H₂₉NO₄SSi [M+Na]⁺ 358.1479, found 358.1476. The identity of the major isomer as *E* was confirmed by NOE experiments:

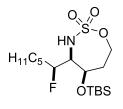


Compound 18. Compound **18** was prepared by a modification of the general procedure. To a flame-dried, round bottom flask equipped with a stir bar was added the corresponding homoallenic sulfamate (2.50 g, 10.7 mmol, 1.0 equiv) and $Rh_2(TPA)_4$ (0.145 g, 0.107 mmol, 0.01 equiv). A 108 mL portion of dry CH_2Cl_2 was added to prepare a 0.1 M solution. The mixture was stirred vigorously at room temperature for 5 minutes to yield a green-blue solution. Iodosylbenzene (2.83 g, 12.9 mmol, 1.2 equiv) was added in one portion, and the resulting mixture was stirred at room temperature for 1.2 hour. The solution was then concentrated by rotary evaporation. A 53 mL portion of CH_3CN was added to the residue to prepare a 0.2 M

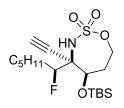
solution, followed by addition of Millipore water (4.0 g, 222 mmol, 21.0 equiv). The solution was stirred at room temperature for 1 hour, poured into an Erlenmeyer flask and diluted with 160 mL CH₂Cl₂. The solution was dried over Na₂SO₄ until the initially cloudy solution turned clear. The resulting solution was decanted and the residue was washed twice with CH₂Cl₂. The organic portions were combined and concentrated by rotary evaporation. The crude alcohol (with a dr of 3:1) was purified by silica gel chromatography (carried out using a gradient method with an initial starting mobile phase consisting of 0:1 EtOAc:hexanes, with a gradual increase to a ratio of 7:18 in 4% increments; KMnO₄ stain) to separate the *anti* and *syn* stereoisomers prior to silvlation. A 3.5 mL portion of dry CH₂Cl₂ was added to 0.349 g (1.33 mmol, 1.0 equiv) of the syn-isomer to prepare a 0.4 M solution, which was cooled to 0 °C. A single portion of 2,6lutidine (0.212 g, 1.97 mmol, 1.5 equiv) was added to 0.349 g (1.33 mmol, 1.0 equiv) of the synisomer, followed by the dropwise addition of TBSOTf (0.702 g, 2.66 mmol, 2.0 equiv) over ca. 1 minute. The reaction was stirred at 0 °C for 30 minutes. The mixture was quenched by addition of saturated NH₄Cl solution. The aqueous layer was extracted three times with CH₂Cl₂, and the combined organic layers were washed once with brine. The organic layer was dried over Na₂SO₄ and concentrated by rotary evaporation to yield a crude oil that was purified by silica gel chromatography (carried out using a gradient method with an initial starting mobile phase consisting of 0:1 EtOAc:hexanes, with a gradual increase to a ratio of 1:19 in 1% increments; 1% Et₂O was added to improve separation among diastereomers; KMnO₄ stain). A 0.215 g (0.571 mmol, 43%) portion of compound 18 was obtained as a white solid. ¹H NMR (500 MHz, C_6D_6) δ 6.46 (bs, 1H), 5.84 (t, J = 7.8 Hz, 1H), 4.31 – 4.22 (m, 2H), 3.27 (dd, J = 13.0, 2.7 Hz, 1H), 1.81 -1.65 (m, 3H), 1.24 - 1.09 (m, 6H), 0.86 (t, J = 7.0 Hz, 3H), 0.79 (s, 9H), 0.37 (d, J = 7.4 Hz, 3H), -0.14 (s, 3H), -0.14 (s, 3H). ¹³C NMR (126 MHz, C₆D₆) δ 132.4, 129.7, 69.5, 68.3, 40.4,


31.7, 29.0, 26.7, 25.7, 22.8, 18.2, 14.2, 13.5, -5.1, -5.2. HRMS (ESI) m/z calculated for C₁₇H₃₅NO₄SSi [M+NH₄]⁺ 395.2394, found 395.2394.

Compound 20. Compound **20** was prepared by a modification of the general procedure. To a flame-dried, round bottom flask equipped with a stir bar was added the corresponding homoallenic sulfamate (1.00 g, 4.04 mmol, 1.0 equiv) and Rh₂(OAc)₄ (0.0136 g, 0.0308 mmol, 0.0076 equiv). A 40 mL portion of dry CH₂Cl₂ was added to prepare a 0.1 M solution. The mixture was stirred vigorously at room temperature for 5 min to yield a green-blue solution. Iodosylbenzene (0.980 g, 4.45 mmol, 1.1 equiv) was added in one portion, and the resulting mixture was stirred at room temperature for 1 hour. The solution was concentrated by rotary evaporation and 16 mL of CH₃CN added to the residue to prepare a 0.25 M solution, followed by addition of Millipore water (1.45 g, 80.6mmol, 20.0 equiv). The solution was stirred at room temperature for 1 hour, poured into an Erlenmeyer flask and diluted with ca. 50 mL CH₂Cl₂. The solution was dried over Na₂SO₄ until the initially cloudy solution turned clear. The resulting solution was decanted and the residue was washed twice with CH_2Cl_2 . The organic portions were combined and concentrated by rotary evaporation. The crude alcohol was purified by silica gel chromatography (carried out using a gradient method with an initial starting mobile phase consisting of 0:1 EtOAc:hexanes, with a gradual increase to a ratio of 2:3 in 5% increments; KMnO₄ stain) to yield 0.202 g of the syn stereoisomer (0.767 mmol, 19%) prior to silulation. A 2 mL portion of dry CH_2Cl_2 was added to 0.202 g (0.767 mmol, 1.0 equiv) of the syn-isomer to

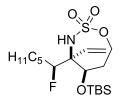

prepare a 0.4 M solution, which was cooled to 0 °C. A single portion of 2,6-lutidine (0.101 g, 0.944 mmol, 1.2 equiv) was added, followed by dropwise addition of TBSOTf (0.207 g, 0.932 mmol, 1.2 equiv) over ca. 1 minute. The reaction was stirred at 0 °C for 30 minutes. The mixture was quenched by addition of saturated NH_4Cl solution. The aqueous layer was extracted three times with CH₂Cl₂ and the combined organic layers were washed once with brine. The organic layer was dried over Na₂SO₄ and concentrated by rotary evaporation to yield a crude oil that was purified by silica gel chromatography (carried out using a gradient method with an initial starting mobile phase consisting of 0:1 EtOAc: hexanes, with a gradual increase to a ratio of 1:17 in 3% increments; KMnO₄ stain). A 0.120 g portion of compound **20** (0.318 mmol, 41%) was obtained as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 6.08 (bs, 1H), 5.86 (t, J = 7.8 Hz, 1H), 4.80 (dd, J = 7.8, 3.9 Hz, 1H), 4.30 (ddd, J = 11.1, 5.4, 2.5 Hz, 1H), 2.20 (ddd, J = 15.4, 7.8, 2.5 Hz, 1H), 2.16 – 2.02 (m, 3H), 1.82 (o, J = 6.9 Hz, 1H), 1.47 (h, J = 7.3 Hz, 2H), 0.98 – 0.93 (m, 9H), 0.90 (s, 9H), 0.11 (s, 3H), 0.06 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 133.3, 131.8, 85.6, 67.7, 40.8, 33.0, 29.2, 25.9, 22.5, 18.6, 18.2, 17.4, 14.0, -4.6, -4.8. HRMS (ESI) m/z calculated for C₁₇H₃₅NO₄SSi [M-H]⁻ 376.1983, found 376.1982.

IV. One-pot synthesis of F-N-O triads from enesulfamates.

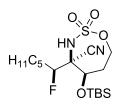

<u>General procedure</u>: To a flame-dried, round bottom flask equipped with a stir bar was added the corresponding enesulfamate (1.0 equiv), Selectfluor (1.5 equiv), and 4 Å MS (same amount as

Selectfluor). Dry CH₃NO₂ was added to prepare a 0.1 M solution. The mixture was stirred at 80 °C for 1 hour. The reaction mixture was then filtered through a pad of celite, and the filtrate concentrated by rotary evaporation. Dry CH₃CN (CH₃CN:CH₃NO₂ = 1:1 v/v) was added to the crude imine, and the reaction mixture was cooled to 0 °C. Glacial AcOH (AcOH:CH₃CN = 1:1 v/v) was added to the flask, followed by addition of Me₄N(OAc)₃BH (3.0 equiv). The reaction mixture was warmed to rt and stirred overnight, after which TLC indicated complete consumption of the starting material. The reaction mixture was transferred to a separatory funnel containing CH₂Cl₂ and washed three times with saturated NaHCO₃ solution. The aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were washed once with brine, dried over Na₂SO₄, and concentrated by rotary evaporation to yield the diastereomeric mixture. The crude product was purified by silica gel chromatography (solvents given for each specific compound below) to give the all-*syn* product as the major diastereomeric.

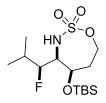
Compound 7a. To a flame-dried, round bottom flask equipped with a stir bar was added the enesulfamate **7** (0.500 g, 1.38 mmol, 1.0 equiv), Selectfluor (0.733 g, 2.07 mmol, 1.5 equiv), and 0.737 g of 4 Å MS. Dry CH₃NO₂ (13.7 mL) was then added to prepare a 0.1 M solution. The mixture was stirred at 80 °C for 1 hour. The reaction mixture was then filtered through a pad of celite. The celite cake was rinsed with CH₂Cl₂. The combined organics were concentrated by rotary evaporation. Dry CH₃CN (13.7 mL) was added to the crude imine and the reaction mixture was cooled to 0 °C. Glacial AcOH (13.7 mL, AcOH:CH₃CN = 1:1 v/v) was then added to the flask, followed by addition of Me₄N(OAc)₃BH (1.09 g, 4.13 mmol, 3.0 equiv). The


reaction mixture was warmed up to room temperature and stirred for 3 hours. The reaction mixture was transferred to a separatory funnel containing CH₂Cl₂ and washed three times with saturated NaHCO₃ solution. The aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were washed once with brine, dried over Na₂SO₄, and concentrated by rotary evaporation to yield the diastereomeric mixture, which was purified by silica gel chromatography (carried out using a gradient method with an initial starting mobile phase consisting of 0:1 CH₂Cl₂:hexanes, with a gradual increase to a ratio of 7:3 in 10% increments; 1% Et₂O was added to improve separation among diastereomers; KMnO₄ stain) to give the all-syn 7aas the major diastereomer (0.347 g, 0.906 mmol, 66%) as a white solid. ¹H NMR (500 MHz, C_6D_6) δ 5.75 (d, J = 10.7 Hz, 1H), 4.63 (t, J = 12.4 Hz, 1H), 4.24 (dddd, J = 48.2, 9.0, 4.2, 2.3) Hz, 1H), 3.74 (t, J = 2.8 Hz, 1H), 3.70 (dt, J = 13.0, 3.3 Hz, 1H), 3.30 (ddd, J = 25.5, 10.7, 2.3Hz, 1H), 2.10 – 1.95 (m, 1H), 1.74 – 1.30 (m, 9H), 1.06 (t, J = 7.1 Hz, 3H), 1.00 (s, 9H), 0.12 (d, J = 1.3 Hz, 3H), 0.00 (s, 3H). ¹³C NMR (126 MHz, C₆D₆) δ 95.0 (d, J = 179.1 Hz), 69.5, 63.8, 58.1 (d, J = 18.2 Hz), 37.3, 32.3 (d, J = 21.0 Hz), 31.9, 25.9, 25.0 (d, J = 4.9 Hz), 22.9, 18.0, 14.2, -4.4, -5.1 (d, J = 3.2 Hz).¹⁹F NMR (471 MHz, C₆D₆) δ -193.61 (dddd, J = 47.1, 32.0, 25.5, 13.7 Hz). HRMS (ESI) m/z calculated for C₁₆H₃₄FNO₄SSi [M + H⁺] 384.2035, found 384.2029.

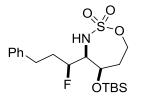
Compound 8a. The enesulfamate **5** (0.400 g, 1.10 mmol, 1.0 equiv) was added to a 25 mL round bottom flask, followed by the addition of Selectfluor (0.589 g, 1.65 mmol, 1.5 equiv) and 0.589 g of 4 Å MS. Distilled CH_3NO_2 (11 mL) was added to make a 0.1 M solution. The reaction was stirred at 80 °C for 1 hour. Dry CH_2Cl_2 (40 mL) was added to the reaction until no more white


precipitates crashed out. The reaction mixture was then filtered through a pad of celite and concentrated by rotary evaporation to yield the imine. Ethynyl magnesium bromide (6.6 mL, 3.3 mmol, 3.0 equiv) was cooled at 0 °C for at least 15 min before use. Dry THF (2.2 mL) was added to the imine to make a 0.5 M solution. The imine solution was transferred to the cooled ethynyl magnesium bromide via cannula transfer. An extra 1 mL of dry THF was used to ensure quantitative transfer. The reaction was stirred at 0 °C for 60 minutes until complete consumption of the starting material was observed by TLC (CH_2Cl_2 :hexanes = 1/1, KMnO₄ stain). The reaction was quenched by the addition of 20 mL of saturated NH₄Cl solution. The mixture was transferred to a separatory funnel, and the organic layer was extracted three times with EtOAc and washed once with saturated NH₄Cl solution and once with brine, then dried over Na₂SO₄ and concentrated by rotary evaporation to yield the diastereomeric mixture. The product was purified by column chromatography (carried out using a gradient method with an initial starting mobile phase consisting of 0:1 CH₂Cl₂:hexanes, with a gradual increase to a ratio of 1:0 in 10% increments; 1% Et₂O was added to improve separation among diastereomers; KMnO₄ stain) to give the all-syn 8a as the major diastereomer (0.314 g, 0.771 mmol, 70%). The product is a white solid. ¹H NMR (500 MHz, CDCl₃) δ 5.35 (bs, 1H), 4.63 (t, J = 12.2 Hz, 1H), 4.43 (ddd, J = 48.4, 10.5, 2.1 Hz, 1H), 4.22 (dd, J = 4.9, 1.8 Hz, 1H), 4.17 (dt, J = 12.8, 3.4 Hz, 1H), 2.78 (s, 1H), 2.74 (ddt, J = 16.0, 11.6, 2.5 Hz, 1H), 1.99 - 1.87 (m, 1H), 1.82 (dt, J = 15.9, 4.1 Hz, 1.5 H), 1.78 - 1.70 (m, 0.5H), 1.63 - 1.52 (m, 1H), 1.42 - 1.26 (m, 5H), 0.93 - 0.86 (m, 12H), 0.10 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 95.9 (d, J = 188.9 Hz), 80.8 (d, J = 1.4 Hz), 76.3 (d, J = 6.0 Hz), 73.8, 64.3, 60.9 (d, J = 18.9 Hz), 34.5, 31.6, 30.6 (d, J = 21.3 Hz), 25.9, 25.0 (d, J = 3.2 Hz), 22.6, 18.1, 14.1, -4.1, -4.9 (d, J = 2.2 Hz).¹⁹F NMR (471 MHz, CDCl₃) δ -191.34 (ddd, J =

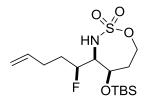
48.8, 41.5, 13.5 Hz). HRMS (ESI) m/z calculated for C₁₈H₃₄FNO₄SSi [M + NH₄⁺] 425.2300, found 425.2299.


Compound 9a. A 0.351 g (0.965 mmol, 1.0 equiv) portion of the enesulfamate 5 was added to a 25 mL round-bottom flask, followed by sequential addition of Selectfluor (0.513g, 1.44 mmol, 1.5 equiv) and 4 Å MS (0.513 g). A portion of CH₃NO₂ (9.6 mL) was added to make a 0.1 M solution and the reaction mixture was stirred at 80 °C for 1 hour. Dry CH₂Cl₂ (40 mL) was added until no more white precipitates crashed out. The reaction mixture was then filtered through a pad of celite and concentrated by rotary evaporation to yield the crude imine. Vinyl magnesium bromide (2.9 mL, 2.89 mmol, 3.0 equiv) was cooled at -78 °C for at least 15 minutes before use. Dry THF (1.9 mL) was added to the imine to make a 0.5 M solution and then transferred to the cooled vinyl magnesium bromide solution via cannula transfer. The reaction mixture was stirred at -78 °C for 30 minutes until complete consumption of the starting material was observed by TLC (CH₂Cl₂:hexanes = 1:1, KMnO₄ stain). A saturated NH₄Cl solution (20 mL) was added to quench the reaction, the mixture transferred to a separatory funnel, and the organic layer extracted three times with EtOAc. The combined organics were washed once with brine, dried over Na₂SO₄ and concentrated by rotary evaporation to yield the crude product as a diastereomeric mixture, which was purified by column chromatography (carried out using a gradient method with an initial starting mobile phase consisting of 0:1 CH₂Cl₂:hexanes, with a gradual increase to a ratio of 1:0 in 10% increments; 1% Et₂O was added to improve separation

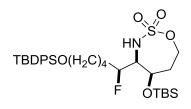
among diastereomers; KMnO₄ stain) to give the all- *syn* **9a** as the major diastereomer (0.244 g, 0.597 mmol, 61%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 6.18 (dd, *J* = 18.0, 11.4 Hz, 1H), 5.43 (d, *J* = 11.5 Hz, 1H), 5.30 (d, *J* = 18.0 Hz, 1H), 5.16 (bs, 1H), 4.64 (dd, *J* = 48.0, 11.1 Hz, 1H), 4.52 (dd, *J* = 12.5, 9.1 Hz, 1H), 4.32 (d, *J* = 6.4 Hz, 1H), 4.13 (ddd, *J* = 12.7, 6.8, 2.4 Hz, 1H), 2.31 (dd, *J* = 13.4, 9.2 Hz, 1H), 2.11 (dt, *J* = 14.8, 6.6 Hz, 1H), 1.70 – 1.43 (m, 3H), 1.35 – 1.21 (m, 5H), 0.93 (s, 9H), 0.88 (t, *J* = 6.8 Hz, 3H), 0.11 (s, 3H), 0.11 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 134.1 (d, *J* = 4.4 Hz), 118.2, 96.2 (d, *J* = 185.3 Hz), 74.5, 66.3 (d, *J* = 16.2 Hz), 65.9, 34.6 (d, *J* = 3.5 Hz), 31.6, 29.9 (d, *J* = 21.8 Hz), 26.0, 25.2 (d, *J* = 3.4 Hz), 22.6, 18.1, 14.1, -3.9, -4.8 (d, *J* = 1.5 Hz).¹⁹F NMR (471 MHz, CDCl₃) δ -191.22 (td, *J* = 46.2, 13.2 Hz). HRMS (ESI) *m*/z calculated for C₁₈H₃₆FNO₄SSi [M + H⁺] 410.2191, found 410.2187.


Compound 10a. The enesulfamate **5** (0.150 g, 0.413 mmol, 1.0 equiv) was added to a 10 mL round bottom flask, followed by addition of Selectfluor (0.219 g, 0.618 mmol, 1.5 equiv) and 4 Å MS (0.219 g). CH₃NO₂ (4.1 mL) was added to make a 0.1 M solution and the reaction mixture was stirred at 80 °C for 1 hour. Dry CH₂Cl₂ (20 mL) was added until no more white precipitate was observed to crash out. The resulting mixture was then filtered through a pad of celite and concentrated by rotary evaporation to yield the crude imine. Dry CH₃CN (4.1 mL) was added to the imine to make a 0.1 M solution, followed by addition of Bu₄NCN (0.223 g, 0.834 mmol, 2.0 equiv). The reaction was stirred at room temperature for 2.6 hour until complete consumption of the starting material was observed by TLC (EtOAc/hexanes = 1/1, KMnO₄ stain). The mixture was transferred to a separatory funnel; five times the volume of CH₂Cl₂ was added. The organic

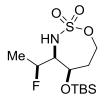
layer was washed once with NaHCO₃, once with saturated NH₄Cl, twice with brine, then dried over Na₂SO₄ and concentrated by rotary evaporation to yield the product as a mixture of diastereomers. The product was purified by column chromatography (carried out using a gradient method with an initial starting mobile phase consisting of 0:1 CH₂Cl₂:hexanes, with a gradual increase to a ratio of 1:0 in 10% increments; 1% Et₂O was added to improve separation among diastereomers; KMnO₄ stain) to give the all-syn **10a** as the major diastereomer (67.2 mg, 0.165 mmol, 40%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 5.33 (bs, 1H), 4.83 (ddd, J = 47.0, J = 12.6, 6.9, 2.5 Hz, 1H), 2.38 (ddt, J = 16.3, 8.5, 2.2 Hz, 1H), 2.26 (dtd, J = 16.2, 7.0, 1.9 Hz, 1H), 2.00 - 1.90 (m, 1H), 1.82 (ddddd, J = 41.3, 14.4, 10.2, 5.9, 2.2 Hz, 1H), 1.68 - 1.57 (m, 1H), 1.48 – 1.39 (m, 1H), 1.38 – 1.30 (m, 4H), 0.94 – 0.88 (m, 12H), 0.17 (s, 3H), 0.15 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 115.5 (d, J = 6.5 Hz), 92.9 (d, J = 189.6 Hz), 73.9, 66.3, 61.0 (d, J = 20.4 Hz), 35.4 (d, J = 3.1 Hz), 31.3, 30.9 (d, J = 21.1 Hz), 25.8, 24.9 (d, J = 3.0 Hz), 22.5, 18.1, 14.0, -4.2, -4.9. ¹⁹F NMR (471 MHz, CDCl₃) δ -192.49 (ddd, J = 47.3, 41.5, 14.5 Hz). HRMS (ESI) m/z calculated for C₁₇H₃₃FN₂O₄SSi [M + NH₄⁺] 426.2253, found 426.2245.


Compound 11a. To a flame-dried, round bottom flask equipped with a stir bar was added the corresponding enesulfamate (102 mg, 0.305 mmol, 1.0 equiv), Selectfluor (160 mg, 0.452 mmol, 1.5 equiv) and 4 Å MS (165 mg). Dry CH_3NO_2 (3 mL) was added to prepare a 0.1 M solution. The mixture was stirred at 80 °C for 1 hour. The reaction mixture was then filtered through a pad

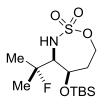
of celite and the filtrate concentrated by rotary evaporation. A 3 mL portion of dry CH₃CN $(CH_3CN:CH_3NO_2 = 1:1 \text{ v/v})$ was added to the crude imine, and the reaction mixture was cooled to 0 °C. 3 mL of glacial AcOH (AcOH:CH₃CN = 1:1 v/v) was added to the flask, followed by addition of Me₄N(OAc)₃BH (237 mg, 0.900 mmol, 3.0 equiv). The reaction mxiture was warmed up to room temperature and stirred overnight. The reaction mixture was then transferred to a separatory funnel containing CH₂Cl₂ and washed three times with saturated NaHCO₃ solution. The aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were washed once with brine, dried over Na₂SO₄, and concentrated by rotary evaporation to yield the diastereomeric mixture. The crude product was purified by silica gel chromatography (carried out using a gradient method with an initial starting mobile phase consisting of 0:1 EtOAc:hexanes, with a gradual increase to a ratio of 2:3 in 8% increments; 1% Et₂O was added to improve separation among diastereomers; KMnO₄ stain) to give the all-syn product **11a** (20.9 mg, 0.0588 mmol, 19%) as the major diastereomer. The product was a white solid. ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 5.41 \text{ (d, } J = 10.8 \text{ Hz}, 1\text{H}), 4.64 \text{ (t, } J = 12.4 \text{ Hz}, 1\text{H}), 4.20 \text{ (dd, } J = 4.1, 2.3 \text{ Hz})$ Hz, 1H), 4.15 (dt, J = 12.8, 3.2 Hz, 1H), 4.04 (ddd, J = 47.3, 8.2, 2.3 Hz, 1H), 3.50 (ddd, J = 26.2, 10.8, 2.3 Hz, 1H), 2.19 - 2.06 (m, 2H), 1.85 (dt, J = 15.4, 3.8 Hz, 1H), 1.01 (dd, J = 6.7, 1.5 Hz, 3H), 0.97 (d, J = 6.7 Hz, 3H), 0.91 (s, 9H), 0.10 (d, J = 1.4 Hz, 3H), 0.09 (s, 3H). ¹³C NMR (126) MHz, CDCl₃) δ 99.5 (d, J = 182.8 Hz), 70.1, 64.3, 55.7 (d, J = 17.5 Hz), 37.6, 29.7 (d, J = 19.9 Hz), 25.9, 18.4 (d, J = 7.5 Hz), 18.1, 17.8 (d, J = 6.2 Hz), -4.3, -4.9 (d, J = 3.2 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -196.82 (ddd, J = 47.5, 26.4, 11.9 Hz). HRMS (ESI) m/z calculated for C₁₄H₃₀FNO₄SSi [M-H]⁻ 354.1576, found 354.1577.


Compound 12a. To a flame-dried, round bottom flask equipped with a stir bar was added the enesulfamate 12 (398 mg, 1.00 mmol, 1.0 equiv), Selectfluor (531 mg, 1.50 mmol, 1.5 equiv), and 4 Å MS (531 mg). Dry CH₃NO₂ (10 mL) was added to prepare a 0.1 M solution. The mixture was stirred at 80 °C for 1.5 hour. The reaction mixture was then filtered through a pad of celite, and the filtrate concentrated by rotary evaporation. A 10 mL portion of dry CH₃CN $(CH_3CN:CH_3NO_2 = 1:1 \text{ v/v})$ was added to the crude imine, and the reaction mixture was cooled to 0 °C. A 10 mL portion of glacial AcOH (AcOH:CH₃CN = 1:1 v/v) was added to the flask, followed by addition of Me₄N(OAc)₃BH (790 mg, 3.00 mmol, 3.0 equiv). The reaction mixture was warmed to room temperature and stirred overnight. The reaction mixture was transferred to a separatory funnel containing CH₂Cl₂ and washed three times with saturated NaHCO₃ solution. The aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were washed once with brine, dried over Na₂SO₄, and concentrated by rotary evaporation to yield the diastereomeric mixture. The crude product was purified by silica gel chromatography (carried out using a gradient method with an initial starting mobile phase consisting of 0:1 Et₂O:hexanes, with a gradual increase to a ratio of 3:7 in 6% increments; KMnO₄ stain) to yield 283 mg of the all-syn stereotriad 12a (0.678 mmol, 68%) as a white solid. ¹H NMR (500 MHz, CDCl₃) & 7.27 (t, J = 7.6 Hz, 2H), 7.21 - 7.16 (m, 3H), 5.48 (d, J = 10.7 Hz, 1H), 4.59 (t, J = 12.5 Hz, 1H), 4.43(ddt, J = 48.3, 9.1, 3.3 Hz, 1H), 4.17 (m, 1H), 4.10 (dt, J = 12.8, 2.8 Hz, 1H), 3.34 (ddd, J = 23.7, 1H)10.6, 2.6 Hz, 1H), 2.79 (ddd, J = 14.0, 9.1, 5.1 Hz, 1H), 2.74 – 2.64 (m, 1H), 2.19 (ttd, J = 13.7, 9.1, 5.0 Hz, 1H), 2.11 - 2.02 (m, 1H), 1.93 - 1.75 (m, 2H), 0.89 (s, 9H), 0.06 (s, 3H), 0.05 (s,

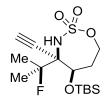
3H). ¹³C NMR (126 MHz, CDCl₃) δ 140.7, 128.6, 128.5, 126.2, 93.1 (d, *J* = 179.6 Hz), 69.1, 64.3, 58.0 (d, *J* = 17.7 Hz), 37.2, 33.9 (d, *J* = 21.2 Hz), 30.8 (d, *J* = 5.1 Hz), 25.8, 17.9, -4.4, -5.1 (d, *J* = 2.7 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -195.08 (dddd, *J* = 46.8, 33.2, 24.1, 12.8 Hz). HRMS (ESI) m/z calculated for C₁₉H₃₂FNO₄SSi [M+H]⁺ 418.1878, found 418.1873.


Compound 13a. To a flame-dried, round bottom flask equipped with a stir bar was added the enesulfamate 13 (48.9 mg, 0.141 mmol, 1.0 equiv), Selectfluor (78.0 mg, 0.220 mmol, 1.6 equiv), and 4 Å MS (80.0 mg). Dry CH₃NO₂ (1.5 mL) was added to prepare a 0.1 M solution. The mixture was stirred at 80 °C for 1 hour. The reaction mixture was then filtered through a pad of celite, and the filtrate concentrated by rotary evaporation. A 1.5 mL portion of dry CH₃CN $(CH_3CN:CH_3NO_2 = 1:1 \text{ v/v})$ was added to the crude imine and the reaction mixture was cooled to 0 °C. A 1.5 mL portion of glacial AcOH (AcOH:CH₃CN = 1:1 v/v) was added to the flask, followed by addition of Me₄N(OAc)₃BH (119 mg, 0.453 mmol, 3.2 equiv). The reaction mixture was warmed to room temperature and stirred overnight. The reaction mixture was transferred to a separatory funnel containing CH₂Cl₂ and washed three times with saturated NaHCO₃ solution. The aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were washed once with brine, dried over Na₂SO₄, and concentrated by rotary evaporation to yield the diastereomeric mixture. The crude product was purified by silica gel chromatography (carried out using a gradient method with an initial starting mobile phase consisting of 0:1 CH₂Cl₂:hexanes, with a gradual increase to a ratio of 7:3 in 10% increments; 1% Et₂O was added

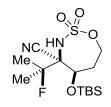
to improve separation among diastereomers; KMnO₄ stain) to yield 29.8 mg of the all-*syn* stereotriad **13a** (0.0811 mmol, 58%) as a white solid.¹H NMR (500 MHz, CDCl₃) δ 5.79 (ddt, *J* = 17.0, 10.0, 6.7 Hz, 1H), 5.45 (d, *J* = 10.7 Hz, 1H), 5.07 (dd, *J* = 17.2, 1.8 Hz, 1H), 5.02 (d, *J* = 10.2 Hz, 1H), 4.63 (t, *J* = 12.5 Hz, 1H), 4.58 – 4.40 (m, 1H), 4.24 (t, *J* = 2.8 Hz, 1H), 4.16 (dt, *J* = 13.0, 3.3 Hz, 1H), 3.36 (ddd, *J* = 24.4, 10.7, 2.6 Hz, 1H), 2.28 – 2.08 (m, 3H), 1.99 (ttd, *J* = 14.3, 8.6, 5.9 Hz, 1H), 1.86 (dt, *J* = 15.5, 3.7 Hz, 1H), 1.76 – 1.61 (m, 1H), 0.91 (s, 9H), 0.10 (s, 3H), 0.09 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 137.1, 116.0, 93.7 (d, *J* = 179.6 Hz), 69.4, 64.3, 58.0 (d, *J* = 18.0 Hz), 37.5, 31.4 (d, *J* = 21.3 Hz), 29.0 (d, *J* = 5.3 Hz), 25.9, 18.1, -4.2, -4.9 (d, *J* = 2.9 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -194.62 (dddd, *J* = 46.7, 31.8, 24.1, 13.3 Hz). HRMS (ESI) m/z calculated for C₁₅H₃₀FNO₄SSi [M-H]⁻ 366.1576, found 366.1575.


Compound 14a. To a flame-dried, round bottom flask equipped with a stir bar was added the enesulfamate **14** (78.6 mg, 0.130 mmol, 1.0 equiv), Selectfluor (69.7 mg, 0.197 mmol, 1.5 equiv), and 4 Å MS (69.5 mg). Dry CH₃NO₂ (1.3 mL) was added to prepare a 0.1 M solution. The mixture was stirred at 80 °C for 1.5 hour. The reaction mixture was filtered through a pad of celite and the filtrate concentrated by rotary evaporation. A 1.3 mL portion of dry CH₃CN (CH₃CN:CH₃NO₂ = 1:1 v/v) was added to the crude imine and the reaction mixture was cooled to 0 °C. A 1.3 mL portion of glacial AcOH (AcOH:CH₃CN = 1:1 v/v) was added to the flask, followed by addition of Me₄N(OAc)₃BH (105 mg, 0.403 mmol, 3.1 equiv). The reaction mixture was then

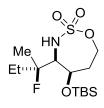
transferred to a separatory funnel containing CH₂Cl₂ and washed three times with saturated NaHCO₃ solution. The aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were washed once with brine, dried over Na₂SO₄, and concentrated by rotary evaporation to yield the diastereomeric mixture. The crude product was purified by silica gel chromatography (carried out using a gradient method with an initial starting mobile phase consisting of 0:1 CH₂Cl₂:hexanes, with a gradual increase to a ratio of 2:3 in 8% increments; 1% Et₂O was added to improve separation among diastereomers; KMnO₄ stain) to yield 54.4 mg of the all-syn stereotriad 14a (0.0892 mmol, 69%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.69 - 7.64 (m, 4H), 7.45 - 7.36 (m, 6H), 5.43 (d, J = 10.8 Hz, 1H), 4.63 (t, J = 12.4 Hz, 1H), 4.44 (ddt, J = 47.8, 8.9, 3.3 Hz, 1H), 4.25 – 4.20 (m, 1H), 4.15 (dt, J = 13.0, 3.3 Hz, 1H), 3.67 (t, J = 6.0 Hz, 2H), 3.33 (ddd, J = 23.9, 10.8, 2.7 Hz, 1H), 2.11 (ddt, J = 14.9, 12.1, 2.7 Hz, 1H), 1.90 - 1.80 (m, 2H), 1.65 - 1.50 (m, 4H), 1.50 - 1.40 (m, 1H), 1.05 (s, 9H), 0.91 (s, 9H), 0.10 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 135.5, 134.1, 134.1, 129.5, 127.6, 94.2 (d, J = 179.5 Hz), 69.2, 64.3, 63.7, 57.9 (d, J = 18.1 Hz), 37.3, 32.1, 31.7 (d, J = 21.1 Hz), 26.9, 25.8, 21.2 (d, J = 10.1 Hz), 26.9, 21.2 (d, J = 10.1 Hz), 26.9, 21.2 (d, 4.9 Hz), 19.2, 17.9, -4.4, -5.0 (d, J = 2.8 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -193.44 - -193.75 (m). HRMS (ESI) m/z calculated for $C_{31}H_{50}FNO_5SSi_2 [M+NH_4]^+ 641.3271$, found 641.3270.


Compound 15a. To a flame-dried, round bottom flask equipped with a stir bar was added the enesulfamate **15** (102 mg, 0.325 mmol, 1.0 equiv), Selectfluor (177 mg, 0.498 mmol, 1.5 equiv), and 4 Å MS (177 mg). Dry CH_3NO_2 (3.3 mL) was added to prepare a 0.1 M solution. The

mixture was stirred at 80 °C for 1 hour. The reaction mixture was then filtered through a pad of celite, and the filtrate concentrated by rotary evaporation. 3.3 mL of dry CH₃CN $(CH_3CN:CH_3NO_2 = 1:1 \text{ v/v})$ was added to the crude imine, and the reaction mixture was cooled to 0 °C. A 3.3 mL portion of glacial AcOH (AcOH:CH₃CN = 1:1 v/v) was added to the flask, followed by addition of Me₄N(OAc)₃BH (266 mg, 1.01 mmol, 3.1 equiv). The reaction mixture was warmed up to room temperature and stirred for 4.5 hours. The reaction mixture was then transferred to a separatory funnel containing CH₂Cl₂ and washed three times with saturated NaHCO₃ solution. The aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were washed once with brine, dried over Na₂SO₄, and concentrated by rotary evaporation to yield the diastereomeric mixture. The crude product was purified by silica gel chromatography (carried out using a gradient method with an initial starting mobile phase consisting of 0:1 CH₂Cl₂:hexanes, with a gradual increase to a ratio of 2:3 in 8% increments; 1% Et₂O was added to improve separation among diastereomers; KMnO₄ stain) to yield 73.9 mg of the all-syn stereotriad **15a** (0.226 mmol, 69%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 5.44 (d, J = 10.7 Hz, 1H), 4.66 (dqd, J = 47.6, 6.3, 3.0 Hz, 1H), 4.64 (t, 1H), 4.25 (dd, J = 3.5, 2.4 Hz, 1H), 4.16 (dt, J = 13.0, 3.3 Hz, 1H), 3.31 (ddd, J = 22.9, 10.8, 3.0 Hz, 1H), 2.13 (ddt, J = 15.4, 12.1, 2.8 Hz, 1H), 1.86 (dt, J = 15.6, 3.7 Hz, 1H), 1.43 (dd, J = 23.9, 6.3 Hz, 3H), 0.91 (s, 9H), 0.10 (s, 3H), 0.10 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 90.9 (d, J = 176.8 Hz), 69.3 (d, J = 1.6 Hz), 64.5, 59.4 (d, J = 18.1 Hz), 37.7, 26.1, 18.5 (d, J = 23.0 Hz), 18.3, -4.0, -4.8 (d, J = 2.7) Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -186.11 (dp, J = 47.4, 23.7 Hz). HRMS (ESI) m/z calculated for C₁₂H₂₆FNO₄SSi [M+H]⁺ 328.1409, found 328.1405.


Compound 16a. To a flame-dried, round bottom flask equipped with a stir bar was added the enesulfamate **16** (34.3 mg, 0.107 mmol, 1.0 equiv), Selectfluor (57.4 mg, 0.162 mmol, 1.5 equiv), and 4 Å MS (56.0 mg). Dry CH₃NO₂ (1 mL) was added to prepare a 0.1 M solution. The mixture was stirred at 80 °C for 1 hour. The reaction mixture was then filtered through a pad of celite, and the filtrate concentrated by rotary evaporation. A 1 mL portion of dry CH₃CN $(CH_3CN:CH_3NO_2 = 1:1 \text{ v/v})$ was added to the crude imine and the reaction mixture cooled to 0 °C. A 1 mL portion of glacial AcOH (AcOH:CH₃CN = 1:1 v/v) was added to the flask, followed by addition of Me₄N(OAc)₃BH (266 mg, 1.01 mmol, 3.1 equiv). The reaction mixture was warmed to room temperature and stirred for 7 hours. The reaction mixture was transferred to a separatory funnel containing CH₂Cl₂ and washed three times with saturated NaHCO₃ solution. The aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were washed once with brine, dried over Na₂SO₄, and concentrated by rotary evaporation to yield the diastereomeric mixture. The crude product was purified by silica gel chromatography (carried out using a gradient method with an initial starting mobile phase consisting of 0:1 CH₂Cl₂:hexanes, with a gradual increase to a ratio of 1:4 in 4% increments; 1% Et₂O was added to improve separation among diastereomers; KMnO₄ stain) to yield 20.3 mg 16a (0.059 mmol, 56%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 5.56 (d, J = 10.6 Hz, 1H), 4.62 (t, J = 12.6 Hz, 1H), 4.58 - 4.54 (m, 1H), 4.17 (dt, J = 13.0, 3.2 Hz, 1H), 3.29 (dd, J = 14.0, 10.6 Hz, 1H), 2.08 (ddt, J = 15.0, 12.1, 2.6 Hz, 1H), 1.90 (dt, J = 15.6, 3.8 Hz, 1H), 1.46 (d, J = 21.5 Hz, 3H), 1.40 (d, J = 21.7 Hz, 3H), 0.92 (s, 9H), 0.14 (s, 3H), 0.12 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ

95.4 (d, J = 173.4 Hz), 65.5 (d, J = 2.9 Hz), 64.4, 61.9 (d, J = 26.6 Hz), 37.5, 26.1, 26.0 (d, J = 23.5 Hz), 23.7 (d, J = 24.3 Hz), 18.2, -3.5, -4.5 (d, J = 1.7 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ - 148.5 – -148.9 (m). HRMS (ESI) m/z calculated for C₁₃H₂₈FNO₄SSi [M+NH₄]⁺ 359.1831, found 359.1829.

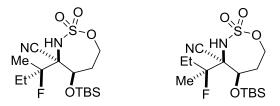

Compound 16b. The enesultamate 16 (0.150 g, 0.467 mmol, 1.0 equiv) was added to a 10 mL round bottom flask, followed by addition of Selectfluor (0.252 g, 0.711 mmol, 1.5 equiv) and 0.261 g 4 Å MS. Distilled CH₃NO₂ (4.7 mL) was added to make a 0.1 M solution. The reaction was stirred at 80 °C for 1.5 hour. After 1.5 hour, dry CH₂Cl₂ (40 mL) was added to the reaction until no more white precipitates crashed out. The reaction mixture was filtered through a pad of celite and concentrated by rotary evaporation to yield the imine. A 0.5 M solution of ethynyl magnesium bromide in THF (3.0 mL, 1.50 mmol, 3.2 equiv) was cooled at 0 °C for at least 15 minutes before use. Dry THF (0.9 mL) was added to the imine to make a 0.5 M solution. The imine solution was then transferred to the cooled ethynyl magnesium bromide. Another 2.1 mL of THF was used to ensure quantitative transfer. The reaction was stirred at 0 °C for 60 minutes. The reaction was quenched by addition of saturated NH₄Cl solution. The mixture was transferred to a separatory funnel, and the organic layer was extracted three times with EtOAc and washed once with saturated NH₄Cl solution and once with brine, then dried over Na₂SO₄ and concentrated by rotary evaporation to yield the diastereomeric mixture. The product was purified by column chromatography (carried out using a gradient method with an initial starting mobile phase consisting of 0:1 CH₂Cl₂:hexanes, with a gradual increase to a ratio of 7:3 in 14%

increments; KMnO₄ stain) to give **16b** as the major diastereomer (0.0891g, 0.244 mmol, 52%), as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 5.62 (bs, 1H), 4.71 (t, *J* = 12.5 Hz, 1H), 4.54 (dd, *J* = 4.6, 1.7 Hz, 1H), 4.16 (dt, *J* = 12.9, 3.2 Hz, 1H), 2.82 (dddd, *J* = 15.6, 12.1, 2.9, 1.8 Hz, 1H), 2.77 (s, 1H), 1.78 (dt, *J* = 15.9, 4.1 Hz, 1H), 1.65 (d, *J* = 22.0 Hz, 3H), 1.57 (d, *J* = 20.7 Hz, 3H), 0.91 (s, 9H), 0.13 (d, *J* = 1.2 Hz, 3H), 0.11 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 99.2 (d, *J* = 186.8 Hz), 80.8 (d, *J* = 2.1 Hz), 77.5 (d, *J* = 8.0 Hz), 70.8, 64.0, 62.6 (d, *J* = 21.6 Hz), 34.8, 25.9 (d, *J* = 1.2 Hz), 24.8 (d, *J* = 24.1 Hz), 23.0 (d, *J* = 23.7 Hz), 18.2, -3.6, -4.3 (d, *J* = 2.4 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -152.30 (hept, *J* = 21.0 Hz). HRMS (ESI) m/z calculated for C₁₅H₂₈FNO₄SSi [M+Na]⁺ 388.1385, found 388.1382.

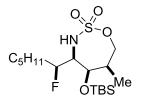
Compound 16c. The enesulfamate **16** (31.7 mg, 0.0986 mmol, 1.0 equiv) was added to a 10 mL round bottom flask, followed by addition of Selectfluor (62.3 mg, 0.176 mmol, 1.8 equiv) and 4 Å MS (58.7 mg). Dry CH₃CN (1.0 mL) was added to make a 0.1 M solution and the reaction mixture was stirred at 40 °C for 1 day. After 1 day, Bu₄NCN (84.0 mg, 0.313 mmol, 3.2 equiv) was added to the reaction mixture. The color of the solution turned reddish-brown upon addition of Bu₄NCN. The reaction was stirred at room temperature for 3 hours. The mixture was transferred to a separatory funnel and CH₂Cl₂ added to dilute the reaction mixture, followed by the addition of an equal volume of water. The aqueous layer was extracted three times with CH₂Cl₂, the combined organic layers were washed once with brine, dried over Na₂SO₄ and concentrated by rotary evaporation to yield the product as a mixture of diastereomers. The

product was purified by column chromatography (carried out using a gradient method with an initial starting mobile phase consisting of 0:1 CH₂Cl₂:hexanes, with a gradual increased to a ratio of 7:3 in 14% increments; KMnO₄ stain) to give **16c** as the major diastereomer (32.2 mg, 0.0879 mmol, 89%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 5.65 (bs, 1H), 4.78 – 4.66 (m, 2H), 4.28 (dt, *J* = 13.0, 3.3 Hz, 1H), 2.72 (ddt, *J* = 16.5, 11.8, 2.5 Hz, 1H), 1.97 (dt, *J* = 15.7, 4.0 Hz, 1H), 1.69 (d, *J* = 21.9 Hz, 3H), 1.66 (d, *J* = 20.7 Hz, 3H), 0.92 (s, 9H), 0.17 – 0.13 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 114.9 (d, *J* = 7.1 Hz), 97.8 (d, *J* = 189.8 Hz), 69.4, 64.2, 62.7 (d, *J* = 24.0 Hz), 35.3, 25.9 (d, *J* = 1.0 Hz), 24.6 (d, *J* = 23.8 Hz), 23.4 (d, *J* = 23.5 Hz), 18.1, -3.6, -4.4 (d, *J* = 2.3 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -151.62 (dt, *J* = 40.3, 18.7 Hz). HRMS (ESI) m/z calculated for C₁₄H₂₇FN₂O₄SSi [M+NH₄]⁺ 384.1783, found 384.1784.

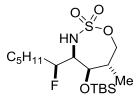
Compound 17a. To a flame-dried, round bottom flask equipped with a stir bar was added the enesulfamate **17** (0.131 g, 0.391 mmol, 1.0 equiv), followed by the addition of Selectfluor (0.214 g, 0.605 mmol, 1.5 equiv) and 4 Å MS (0.202 g). Dry CH₃CN (3.9 mL) was added to prepare a 0.1 M solution. The mixture was stirred at 40 °C for 1 day. The reaction mixture was then filtered through a pad of celite, and the filtrate concentrated by rotary evaporation. A 3.9 mL portion of dry CH₃CN was added to the crude imine and the reaction mixture was cooled to 0 °C. A 3.9 mL portion of glacial AcOH (AcOH:CH₃CN = 1:1 v/v) was added to the flask, followed by addition of Me₄N(OAc)₃BH (0.303 g, 1.15 mmol, 2.9 equiv). The reaction mixture was warmed to room temperature and stirred for 2.75 hours. The reaction mixture was transferred to a separatory funnel containing CH₂Cl₂ and washed three times with saturated NaHCO₃ solution. The aqueous


layer was extracted three times with CH₂Cl₂. The combined organic layers were washed once with brine, dried over Na₂SO₄ and concentrated by rotary evaporation to yield the diastereomeric product mixture. The crude product was purified by silica gel chromatography (carried out using a gradient method with an initial starting mobile phase consisting of 0:1 CH₂Cl₂:hexanes, with a gradual increase to a ratio of 3:1 in 15% increments; KMnO₄ stain) to furnish 37.7 mg **17a** (0.106 mmol, 27%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 5.55 (d, *J* = 10.6 Hz, 1H), 4.63 (t, *J* = 12.5 Hz, 1H), 4.54 (dd, *J* = 4.2, 2.1 Hz, 1H), 4.16 (dt, *J* = 12.9, 3.3 Hz, 1H), 3.29 (dd, *J* = 18.6, 10.7 Hz, 1H), 2.08 (ddt, *J* = 15.4, 12.1, 2.9 Hz, 1H), 1.95 – 1.85 (m, 2H), 1.67 (ddq, *J* = 27.0, 15.1, 7.5 Hz, 1H), 1.38 (d, *J* = 21.4 Hz, 3H), 0.95 (t, *J* = 7.5 Hz, 3H), 0.91 (s, 9H), 0.12 (s, 3H), 0.11 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 97.5 (d, *J* = 176.8 Hz), 65.7 (d, *J* = 2.3 Hz), 64.3, 61.0 (d, *J* = 24.1 Hz), 37.6, 29.1 (d, *J* = 23.4 Hz), 26.0, 21.6 (d, *J* = 24.1 Hz), 18.2, 7.6 (d, *J* = 7.3 Hz), -3.6, -4.5 (d, *J* = 2.1 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -157.99 (dpd, *J* = 31.3, 21.4, 20.7, 10.1 Hz). HRMS (ESI) m/z calculated for C₁₄H₃₀FNO₄SSi [M-H]⁻ 354.1576, found 354.1578.

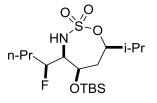
Compound 17b. The enesulfamate **17** (0.120 g, 0.358 mmol, 1.0 equiv) was added to a 10 mL round bottom flask, followed by addition of Selectfluor (0.194 g, 0.548 mmol, 1.5 equiv) and 4 Å MS (0.196 g). Dry CH_3NO_2 (3.6 mL) was added to make a 0.1 M solution and the reaction mixture was stirred at 80 °C for 1.5 hour. CH_2Cl_2 was added to the reaction until no more white precipitates crashed out. The reaction mixture was then filtered through a pad of celite and concentrated by rotary evaporation to yield the imine. A 0.5 M solution of ethynyl magnesium


bromide solution in THF (3.2 mL, 1.60 mmol, 4.5 equiv) was cooled at 0 °C for at least 15 minutes before use. Dry THF (0.7 mL) was added to the imine to make a 0.5 M solution. The imine solution was then transferred to the cooled ethynyl magnesium bromide. Another 2.0 mL of THF was used to ensure quantitative transfer. The reaction was stirred at 0 °C for 60 minutes. The reaction was quenched by addition of saturated NH₄Cl solution. The mixture was transferred to a separatory funnel, and the organic layer was extracted three times with EtOAc and washed once with brine, then dried over Na₂SO₄ and concentrated by rotary evaporation to yield the diastereomeric mixture. The product was purified by column chromatography (carried out using a gradient method with an initial starting mobile phase consisting of 0:1 CH₂Cl₂:hexanes, with a gradual increase to a ratio of 17:3 in 14% increments; KMnO₄ stain) to give an inseparable mixture of diastereomers (38.4 mg, 0.101 mmol, 28%) with 17b as the major diastereomer. The *dr* of the product oil is 4:1. ¹H NMR (500 MHz, CDCl₃) δ 5.64 (bs, 0.20H), 5.59 (bs, 0.80H), 4.70 (t, J = 12.5 Hz, 1H), 4.56 (dd, J = 4.6, 1.8 Hz, 1H), 4.15 (dt, J = 12.9, 3.3 Hz, 1H), 2.83 (dddd, J = 15.8, 12.1, 2.9, 1.8 Hz, 0.92H), 2.78 (q, J = 1.8 Hz, 0.08H), 2.76 (s, 1H), 2.35 (dp, J = 14.8, 7.6 Hz, 1H), 1.93 – 1.80 (m, 1H), 1.80 – 1.74 (m, 1H), 1.57 (d, J = 22.1 Hz, 0.6H), 1.47 (dd, J = 20.9, 0.8 Hz, 2.4H), 1.05 (t, J = 7.4 Hz, 0.6H), 0.97 (t, J = 7.5 Hz, 2.4H), 0.91 (s, 7.2H), 0.90 (s, 1.8H), 0.13 (d, J = 1.1 Hz, 2.4H), 0.11 (s, 3H), 0.10 (s, 0.6H). ¹³C NMR (126 MHz, CDCl₃) Major diastereomer: δ 100.6 (d, J = 191.2 Hz), 81.1 (d, J = 2.1 Hz), 71.0, 64.0, 62.9 (d, J = 21.6Hz), 34.7, 29.9, 28.6 (d, J = 22.7 Hz), 25.9 (d, J = 1.2 Hz), 18.7 (d, J = 24.1 Hz), 18.2, 7.4 (d, J = 6.6 Hz), -3.6, -4.3 (d, J = 2.4 Hz). Minor diastereomer: 101.2 (d, J = 189.6 Hz), 81.0 (d, J = 2.1Hz), 70.5, 62.9 (d, J = 21.0 Hz), 34.8, 27.6 (d, J = 22.7 Hz), 25.9 (d, J = 1.1 Hz), 20.1 (d, J = 1.1 Hz), 24.4 Hz), 18.1, 7.9 (d, J = 3.4 Hz), -3.7, -4.4 (d, J = 2.3 Hz).¹⁹F NMR (471 MHz, CDCl₃) δ -

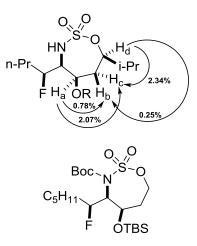
162.79 (h, J = 23.9 Hz), -166.16 – -166.42 (m). HRMS (ESI) m/z calculated for C₁₆H₃₀FNO₄SSi [M+Na]⁺ 402.1541, found 402.1540.


Compound 17c. The enesulfamate 17 (30.6 mg, 0.0913 mmol, 1.0 equiv) was added to a 10 mL round bottom flask, followed by addition of Selectfluor (50.0 mg, 0.141 mmol, 1.5 equiv) and 4 Å MS (49.7 mg). Dry CH₃CN (0.9 mL) was added to make a 0.1 M solution and the reaction mixture was stirred at 40 °C for 1 day. After 1 day, Bu₄NCN (80.0 mg, 0.298 mmol, 3.3 equiv) was added to the reaction mixture. The color of the solution turned reddish-brown upon addition of Bu₄NCN. The reaction was stirred at room temperature for 3 hours. The mixture was transferred to a separatory funnel, CH₂Cl₂ was added to dilute the reaction mixture. Water (ca. 2 mL) was then added. The aqueous layer was extracted three times with CH₂Cl₂, the combined organic layers washed once with brine, then dried over Na₂SO₄ and concentrated by rotary evaporation to yield the product as a mixture of diastereomers. The product was purified by column chromatography (carried out using a gradient method with an initial starting mobile phase consisting of 0:1 CH₂Cl₂:hexanes, with a gradual increased to a ratio of 7:3 in 14% increments; KMnO₄ stain) to give 17c as the major diastereomer as an oil (26.0 mg, 0.0684 mmol, 75%) with a dr of 5:1. ¹H NMR (500 MHz, CDCl₃) δ 5.66 (bs, 0.18H), 5.62 (bs, 0.82H), 4.75 - 4.66 (m, 2H), 4.27 (dt, J = 12.9, 3.2 Hz, 1H), 2.78 - 2.70 (m, 1H), 2.37 (dp, J = 14.8, 7.4Hz, 1H), 1.95 (dt, J = 16.0, 4.0 Hz, 1H), 1.81 (ddq, J = 34.6, 14.8, 7.5 Hz, 1H), 1.63 (d, J = 22.0Hz, 0.54H), 1.57 (d, J = 21.0 Hz, 2.46H), 1.10 (t, J = 7.4 Hz, 0.54H), 1.03 (t, J = 7.5 Hz, 2.46H),

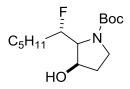
0.92 (s, 9H), 0.16 – 0.13 (m, 6H). Major diastereomer: ¹³C NMR (126 MHz, CDCl₃) δ 114.9 (d, J = 7.6 Hz), 99.5 (d, J = 193.7 Hz), 69.6, 64.1, 62.9 (d, J = 24.1 Hz), 35.2, 28.7 (d, J = 22.6 Hz), 25.9 (d, J = 3.1 Hz), 19.1 (d, J = 23.9 Hz), 18.1, 7.3 (d, J = 6.3 Hz), -3.6, -4.4 (d, J = 2.4 Hz). Minor diastereomer: ¹³C NMR (126 MHz, CDCl₃) δ 114.9 (d, J = 6.8 Hz), 99.9 (d, J = 192.7 Hz), 69.2, 64.2, 62.9 (d, J = 24.1 Hz), 35.3, 28.3 (d, J = 22.8 Hz), 25.9, 20.1 (d, J = 24.0 Hz), 7.7 (d, J = 3.6 Hz), -3.6, -4.4 (d, J = 2.3 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -161.50 (m), -165.00 (m). HRMS (ESI) m/z calculated for C₁₅H₂₉FN₂O₄SSi [M-H]⁻ 379.1529, found 379.1532.


Compound 18a. To a flame-dried, round bottom flask equipped with a stir bar was added the enesulfamate **18** (96.2 mg, 0.255 mmol, 1.0 equiv), Selectfluor (0.148 g, 0.418 mmol, 1.6 equiv) and 4 Å MS (0.147 g). Dry CH₃NO₂ (2.6 mL) was added to prepare a 0.1 M solution. The mixture was stirred at 80 °C for 1 hour. The reaction mixture was then filtered through a pad of celite, and the filtrate concentrated by rotary evaporation. A 2.6 mL portion of dry CH₃CN was added to the crude imine and the reaction mixture was cooled to 0 °C. A 2.6 mL portion of glacial AcOH (AcOH:CH₃CN = 1:1 v/v) was added to the flask, followed by addition of Me₄N(OAc)₃BH (0.210 g, 0.797 mmol, 3.1 equiv). The reaction mixture was transferred to a separatory funnel containing CH₂Cl₂ and washed three times with saturated NaHCO₃ solution. The aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were washed once with brine, dried over Na₂SO₄, and concentrated by rotary evaporation to yield the

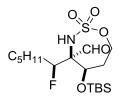
diastereomeric mixture. The crude product was purified by silica gel chromatography (carried out using a gradient method with an initial starting mobile phase consisting of 0:1 CH₂Cl₂:hexanes, with a gradual increase to a ratio of 2:3 in 8% increments; 1% Et₂O was added to improve separation among diastereomers; KMnO₄ stain) to yield 52.1 mg **18a** (0.131 mmol, 51%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 5.37 (d, *J* = 10.6 Hz, 1H), 4.42 (dddd, *J* = 47.9, 8.4, 4.5, 2.8 Hz, 1H), 4.42 (ddd, *J* = 12.7, 10.4 Hz, 1H), 4.04 – 3.97 (m, 1H), 3.81 (dd, *J* = 12.8, 1.6 Hz, 1H), 3.35 (ddd, *J* = 25.3, 10.6, 2.8 Hz, 1H), 2.17 (dqt, *J* = 9.7, 7.3, 2.3 Hz, 1H), 1.91 – 1.77 (m, 1H), 1.69 – 1.55 (m, 1H), 1.51 – 1.27 (m, 6H), 0.96 – 0.92 (m, 12H), 0.90 (t, *J* = 7.2, 3H), 0.11 (s, 3H), 0.11 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 94.2 (d, *J* = 179.3 Hz), 74.7 (d, *J* = 1.4 Hz), 68.7, 59.2 (d, *J* = 17.4 Hz), 41.1, 32.4 (d, *J* = 21.2 Hz), 31.6, 26.4 (d, *J* = 0.9 Hz), 24.5 (d, *J* = 5.2 Hz), 22.6, 18.7, 15.4, 14.1, -2.7, -4.2 (d, *J* = 7.1 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -190.67 (dtd, *J* = 45.6, 27.7, 14.4 Hz). HRMS (ESI) m/z calculated for C₁₇H₃₆FNO₄SSi [M+H]⁺ 398.2191, found 398.2191.


Compound 19a. To a flame-dried, round bottom flask equipped with a stir bar was added the corresponding enesulfamate (88.3 mg, 0.234 mmol, 1.0 equiv), Selectfluor (0.214 g, 0.605 mmol, 2.6 equiv) and 4 Å MS (0.126 g). Dry CH₃NO₂ (2.4 mL) was added to prepare a 0.1 M solution. The mixture was stirred at 80 °C for ca. 7 hours to ensure complete consumption of the starting enesulfamate. The reaction mixture was filtered through a pad of celite and the filtrate concentrated by rotary evaporation. A 2.4 mL portion of dry CH₃CN was added to the crude

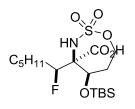
imine, and the reaction mixture was cooled to 0 °C. A 2.4 mL portion of glacial AcOH $(AcOH:CH_3CN = 1:1 v/v)$ was added to the flask, followed by addition of Me₄N(OAc)₃BH (0.198 g, 0.751 mmol, 3.2 equiv). The reaction mixture was warmed to room temperature and stirred for 13 hours. The reaction mixture was then transferred to a separatory funnel containing CH₂Cl₂ and washed three times with saturated NaHCO₃ solution. The aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were washed once with brine, dried over Na₂SO₄, and concentrated by rotary evaporation to yield the diastereomeric mixture. The crude product was purified by silica gel chromatography (carried out using a gradient method with an initial starting mobile phase consisting of 0:1 CH₂Cl₂:hexanes, with a gradual increase to a ratio of 3:7 in 6% increments; 1% Et₂O was added to improve separation among diastereomers; KMnO₄ stain) to yield 22.2 mg of **19a** (0.0559 mmol, 24%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 5.40 (d, J = 10.7 Hz, 1H), 4.69 (d, J = 12.9 Hz, 1H), 4.41 (dddd, J =48.0, 8.8, 4.2, 2.9 Hz, 1H), 3.94 (dd, J = 12.9, 2.7 Hz, 1H), 3.84 (d, J = 3.2 Hz, 1H), 3.37 (ddd, J = 23.8, 10.8, 2.9 Hz, 1H), 1.91 – 1.77 (m, 2H), 1.69 – 1.53 (m, 1H), 1.51 – 1.28 (m, 6H), 1.14 (d, J = 7.3 Hz, 3H), 0.93 – 0.87 (overlapping signals, 12H), 0.10 (d, J = 1.3 Hz, 3H), 0.09 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 94.8 (d, J = 179.6 Hz), 74.6 (d, J = 0.9 Hz), 68.2, 53.7 (d, J = 18.3 Hz), 40.0, 32.3 (d, J = 21.0 Hz), 31.6, 26.0, 24.6 (d, J = 4.8 Hz), 22.6, 18.1, 14.1, 13.5, -4.2, -4.9 (d, J = 3.0 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -192.48 (dddd, J = 47.2, 31.5, 23.9, 14.8 Hz). HRMS (ESI) m/z calculated for $C_{17}H_{36}FNO_4SSi [M+H]^+$ 398.2191, found 398.2189.


Compound 20a. To a flame-dried, round bottom flask equipped with a stir bar was added a portion of 90.6 mg enesulfamate 20 (0.240 mmol, 1.0 equiv), Selectfluor (0.128 g, 0.361 mmol, 1.5 equiv), and 4 Å MS (0.134 g). Dry CH₃NO₂ (2.4 mL) was added to prepare a 0.1 M solution. The mixture was stirred at 80 °C for 1 hour. The reaction mixture was then filtered through a pad of celite, and the filtrate concentrated by rotary evaporation. A 2.4 mL portion of dry CH₃CN was added to the crude imine and the reaction mixture was cooled to 0 °C. A 2.4 mL portion of glacial AcOH (AcOH:CH₃CN = 1:1 v/v) was added to the flask, followed by addition of $Me_4N(OAc)_3BH$ (0.191 g, 0.726 mmol, 3.0 equiv). The reaction maiture was warmed up to room temperature and stirred for 6 hours. The reaction mixture was transferred to a separatory funnel containing CH_2Cl_2 and washed three times with saturated NaHCO₃ solution. The aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were washed once with brine, dried over Na₂SO₄, and concentrated by rotary evaporation to yield the diastereomeric mixture. The crude product was purified by silica gel chromatography (carried out using a gradient method with an initial starting mobile phase consisting of 0:1 CH₂Cl₂:hexanes, with a gradual increase to a ratio of 3:7 in 6% increments; 1% Et₂O was added to improve separation among diastereomers; KMnO₄ stain) to yield 39.5 mg stereotriad (0.0994 mmol, 41%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 5.04 (d, J = 9.5 Hz, 1H), 4.77 (dddd, J = 47.2, 8.9, 4.7, 2.3 Hz, 1H), 4.39 – 4.32 (m, 2H), 3.53 (ddt, J = 25.3, 9.6, 2.8 Hz, 1H), 2.16 (ddd, J = 16.2, 10.7, 5.8 Hz, 1H), 2.03 (ddd, J = 15.5, 5.1, 2.8 Hz, 1H), 1.93 - 1.77(m, 2H), 1.64 - 1.34(m, 2H), 1.00 - 1.000.94 (m, 9H), 0.91 (s, 9H), 0.12 (s, 3H), 0.08 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 92.8 (d, J = 177.3 Hz), 84.9, 70.8, 57.5 (d, J = 17.8 Hz), 39.8 (d, J = 1.3 Hz), 34.3 (d, J = 20.9 Hz), 33.1, 25.9, 18.5, 18.4 (d, J = 5.6 Hz), 18.1, 17.6, 13.9, -4.0, -4.9 (d, J = 1.5 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -194.46 (dddd, J = 46.3, 30.9, 25.2, 13.9 Hz). HRMS (ESI) m/z calculated for

 $C_{17}H_{36}FNO_4SSi [M+NH_4]^+$ 415.2457, found 415.2452. The stereochemistry of the ^{*i*}Pr group on seven-membered ring was confirmed by NOE experiments:

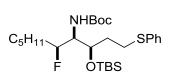

Intermediate for the synthesis of compound 28. A portion of 0.299 g of the stereotriad 7a (0.779 mmol, 1.0 equiv) was dissolved in 7.5 mL dry CH₂Cl₂ to prepare a 0.1 M solution. A portion of 0.27 mL Boc₂O (0.257g, 1.17 mmol, 1.5 equiv), 0.16 mL NEt₃ (0.116 g, 1.17 mmol, 1.5 equiv) and 0.0117 g DMAP (0.0958 mmol, 0.1 equiv) were added to the flask and the reaction mixture stirred at room temperature for 40 minutes, diluted with CH₂Cl₂ and washed twice with saturated NH₄Cl solution and once with brine. The combined organic layers were dried over Na₂SO₄ and concentrated by rotary evaporation to yield the crude product, which was purified by silica gel chromatography (carried out using a gradient method with an initial starting mobile phase consisting of 0:1 CH₂Cl₂:hexanes, with a gradual increase to a ratio of 1:1 in 10% increments; KMnO₄ stain) to yield 36.3 mg of product as a white solid (0.750 mmol, 96%). ¹H NMR (500 MHz, CDCl₃) δ 5.06 (dddd, *J* = 48.7, 10.1, 7.3, 3.2 Hz, 1H), 4.66 – 4.53 (m, 2H), 4.47 (ddd, *J* = 12.5, 4.5, 2.2 Hz, 1H), 4.03 (dq, *J* = 11.2, 3.5 Hz, 1H), 2.33 – 2.20 (m, 1H), 1.89 – 1.63 (m, 3H), 1.55 (s, 9H), 1.44 – 1.27 (m, 6H), 0.92 – 0.87 (m, 12H), 0.15 (s, 3H), 0.10 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 151.9, 90.7 (d, *J* = 175.8 Hz), 85.7, 72.2 (d, *J* = 4.4 Hz), 69.7,

64.8 (d, J = 18.7 Hz), 33.7, 33.1 (d, J = 20.6 Hz), 31.7, 28.0, 25.8, 25.0 (d, J = 3.8 Hz), 22.7, 18.0, 14.1, -4.7, -5.0.¹⁹F NMR (471 MHz, CDCl₃) δ -184.27 – -184.72 (m). HRMS (ESI) m/z calculated for C₂₁H₄₂FNO₆SSi [M+NH₄]⁺ 501.2824, found 501.2826.



Compound 28. The N-Boc protected stereotriad was converted to the crude pyrrolidine product according to a published procedure⁴. A 51.0 mg (0.105 mmol, 1.0 equiv) portion of the triad was dissolved in 0.52 mL of DMF, followed by addition of 28.0 mg NaI (0.187 mmol, 1.8 equiv). The solution was warmed to 50 °C and stirred at the same temperature for 15 minutes prior to the addition of NaH (16.6 mg, 0.692 mmol, 6.6 equiv). Upon addition of NaH, the solution turned light yellow. The reaction mixture was then warmed to 68 °C and stirred at the same temperature for 10.5 hours. The reaction mixture was then cooled down to room temperature and cautiously quenched with H₂O. The mixture was extracted with Et₂O three times. The combined organics were washed once with brine and dried with MgSO₄. The mixture was filtered and concentrated in vacuo. The crude pyrrolidine was purified by silica gel chromatography (carried out using a gradient method with an initial starting mobile phase consisting of 0:1 EtOAc:hexanes, with a gradual increase to a ratio of 2:3 in 7% increments; KMnO₄ stain) to yield 22.8 mg (0.0788 mmol, 75%) of **28** as a clear oil. ¹H NMR (500 MHz, Tol-d8, 368K) δ 4.81 (dddd, J = 47.4, 9.2, 4.1, 2.3Hz, 1H), 3.92 (q, J = 8.2 Hz, 1H), 3.81 (ddd, J = 29.3, 7.5, 2.3 Hz, 1H), 3.30 (t, J = 7.3 Hz, 2H), 1.90 – 1.78 (m, 1H), 1.78 – 1.60 (m, 3H), 1.53 – 1.36 (m, 11H), 1.32 – 1.20 (m, 5H), 0.86 (t, J = 6.9 Hz, 3H). ¹³C NMR (126 MHz, Tol-d8, 368K) δ 154.6, 93.0 (d, J = 172.6 Hz), 78.7, 71.2, 60.4 (d, J = 17.9 Hz), 43.8, 32.4 (d, J = 21.1 Hz), 32.4 (d, J = 3.6 Hz), 31.6, 28.0, 25.1 (d, J = 4.7 Hz), 32.4 (d, J = 3.6 Hz), 31.6, 28.0, 25.1 (d, J = 4.7 Hz), 32.4 (d, J = 3.6 Hz), 31.6, 28.0, 25.1 (d, J = 4.7 Hz), 32.4 (d, J = 3.6 Hz), 31.6, 28.0, 25.1 (d, J = 4.7 Hz), 32.4 (d, J = 3.6 Hz), 31.6, 28.0, 25.1 (d, J = 4.7 Hz), 32.4 (d, J = 3.6 Hz), 31.6, 28.0, 25.1 (d, J = 4.7 Hz), 31.6, 28.0, 25.1 (d, J = 4.7 Hz), 32.4 (d, J = 3.6 Hz), 31.6, 28.0, 25.1 (d, J = 4.7 Hz), 32.4 (d, J = 3.6 Hz), 31.6, 28.0, 25.1 (d, J = 4.7 Hz), 31.6, 28.0, 28.0, 25.1 (d, J = 4.7 Hz), 31.6, 28.0

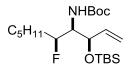
Hz), 22.3, 13.4. ¹⁹F NMR (471 MHz, Tol-d8, 368K) δ -191.36 – -193.07 (m). HRMS (ESI) m/z calculated for C₁₅H₂₈FNO₃ [M+Na]⁺ 312.1945, found 312.1941.



Intermediate for the synthesis of compound 29. A portion of 29.1 mg of the stereotriad 9a (0.0710 mmol, 1.0 equiv) was subjected to ozonolysis conditions⁵ to yield the crude aldehyde product. The 9a was dissolved in dry CH₂Cl₂ and cooled to -78 °C. Ozone was then bubbled into the solution until a persistent blue color was observed. At this point, N₂ was bubbled through the solution in place of the ozone until the blue color went away. A 0.02 mL portion of NEt₃ (14.5 mg, 0.144 mmol, 2.0 equiv) was then added and the solution was warmed to room temperature and allowed to stir for 3.5 hours. After the reaction was complete as indicated by a TLC check $(CH_2Cl_2:hexanes = 1:1, KMnO_4 stain)$, the organic solution was diluted with Et₂O, washed once with saturated NH_4Cl solution. After the aqueous layer was extracted three times with Et₂O, the combined organic layers were washed with brine once and dried over Na₂SO₄. The product was purified by silica gel chromatography (carried out using a gradient method with an initial starting mobile phase consisting of 0:1 EtOAc:hexanes, with a gradual increase to a ratio of 1:1 in 10% increments; KMnO₄ stain) to yield 24.5 mg of the aldehyde as clear yellow oil (0.0595 mmol, 84%). ¹H NMR (500 MHz, CDCl₃) δ 9.91 (d, J = 3.4 Hz, 1H), 5.44 (bs, 1H), 4.80 (ddd, J = 46.8, 11.1, 2.0 Hz, 1H), 4.54 - 4.47 (m, 2H), 4.20 (ddd, J = 12.2, 6.0, 2.9 Hz, 1H), 2.19 (ddt, J = 16.0, 9.2, 2.4 Hz, 1H), 2.10 (dtd, J = 15.8, 6.5, 2.1 Hz, 1H), 1.85 – 1.71 (m, 1H), 1.61 – 1.51 (m, 1H), 1.51 - 1.26 (m, 6H), 0.91 (s, 9H), 0.88 (t, J = 6.7 Hz, 3H), 0.13 - 0.10 (m, 6H). ¹³C NMR (126) MHz, CDCl₃) δ 199.2 (d, J = 4.8 Hz), 94.7 (d, J = 185.8 Hz), 72.1, 71.6 (d, J = 16.3 Hz), 66.4, 34.4 (d, J = 2.2 Hz), 31.4, 30.2 (d, J = 21.8 Hz), 25.9, 25.0 (d, J = 3.4 Hz), 22.5, 18.1, 14.1, -4.0, -4.9 (d, J = 0.71 Hz).¹⁹F NMR (471 MHz, CDCl₃) δ -193.61 (dddd, J = 46.6, 42.3, 12.7, 3.4 Hz). HRMS (ESI) m/z calculated for C₁₇H₃₄FNO₅SSi [M+NH₄]⁺ 429.2249, found 429.2250.

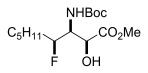
Compound 29. A portion of 60.2 mg (0.146 mmol, 1.0 equiv) of the aldehyde was dissolved in 0.50 mL CH₃CN. An aqueous solution of NaH₂PO₄ (8.7 mg in 0.24 mL H₂O) and 0.1 mL 30% wt% H₂O₂ were added to the dissolved aldehyde and the reaction mixture was cooled to 0 °C. Next, an aqueous solution of NaClO₂ (15.7 mg in 0.23 mL H_2O) was added and the reaction mixture stirred at room temperature until starting material was consumed after 3 hours. The reaction was quenched with addition of aqueous solution of NaHSO₃. After another 30 minutes of stirring, 2 N HCl was added. The reaction mixture was extracted with CH₂Cl₂ three times. The combined organic layers were then washed with 10% NaOH solution twice to ensure deprotonation of the acid. A portion of 2 N HCl was then added to the combined aqueous layers to ensure protonation of the acid. The mixture was then extracted five times with CH₂Cl₂. The combined organic layers were then washed once with brine and dried over Na₂SO₄. A 29.0 mg portion of product 30 (0.0678 mmol, 46%) was obtained as a white solid. The product was clean enough for direct characterization without further purification. ¹H NMR (500 MHz, CDCl₃) δ 9.38 - 7.80 (bs, 1H), 5.40 (bs, 1H), 4.91 (dd, J = 47.8, 10.2 Hz, 1H), 4.66 (d, J = 8.2, 1H), 4.47 (ddd, *J* = 11.3, 8.3, 2.6 Hz, 1H), 4.25 (ddd, *J* = 12.1, 7.3, 2.8 Hz, 1H), 2.34 (dtd, *J* = 15.9, 7.9, 2.5 Hz, 1H), 2.23 (dd, J = 16.3, 7.6 Hz, 1H), 1.80 – 1.67 (m, 1H), 1.66 – 1.49 (m, 2H), 1.42 – 1.21 (m, 5H), 0.92 (s, 9H), 0.89 (t, J = 6.8 Hz, 3H), 0.12 (s, 3H), 0.12 (s, 3H). ¹³C NMR (126 MHz,

CDCl₃) δ 171.4, 93.7 (d, *J* = 186.1 Hz), 73.7, 69.3 (d, *J* = 15.7 Hz), 67.2, 35.2 (d, *J* = 2.6 Hz), 31.4, 30.6 (d, *J* = 21.3 Hz), 25.9, 25.4 (d, *J* = 2.8 Hz), 22.6, 18.1, 14.1, -4.1, -4.8. ¹⁹F NMR (471 MHz, CDCl₃) δ -193.69 (td, *J* = 47.1, 46.6, 14.6 Hz). HRMS (ESI) m/z calculated for C₁₇H₃₄FNO₆SSi [M+NH₄]⁺ 445.2198, found 445.2195.

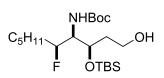


Intermediate for the synthesis of compound 30. The thiophenol ring-opening product was obtained using a published procedure⁶ to convert 570 mg Boc-protected enesulfamate (1.18 mmol, 1.0 equiv) to 646 mg (quantitative yield) product as a colorless oil. To a 25 mL roundbottom flask was added the Boc-protected enesulfamate, 0.3 mL PhSH (322 mg, 2.92 mmol, 2.5 equiv), and 13 mL CH₃CN, followed by addition of 332 mg K₂CO₃ (2.40 mmol, 2.0 equiv). The reaction was monitored by TLC (CH_2Cl_2 :hexanes = 1:1, KMnO₄ stain). After 2 hours, a saturated NaHCO₃ solution was added to the reaction mixture and the mixture extracted with EtOAc three times. The combined organic layers were washed once with saturated NaHCO₃ and brine, followed by drying with Na₂SO₄. The crude product was concentrated *in vacuo* and purified by silica gel chromatography (carried out using a gradient method with an initial starting mobile phase consisting of 0:1 CH₂Cl₂:hexanes, with a gradual increase to a ratio of 1:1 in 10% increments; KMnO₄ stain) to give the product. ¹H NMR (500 MHz, C₆D₆) δ 7.35 (dd, J = 8.1, 1.1 Hz, 2H), 7.04 (t, J = 7.8 Hz, 2H), 6.92 (tt, J = 7.3, 1.3 Hz, 1H), 4.91 (d, J = 9.6 Hz, 1H), 4.77 (dddd, J = 47.8, 8.5, 5.0, 1.8 Hz, 1H), 4.11 (ddd, J = 7.0, 5.3, 3.8 Hz, 1H), 3.98 (dddd, J = 28.2, 10.16 Hz)9.6, 3.9, 1.9 Hz, 1H), 3.04 (dt, J = 13.5, 6.9 Hz, 1H), 2.87 (dt, J = 12.9, 7.4 Hz, 1H), 1.93 (q, J = 7.5 Hz, 2H), 1.79 – 1.64 (m, 1H), 1.57 – 1.46 (m, 1H), 1.43 (s, 9H), 1.39 – 1.29 (m, 2H), 1.24 –

1.10 (m, 4H), 0.90 (s, 9H), 0.83 (t, J = 7.0 Hz, 3H), 0.16 (s, 3H), 0.04 (s, 3H). ¹³C NMR (126 MHz, C₆D₆) δ 156.1, 137.2, 129.6, 129.2, 126.1, 92.3 (d, J = 172.9 Hz), 79.4, 71.7, 56.1 (d, J = 16.5 Hz), 33.0 (d, J = 18.2 Hz), 32.9, 31.8, 30.3, 28.4, 26.1, 25.1 (d, J = 5.5 Hz), 22.8, 18.1, 14.2, -4.4. ¹⁹F NMR (471 MHz, C₆D₆) δ -192.29 (dtd, J = 44.5, 28.6, 14.5 Hz). HRMS (ESI) m/z calculated for C₂₇H₄₈FNO₃SSi [M+H]⁺ 514.3181, found 514.3188.


Intermediate for the synthesis of compound 30. A published procedure^{6b,7} was used to convert 538 mg of the thiol ring-opening product (1.05 mmol, 1.0 equiv) to 586 mg (quantitative yield) of the sulfoxide product as colorless oil in a dr of 1:1. To a 5 mL round-bottom flask was added 1.19 g (12.7 mmol, 12.1 equiv) phenol and the thiol phenol ring-opening product, followed by addition of 30 % by weight H₂O₂ in water (0.83 mL). After 20 minutes, the reaction was quenched by addition of saturated Na₂S₂O₃ solution. The reaction mixture was then diluted with H₂O and the aqueous layer was extracted with EtOAc three times. The combined organics were then washed once with saturated K_2CO_3 and once with brine. The organics were dried over Na₂SO₄ and concentrated *in vacuo*. The crude product was purified by silica gel chromatography (carried out using a gradient method with an initial starting mobile phase consisting of 0:1 EtOAc:hexanes, with a gradual increase to a ratio of 1:9 in 2% increments to get remove any unreacted phenol; the ratio of the solvent was then gradually increased to 1:3 in 3% increments to afford the product; KMnO₄ stain). ¹H NMR (500 MHz, C_6D_6) δ 7.55 – 7.50 (m, 2H), 7.08 – 7.01 (m, 2H), 7.01 - 6.94 (m, 1H), 4.95 (dd, J = 30.6, 9.6 Hz, 1H), 4.79 - 4.53 (m, overlapping signals, 1H), 4.00 - 3.83 (m, overlapping signals, 2H), 2.83 (dddd, J = 21.7, 13.1, 9.9, 5.6 Hz,

1H), 2.64 (dddd, J = 13.0, 9.7, 5.4, 2.5 Hz, 1H), 2.22 (ddt, J = 15.1, 10.3, 5.4 Hz, 0.5H), 2.14 – 2.05 (m, 0.5H), 1.93 – 1.83 (m, 1H), 1.79 – 1.61 (m, 1H), 1.61 – 1.45 (m, 1H), 1.43 (s, 4.5H), 1.41 (s, 4.5H), 1.38 – 1.08 (m, 6H), 0.87 (s, 4.5H), 0.85 (s, 4.5H), 0.86 – 0.81 (m, overlapping signals, 3H), 0.11 (s, 1.5H), 0.10 (s, 1.5H), 0.02 (s, 1.5H), -0.05 (s, 1.5H). ¹³C NMR (126 MHz, C₆D₆) δ 156.3, 156.2, 145.7, 145.5, 130.4, 130.4, 129.2, 129.2, 124.2, 124.2, 92.8 (d, J = 173.2 Hz), 92.5 (d, J = 173.6 Hz), 79.5, 79.4, 72.1, 72.0, 56.1 (d, J = 16.7 Hz), 56.0 (d, J = 17.1 Hz), 53.1, 52.9, 32.9, 32.8, 31.9, 31.8, 28.4, 26.0, 25.1 (d, J = 5.2 Hz), 25.1 (d, J = 5.2 Hz), 22.8, 22.8, 18.1, 14.2, 14.2, -4.3, -4.3, -4.5, -4.6. ¹⁹F NMR (471 MHz, C₆D₆) δ -192.53 (m). HRMS (ESI) m/z calculated for C₂₇H₄₈FNO₄SSi [M+H]⁺ 530.3130, found 530.3137.


Compound 30. A published procedure^{6b,7} was used to convert 20.0 mg sulfoxide (0.0377 mmol, 1.0 equiv) to 12.3 mg (0.0305 mmol, 81%) compound **31** as a white solid. To an oven-dried pressure tube was added the sulfoxide and 1.5 mL of distilled xylenes, followed by addition of 20.0 mg NaHCO₃ (0.238 mmol, 6.3 equiv). The reaction mixture was heated at 130 °C until ¹H NMR showed complete consumption of starting material. After 17 hours, the reaction mixture was cooled to room temperature, diluted with H₂O and the aqueous layer was extracted three times with EtOAc. The combined organic layers were washed once with brine and dried over Na₂SO₄. After concentration *in vacuo*, the crude product was purified by silica gel chromatography (carried out using a gradient method with an initial starting mobile phase consisting of 0:1 CH₂Cl₂:hexanes, with a gradual increase to a ratio of 1:1 in 5% increments;

KMnO₄ stain). ¹H NMR (500 MHz, C₆D₆) δ 5.90 (dddd, J = 17.3, 10.2, 7.1, 2.9 Hz, 1H), 5.19 (dt, J = 17.1, 1.5 Hz, 1H), 5.01 (dt, J = 10.4, 1.3 Hz, 1H), 4.89 (dddd, J = 47.8, 7.7, 5.6, 1.4 Hz, 1H), 4.89 (d, J = 9.9 Hz, 1H), 4.29 (t, J = 6.3 Hz, 1H), 4.00 (dddd, J = 29.5, 9.9, 5.6, 1.5 Hz, 1H), 1.86 – 1.72 (m, 1H), 1.65 – 1.51 (m, 1H), 1.45 (s, 9H), 1.40 – 1.28 (m, 2H), 1.24 – 1.12 (m, 4H), 0.96 (s, 9H), 0.83 (t, J = 6.9 Hz, 3H), 0.10 (s, 3H), 0.06 (s, 3H). ¹³C NMR (126 MHz, C₆D₆) δ 156.0, 138.5, 116.6, 92.1 (d, J = 172.3 Hz), 79.2, 74.9, 57.3 (d, J = 16.4 Hz), 32.7 (d, J = 20.9 Hz), 31.8, 28.5, 26.0, 25.1 (d, J = 5.9 Hz), 22.8, 18.3, 14.2, -4.3, -4.8. ¹⁹F NMR (471 MHz, C₆D₆) δ -192.57 – -192.87 (m). HRMS (ESI) m/z calculated for C₂₁H₄₂FNO₃Si [M+Na]⁺ 426.2810, found 426.2808.

Compound 31. A portion of 9.9 mg of **30** (0.0245 mmol, 1.0 equiv) was dissolved in dry CH_2Cl_2 and cooled down to -78 °C. Ozone was then bubbled into the solution until a persistent blue color was observed. At this point, the ozone addition was stopped and N₂ was bubbled through the solution until the blue color disappeared. A 0.05 mL portion of NEt₃ was then added and the solution was warmed to room temperature and allowed to stir for 1 hour. The organic solution was diluted with ether and washed once with saturated NH₄Cl solution. After the aqueous layer was extracted three times with ether, the combined organic layers were washed with brine once and dried over Na₂SO₄. The aldehyde was used for the subsequent Pinnick oxidation without further purification. The aldehyde was dissolved in 0.40 mL CH₃CN. An aqueous solution of NaH₂PO₄ (5.2 mg in 0.1 mL H₂O) and 0.1 mL 30% by weight solution of H₂O₂ in water were added to the dissolved aldehyde. The reaction mixture was cooled to 0 °C.

An aqueous solution of NaClO₂ (4.8 mg in 0.1 mL H₂O) was added and the solution was stirred at room temp until starting material was consumed (ca. 12 hours). The reaction was then quenched by the addition of an aqueous solution of NaHSO₃. After another 30 minutes of stirring, 2 N HCl was added. The reaction mixture was extracted three times with CH₂Cl₂, the combined organics washed once with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The crude carboxylic acid was dissolved in 0.34 mL MeOH at 0 °C. A solution of 0.1 mL TMSCHN₂ was added dropwise over 1 minute. After 30 minutes of stirring at 0 °C, 0.01 mL AcOH was added and the resulting mixture was concentrated in vacuo. A 4.5 mg (0.0140 mmol, 57%) portion of the product 32 was obtained as colorless oil after purification by column chromatography (carried out using a gradient method with an initial starting mobile phase consisting of 0:1 EtOAc: hexanes, with a gradual increase to a ratio of 1:4 in 3% increments; KMnO₄ stain). ¹H NMR (500 MHz, C_6D_6) δ 5.09 (d, J = 10.2 Hz, 1H), 4.60 (ddt, J = 48.0, 8.5, 10.03.8 Hz, 1H), 4.34 (ddt, J = 23.3, 10.2, 3.4 Hz, 1H), 4.11 (t, J = 3.8 Hz, 1H), 3.29 (s, 3H), 3.07 (d, J = 4.4 Hz, 1H), 1.70 - 1.58 (m, 1H), 1.41 (s, 9H), 1.30 - 1.03 (m, 7 H), 0.81 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, C_6D_6) δ 174.0, 155.8, 92.5 (d, J = 173.0 Hz), 79.6, 70.3, 55.7 (d, J = 19.4Hz), 52.4, 32.0 (d, J = 20.8 Hz), 31.8, 28.3, 25.0 (d, J = 4.4 Hz), 22.8, 14.2. ¹⁹F NMR (471 MHz, C_6D_6) δ -193.19 (dddd, J = 48.0, 31.9, 23.3, 15.3 Hz). HRMS (ESI) m/z calculated for $C_{15}H_{28}FNO_5$ [M+Na]⁺ 344.1844, found 344.1840.

Precursor for the synthesis of compound 32. The reaction was repeated three times due to discrepancies in yield on the small scales employed (8.8 mg, 0.0209 mmol, 84%; 37.0 mg,

0.0879 mmol, 42%; 26.7 mg, 0.0634 mmol, 51%). The average of the three reactions was taken as the final yield, which is 59%. The amount of the starting material used for each reaction was 0.0248 mmol, 0.211 mmol, and 0.124 mmol, respectively. The procedure for the reaction carried out on a 0.124 mmol scale involved dissolving compound **31** (49.8 mmg, 0.124 mmol, 1.0 equiv) in THF (1 mL) in a flame-dried, round bottom flask to make a 0.3 M solution, which was then cooled to 0 °C. The BH₃/THF complex (0.4 mL, 0.400 mmol, 0.83 equiv) was added to the same flask and the reaction mixture stirred at room temperature. After 1 day, H_2O (1.85µL, 0.0019 g, 0.106 mmol, 0.85 equiv) was added to the reaction and stirred continued for another 30 minutes before the addition of a 5 M aqueous solution of NaOH (0.1 mL, 4.2 equiv) and 30% by weight solution of H_2O_2 in water (0.1 mL, 1.02 mmol, 8.2 equiv). The reaction was warmed to room temperature and stirred for 1 hour. A saturated K₂CO₃ solution and H₂O were added to quench the reaction and the resulting solution extracted three times with CH₂Cl₂. The combined organic layers were washed once with brine and dried over Na₂SO₄. After concentration in vacuo, the crude product was purified by silica gel chromatography (carried out using a gradient method with an initial starting mobile phase consisting of 0:1 EtOAc:hexanes, with a gradual increase to a ratio of 1:4 in 3% increments; KMnO₄ stain) to yield 26.7 mg alcohol (0.0634 mmol, 51%) as a colorless oil. ¹H NMR (500 MHz, C_6D_6) δ 5.08 (d, J = 9.6 Hz, 1H), 4.92 – 4.76 (m, 1H), 4.12 – 4.06 (m, 1.5H), 4.03 (ddd, J = 10.0, 4.1, 2.0 Hz, 0.5H), 3.61 (dt, J = 11.1, 5.6 Hz, 1H), 3.53 (dt, J $= 11.0, 6.3 \text{ Hz}, 1\text{H}, 1.85 - 1.67 \text{ (m, 3H)}, 1.66 - 1.51 \text{ (m, 1H)}, 1.49 - 1.33 \text{ (m, 12H)}, 1.26 - 1.13 \text{ (m, 12H)}, 1.26 - 1.26 \text{ (m, 12H)}, 1.26 + 1.26 \text{ (m$ (m, 4H), 0.93 (s, 9H), 0.85 (t, J = 6.8 Hz, 3H), 0.16 (s, 3H), 0.07 (s, 3H). ¹³C NMR (126 MHz, C_6D_6 δ 156.4, 92.7 (d, *J* = 172.6 Hz), 79.4, 71.0, 59.4, 56.3 (d, *J* = 16.4 Hz), 36.4 (d, *J* = 2.5 Hz), 33.1 (d, J = 21.3 Hz), 31.9, 28.4, 26.1, 25.2 (d, J = 5.4 Hz), 22.9, 18.2, 14.2, -4.5, -4.6. ¹⁹F NMR

(471 MHz, C₆D₆) δ -192.57 (dtd, J = 48.6, 28.3, 14.6 Hz). HRMS (ESI) m/z calculated for C₂₁H₄₄FNO₄Si [M+H]⁺ 422.3096, found 422.3092.

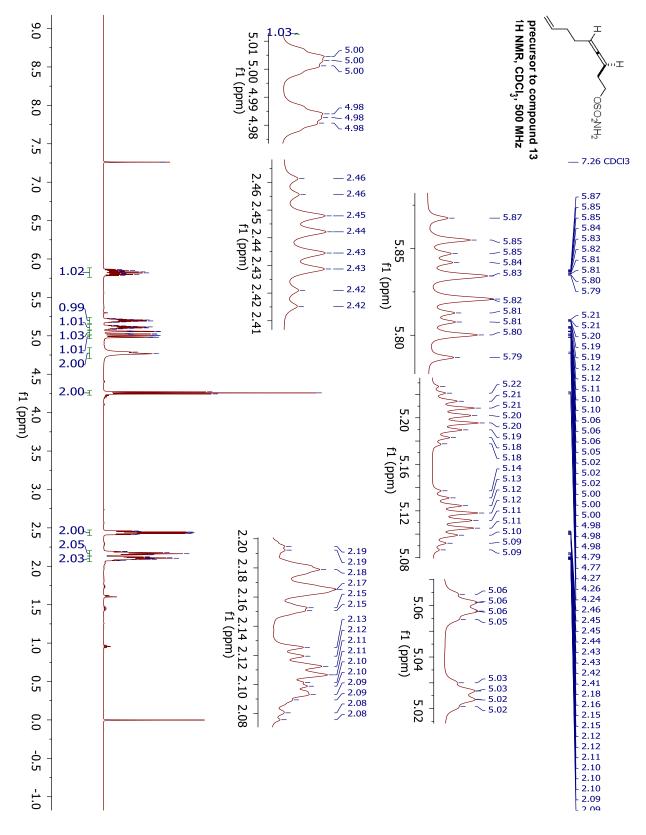
Compound 32. A portion of 4.0 mg RuCl₃·XH₂O (0.0024 mmol, 0.1 equiv) was added at 0 °C to a solution of 8.8 mg (0.0209 mmol, 1.0 equiv) alcohol and NaIO₄ (20.0 mg, 0.0935 mmol, 4.5 equiv) dissolved in a mixture of 0.3 mL CH₃CN, 0.12 mL CCl₄ and 0.22 mL H₂O. The reaction mixture was warmed to room temperature and stirred for 27 hours. A 1 mL portion of 1 N HCl was added to the reaction mixture and the aqueous layer extracted with EtOAc three times. The combined organics were washed once with brine, dried over Na₂SO₄ and concentrated in vacuo. 7.0 mg (0.0161 mmol, 77%) compound 32 was yielded after column chromatography (carried out using a gradient method with an initial starting mobile phase consisting of 0:1 EtOAc:hexanes, with a gradual increase to a ratio of 1:4 in 5% increments; KMnO₄ stain) to give the product as a colorless oil. ¹H NMR (600 MHz, Tol-d8) δ 4.90 – 4.84 (m, 1.5H), 4.78 (dd, J = 7.7, 5.4 Hz, 0.5H), 4.47 (dt, J = 8.2, 4.3 Hz, 1H), 4.00 (dddd, J = 29.1, 9.6, 3.9, 1.6 Hz, 1H), 2.55 (ddd, J = 15.9, 8.0, 2.3 Hz, 1H), 2.46 (dd, J = 15.8, 4.6 Hz, 1H), 1.78 - 1.66 (m, 1H), 1.59 - 1.47(m, 1H), 1.42 (s, 9H), 1.38 - 1.28 (m, 3H), 1.25 - 1.14 (m, 4H), 0.92 (s, 9H), 0.86 (t, J = 7.1 Hz, 3H), 0.17 (s, 3H), 0.14 (s, 3H). ¹³C NMR (151 MHz, Tol-d8) δ 177.1, 156.0, 92.1 (d, J = 172.4 Hz), 79.6, 70.3, 56.4 (d, J = 16.3 Hz), 38.8 (d, J = 3.5 Hz), 32.9 (d, J = 21.3 Hz), 31.8, 28.3, 26.0, 25.1 (d, J = 5.7 Hz), 22.9, 18.1, 14.1, -4.7, -4.8. ¹⁹F NMR (564 MHz, Tol-d8) δ -192.81 (dtd, J =44.0, 28.8, 14.4 Hz). HRMS (ESI) m/z calculated for C₂₁H₄₂FNO₅Si [M-H]⁻ 434.2744, found 434.2750.

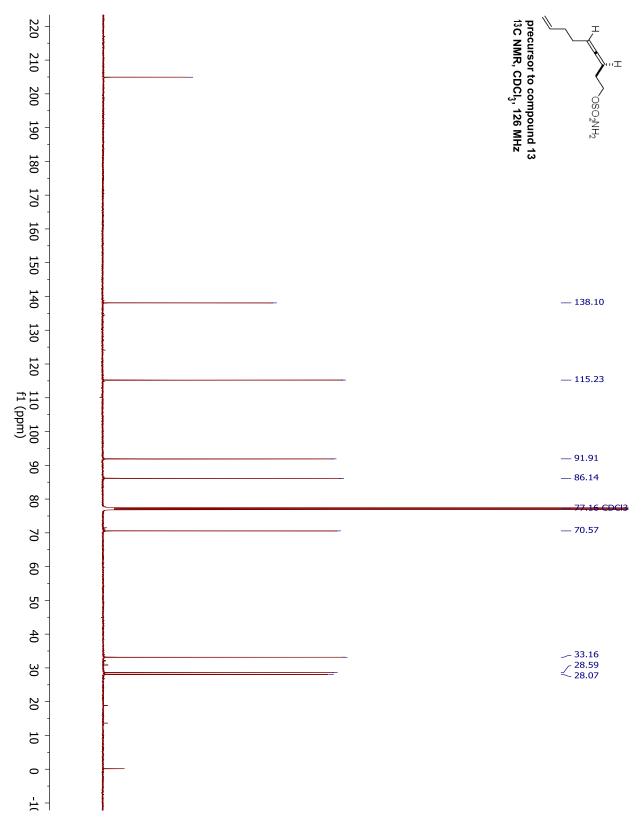
V. References.

1. W.L.F. Armarego, C.L.L. Chai, <u>Purification of Laboratory Chemicals</u> 6th ed., Elsevier: Burlington, MA, **2009**.

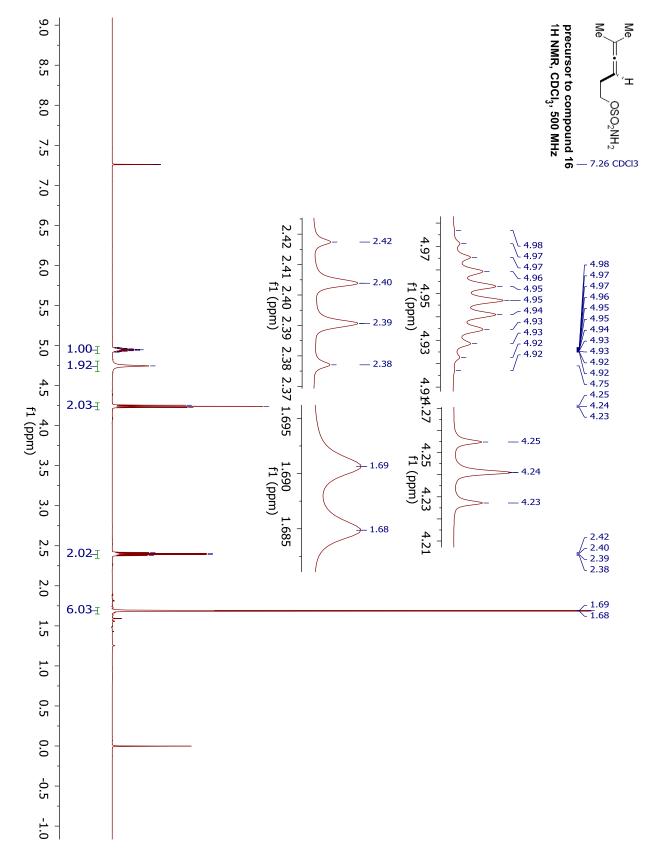
2. Still, W.C.; Kahn, M.; Mitra, S. J. Org. Chem. 1978, 43, 2923.

3. Fiori, K. W.; Espino, C. G.; Brodsky, B. H.; Du Bois, J. Tetrahedron, 2009, 65, 3042.

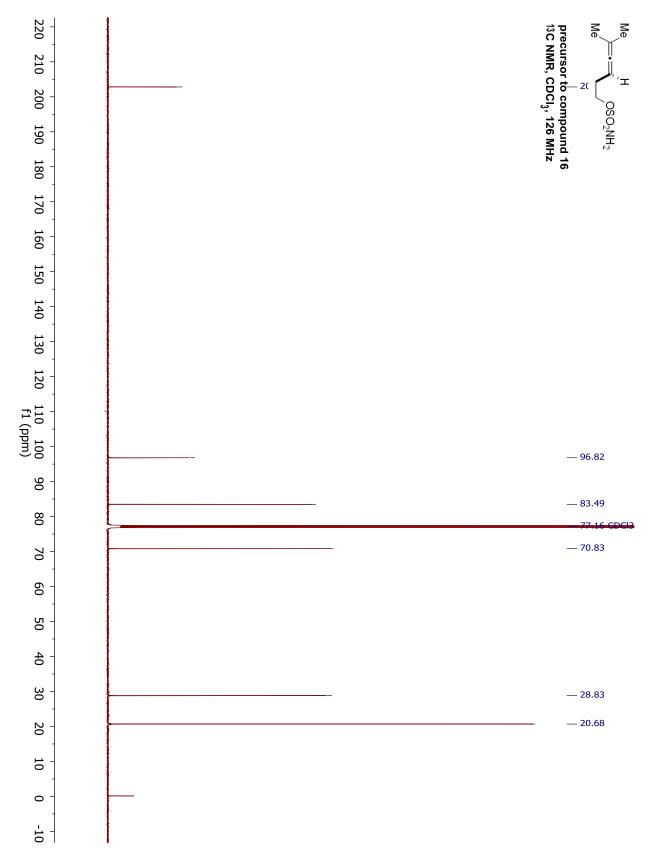

4. (a) Thornton, A. R.; Martin V. I.; Blakey, S. B. *J. Am. Chem. Soc.* **2009**, *131*, 2434. (b) Adams, C. S.; Grigg, R. D.; Schomaker, J. M. *Chem. Sci.* **2014**, *5*, 3046.


5. Loertscher, B. M.; Young, P. R.; Evans, P. R.; Castle, S. L. Org. Lett. 2013, 15, 1930.

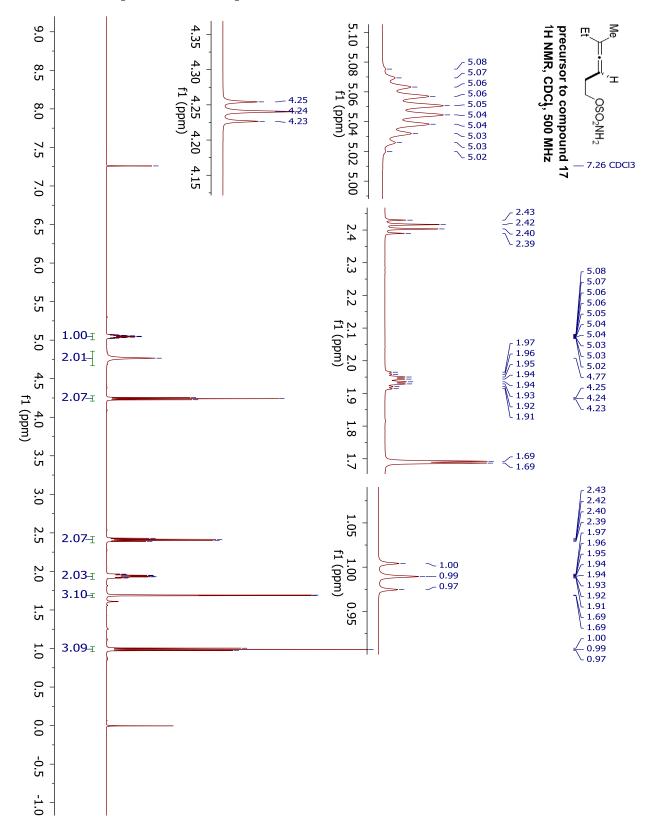
6. (a) Kenworthy, M. N.; Taylor, R. *J. Org. Biomol. Chem.* **2005**, *3*, 603. (b) Gerstner, N. C.; Adams, C. S.; Grigg, R. D.; Tretbar, M.; Rigoli, J. W.; Schomaker, J. M. Org. Lett. **2016**, *18*, 284.

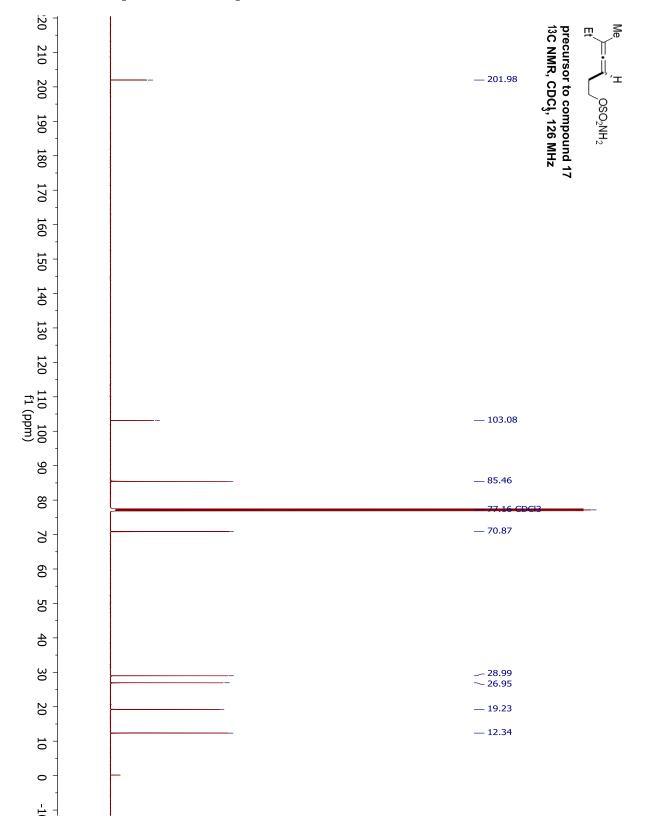

7. Xu, W. L.; Li, Y. Z.; Zhang, Q. S.; Zhu, H. S. Synthesis 2004, 2, 227.

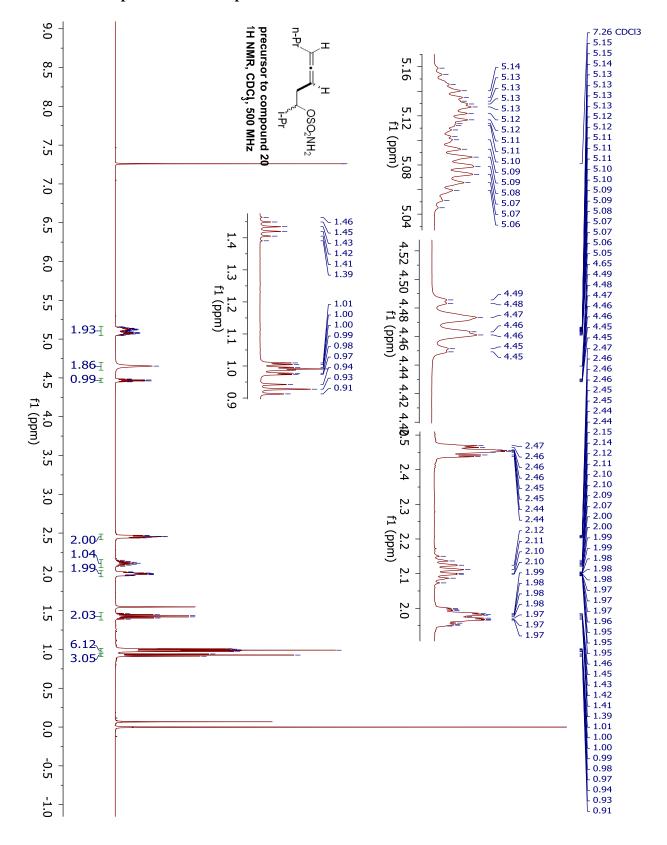
VI. NMR Spectra. ¹H NMR for the precursor for compound 13.



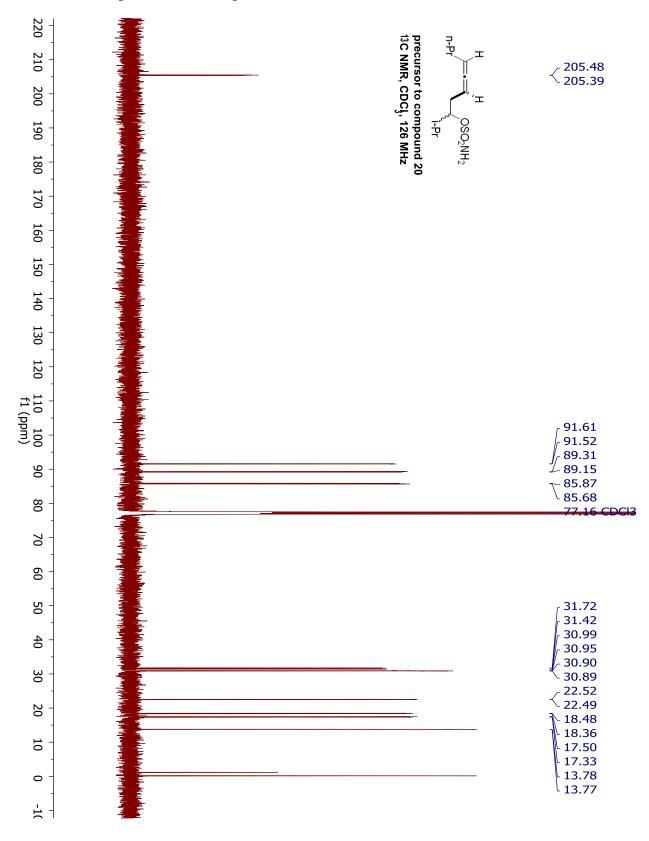
¹³C NMR for the precursor for compound 13.



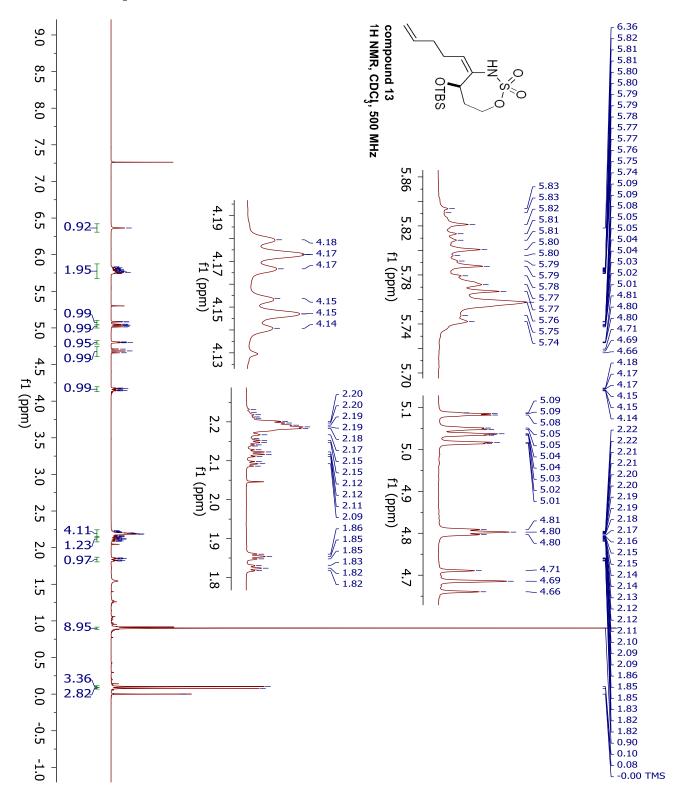

¹H NMR for the precursor for compound 16.


¹³C NMR for the precursor for compound 16.

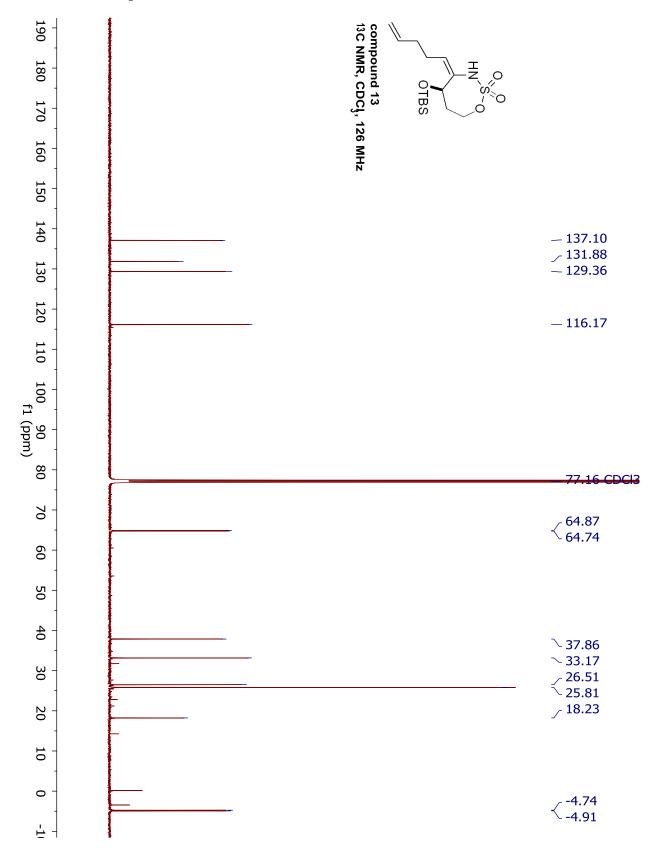
¹H NMR for the precursor for compound 17.



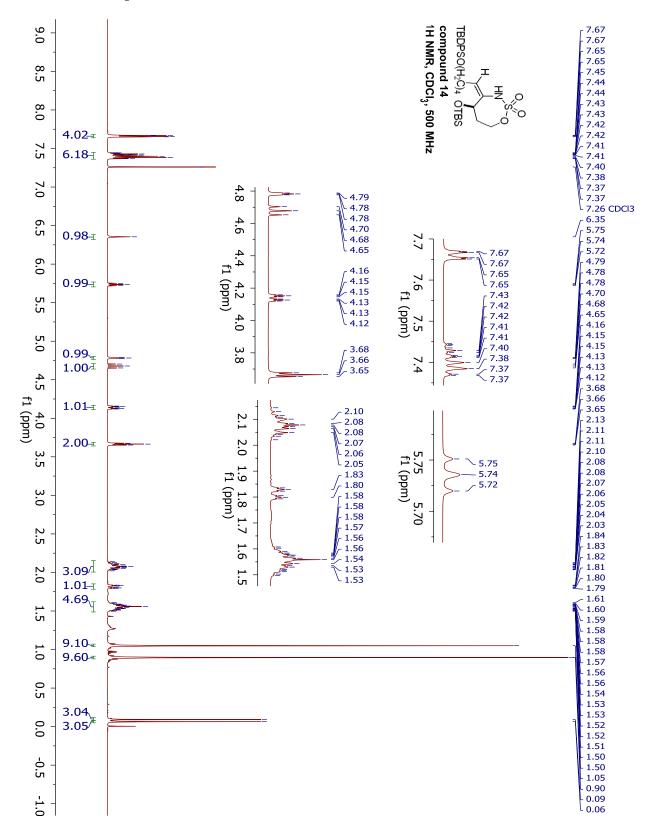
¹³C NMR for the precursor for compound 17.



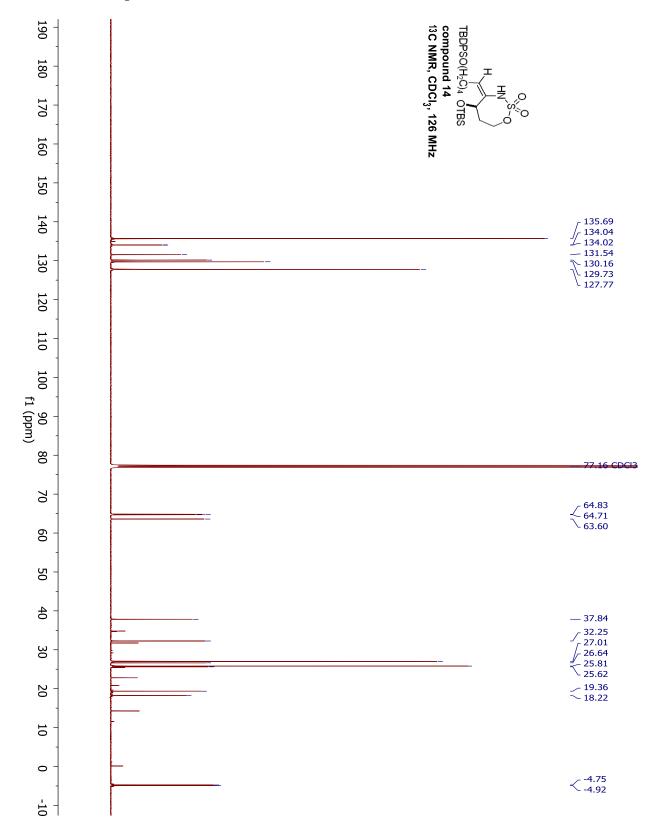
¹H NMR for the precursor for compound 20.


¹³C NMR for the precursor for compound 20.

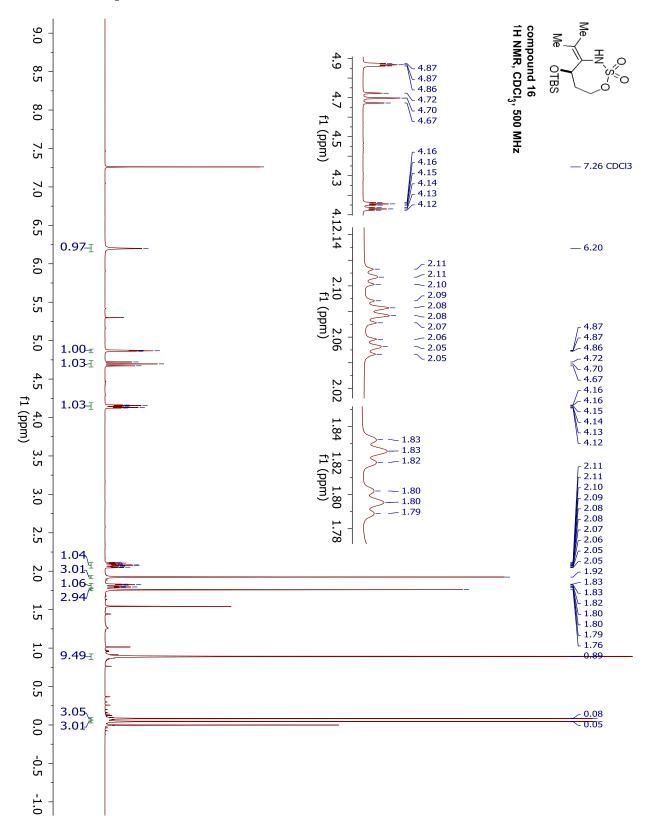
¹H NMR for compound 13.

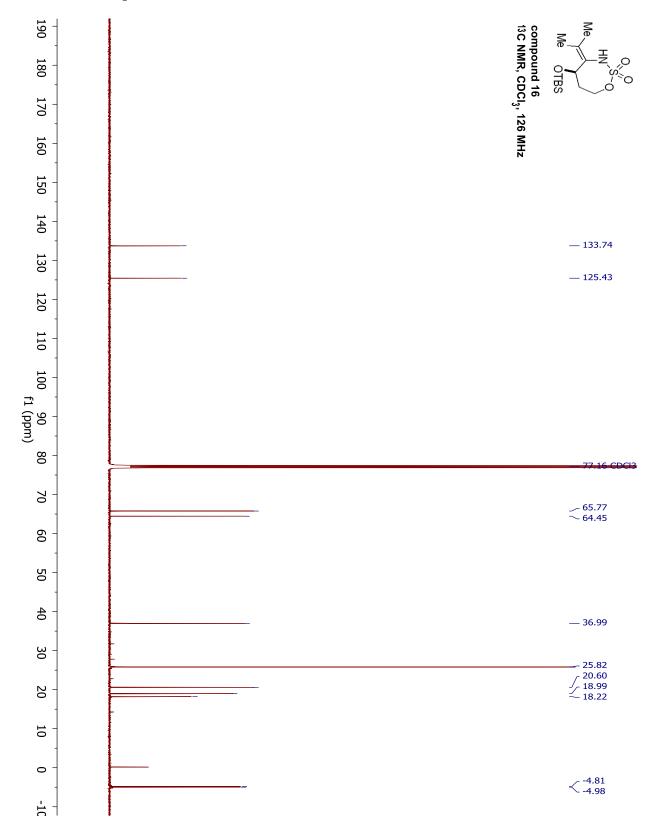


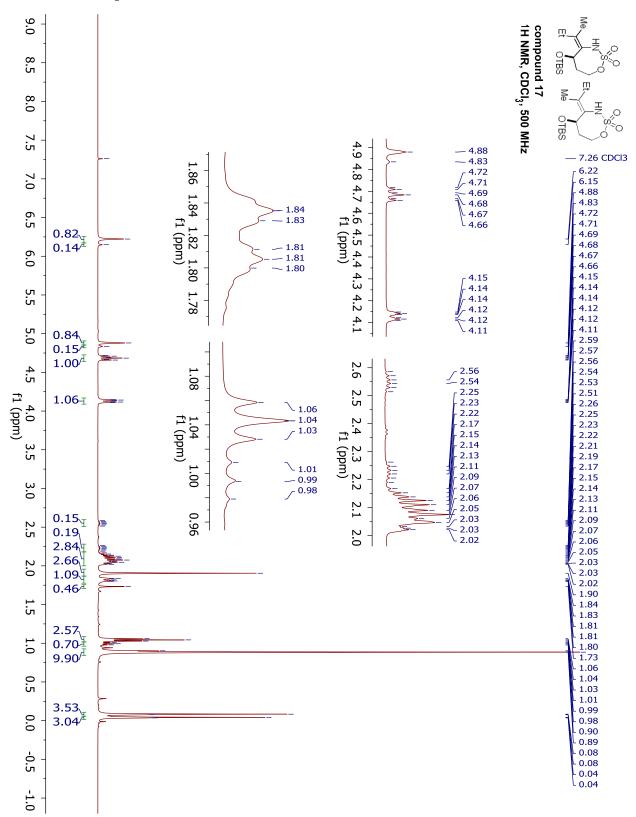
¹³C NMR for compound 13.

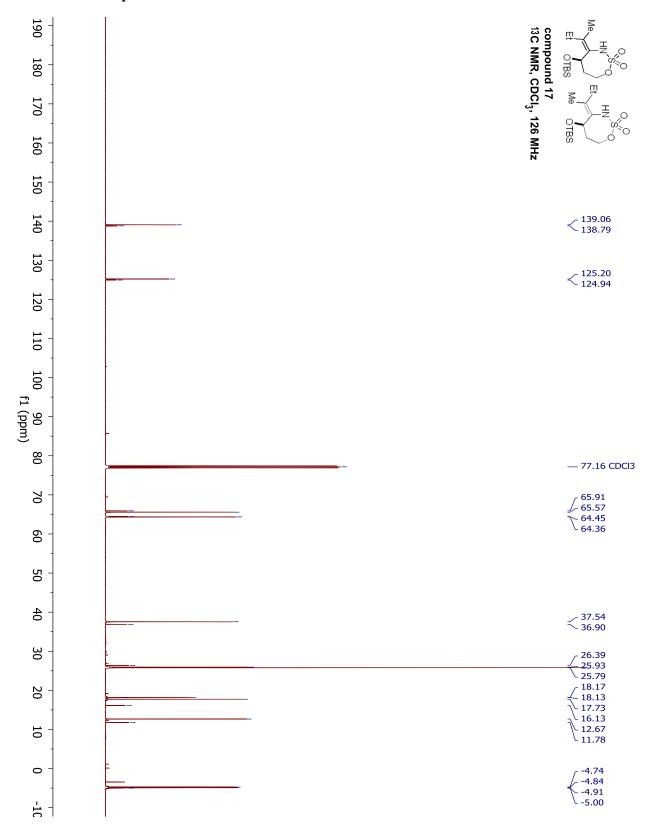


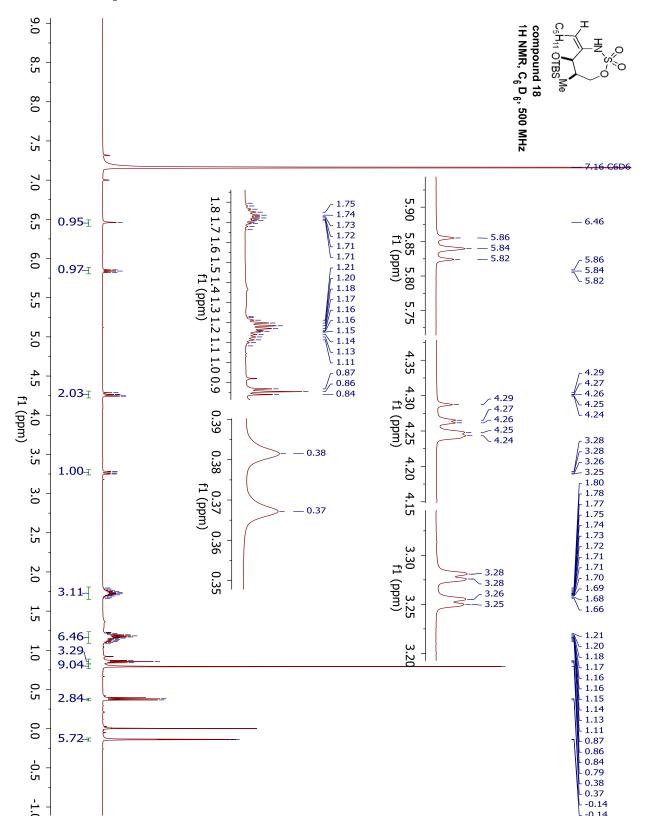
S-62

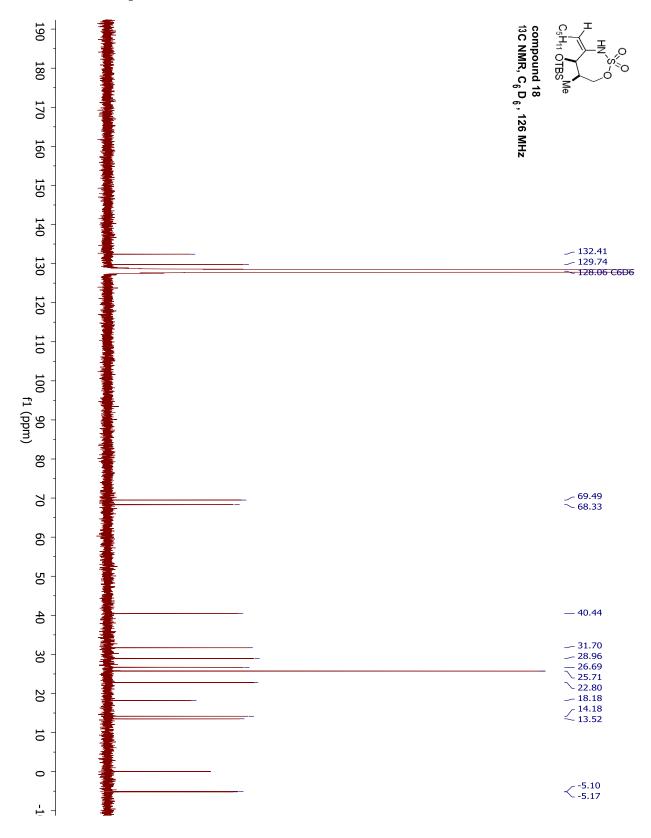

¹H NMR for compound 14.

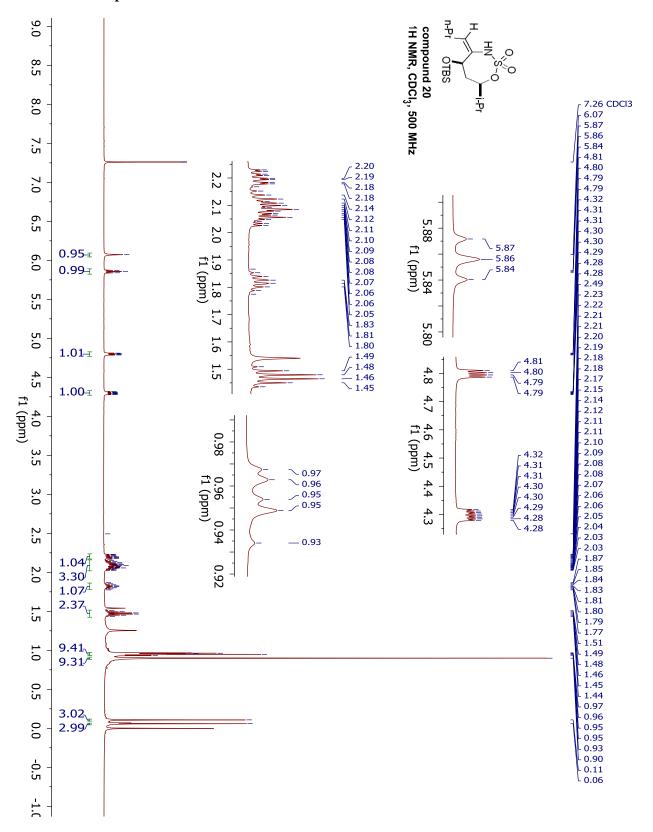

¹³C NMR for compound 14.

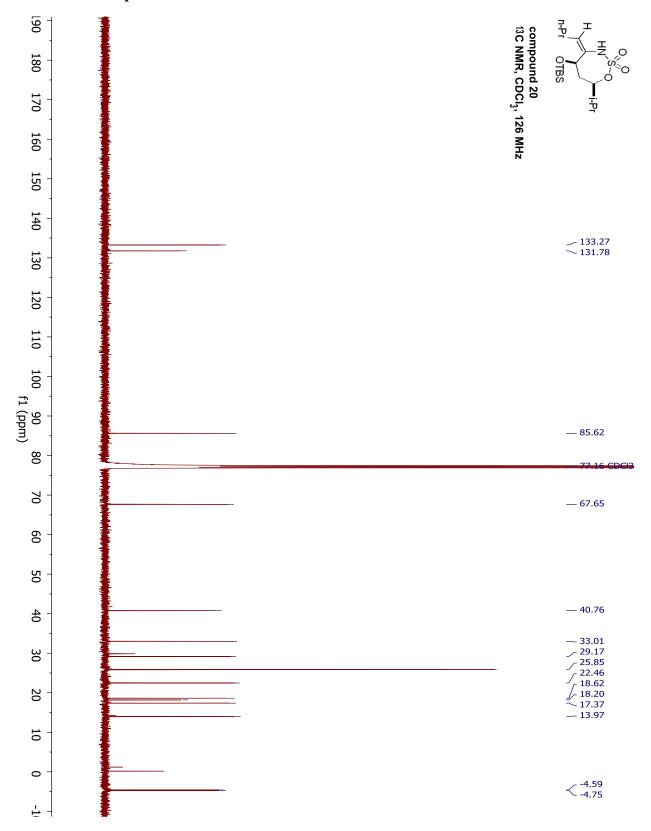

¹H NMR for compound 16.

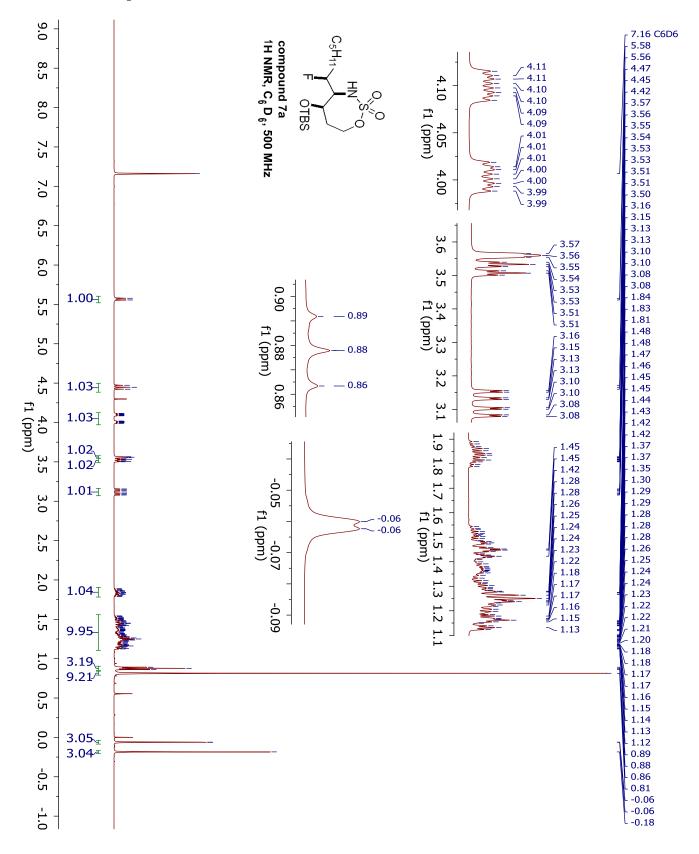

¹³C NMR for compound 16.

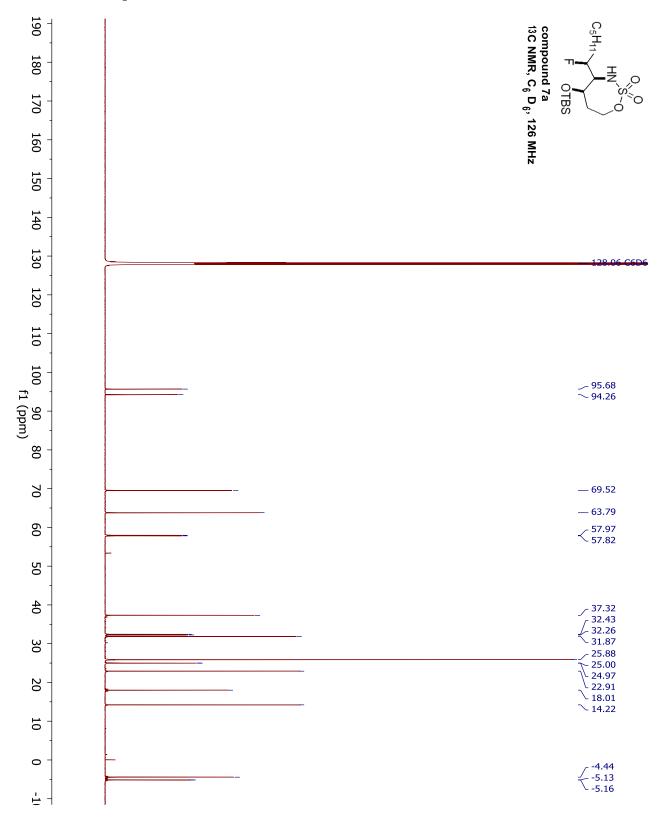

¹H NMR for compound 17.


¹³C NMR for compound 17.

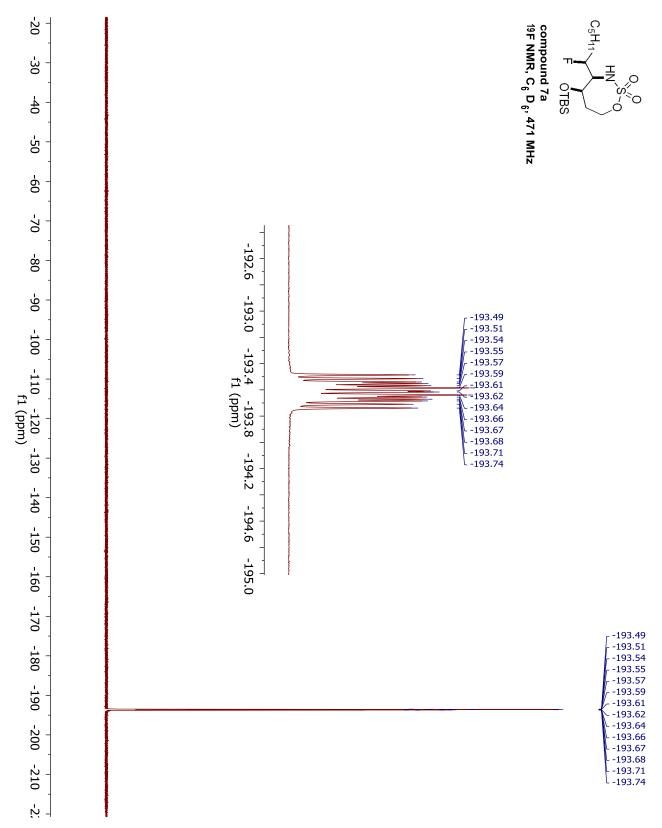

¹H NMR for compound 18.


¹³C NMR for compound 18.

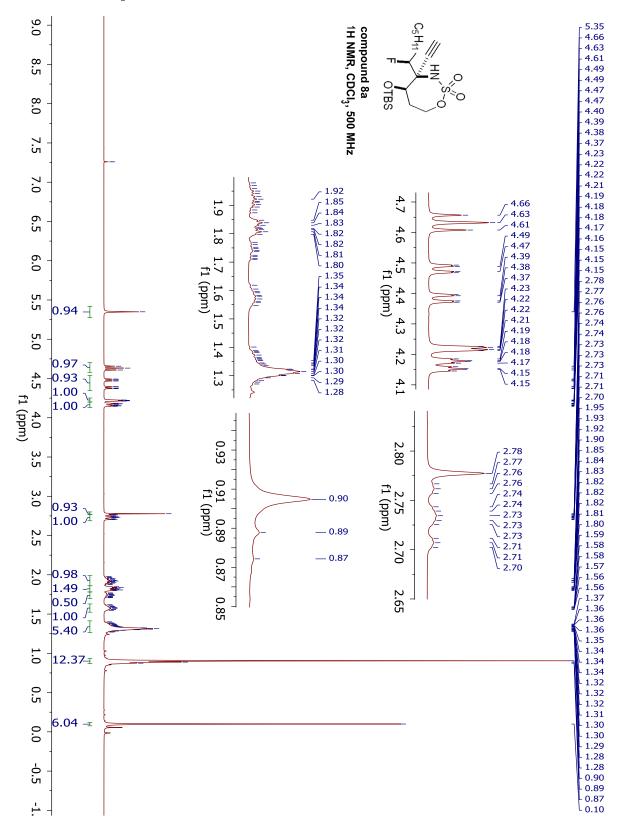

¹H NMR for compound 20.


¹³C NMR for compound 20.

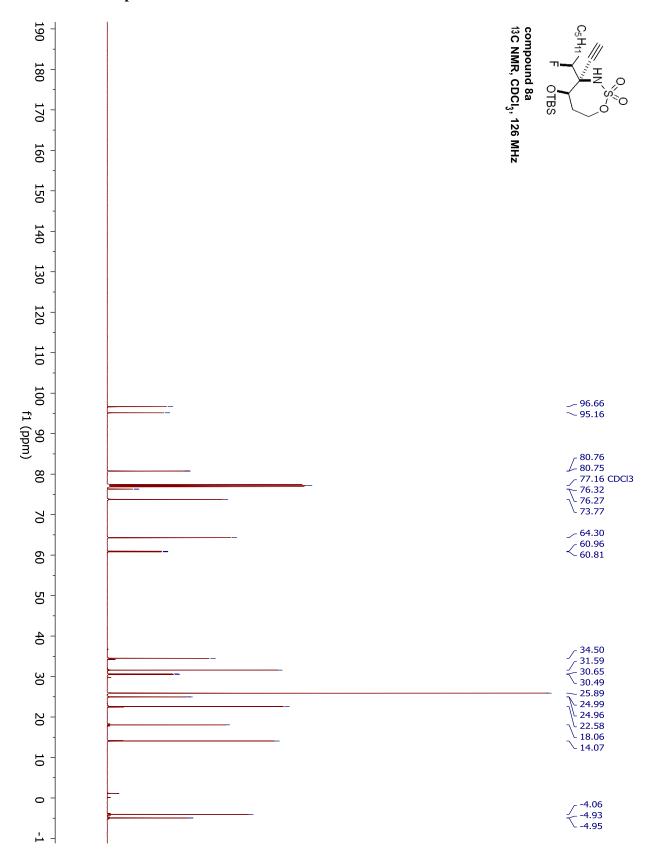

¹H NMR for compound 7a.

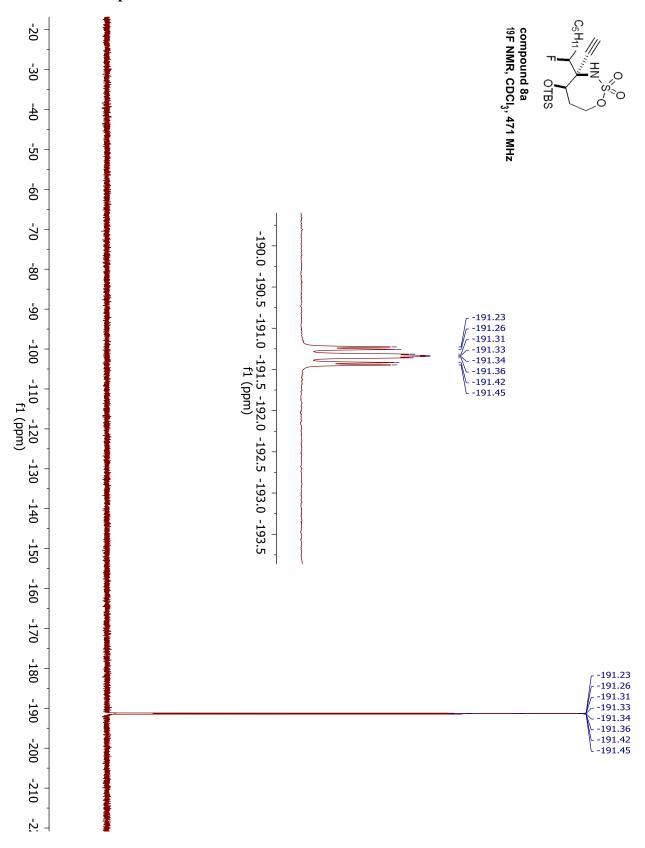


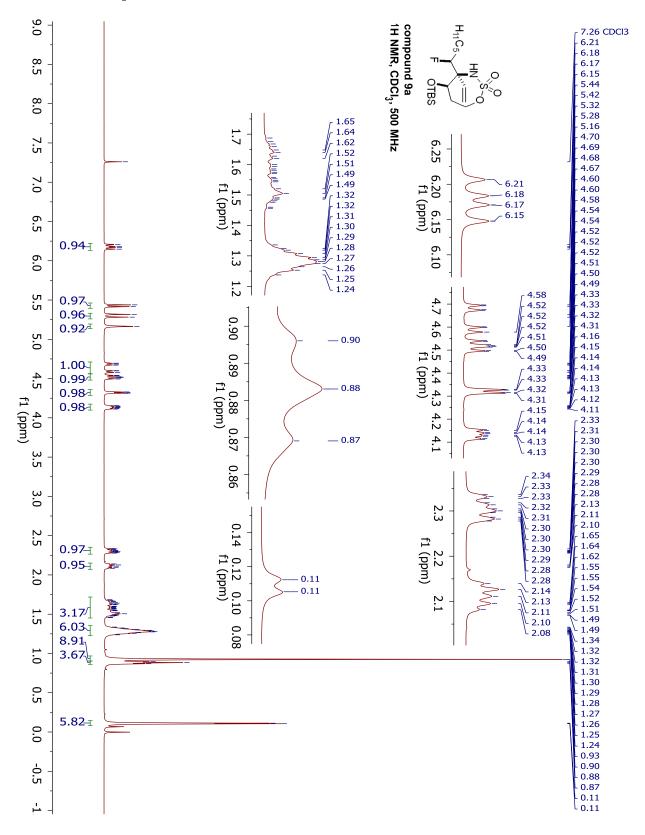
¹³C NMR for compound 7a.

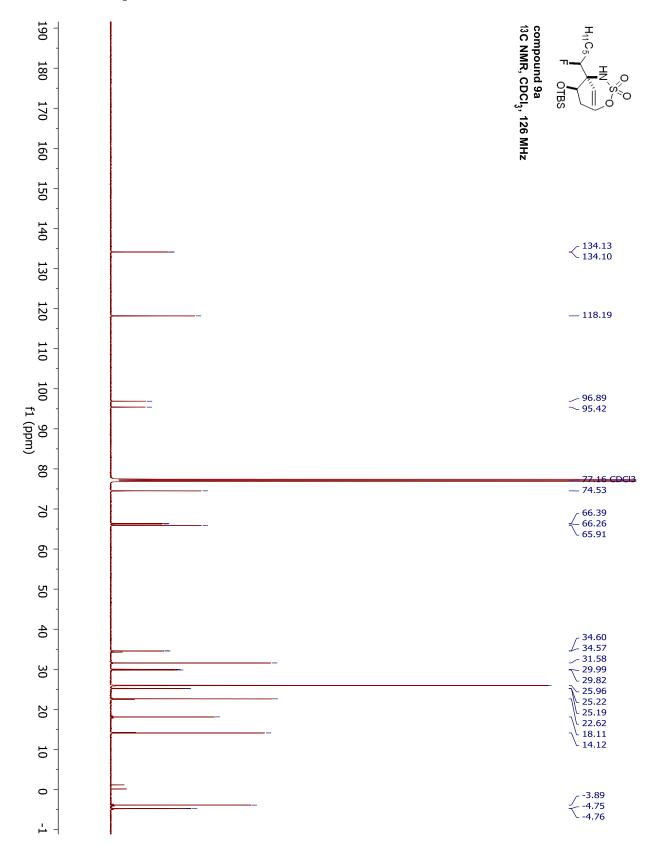


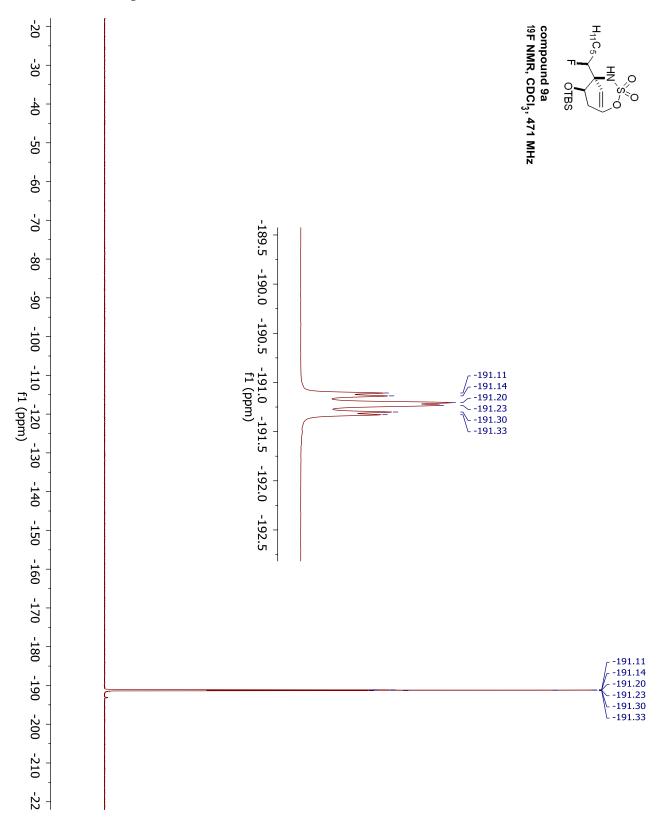
S-74



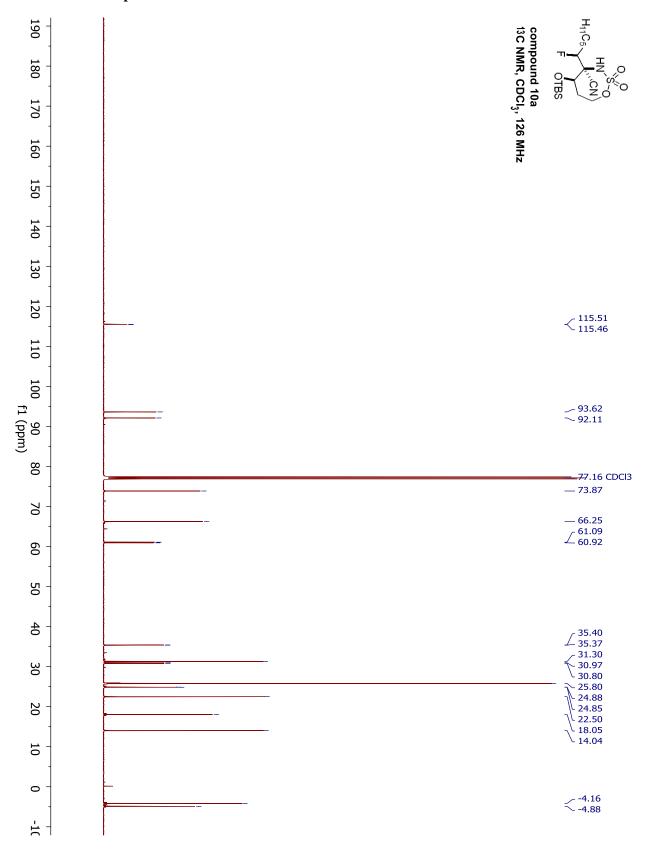

¹H NMR for compound 8a.


¹³C NMR for compound 8a.

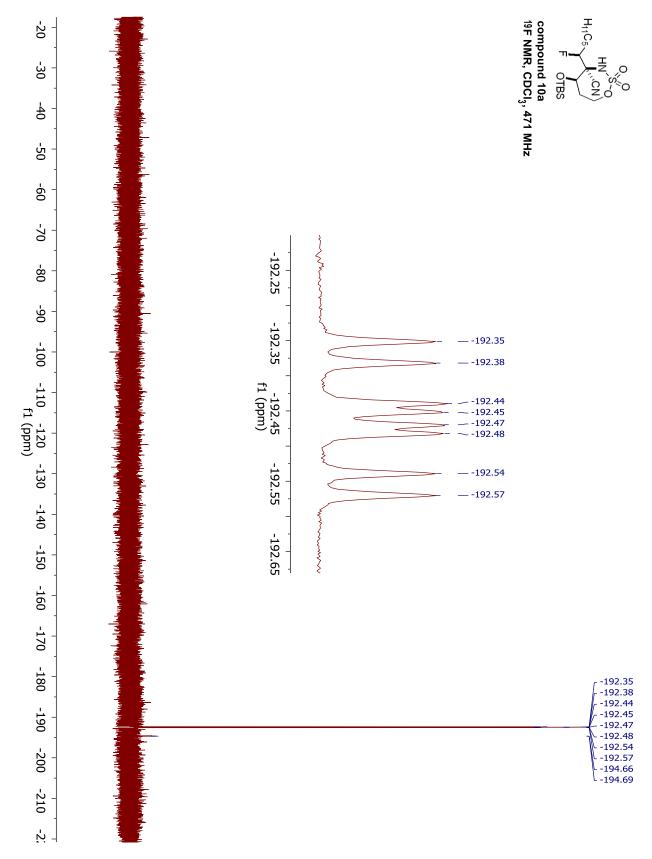

¹⁹F NMR for compound 8a.


¹H NMR for compound 9a.

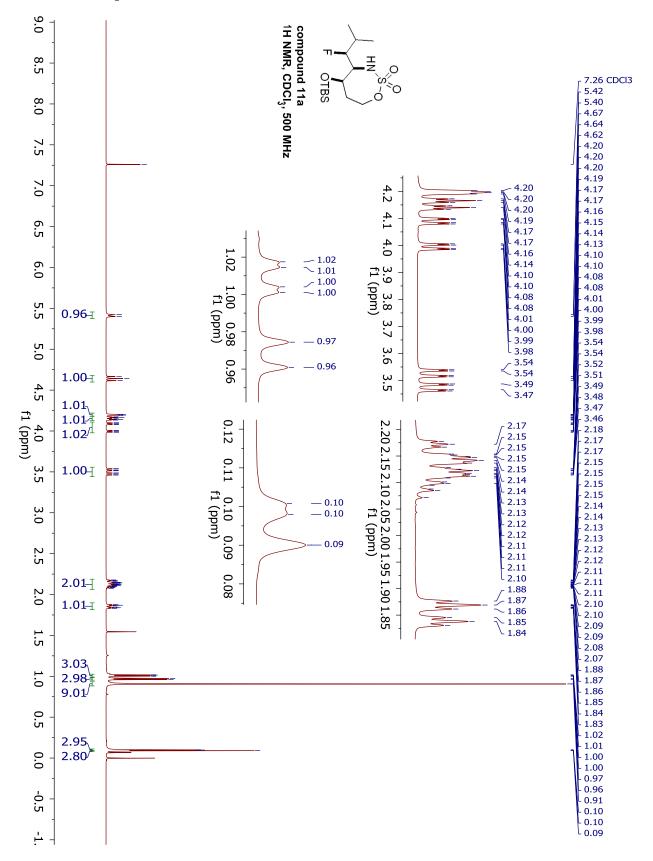
¹³C NMR for compound 9a.


¹⁹F NMR for compound 9a.

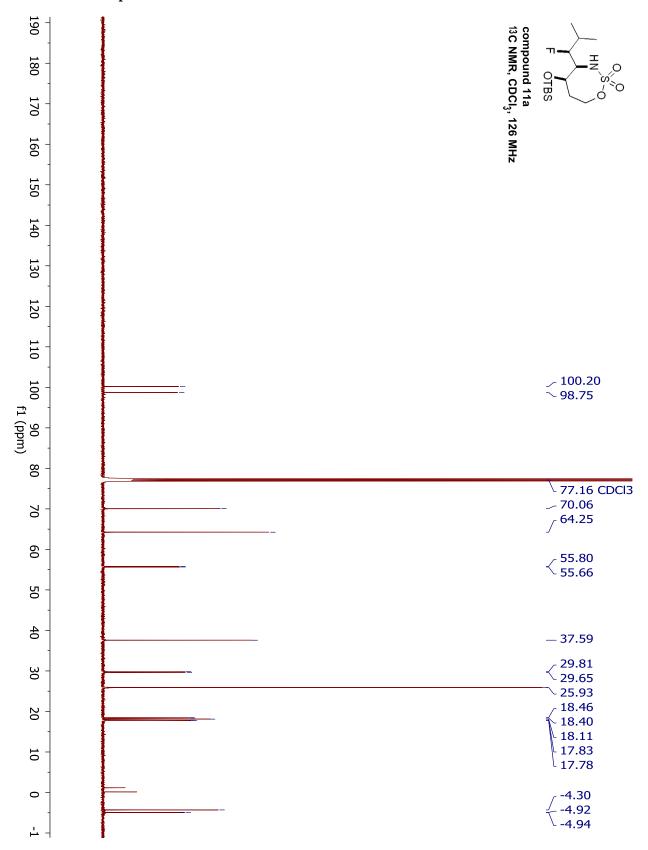
¹H NMR for compound 10a.

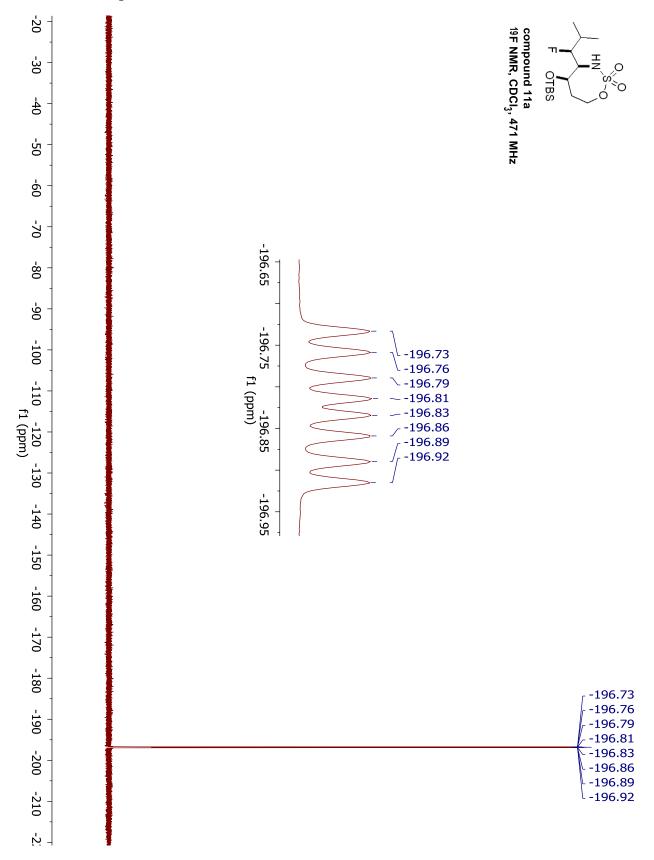


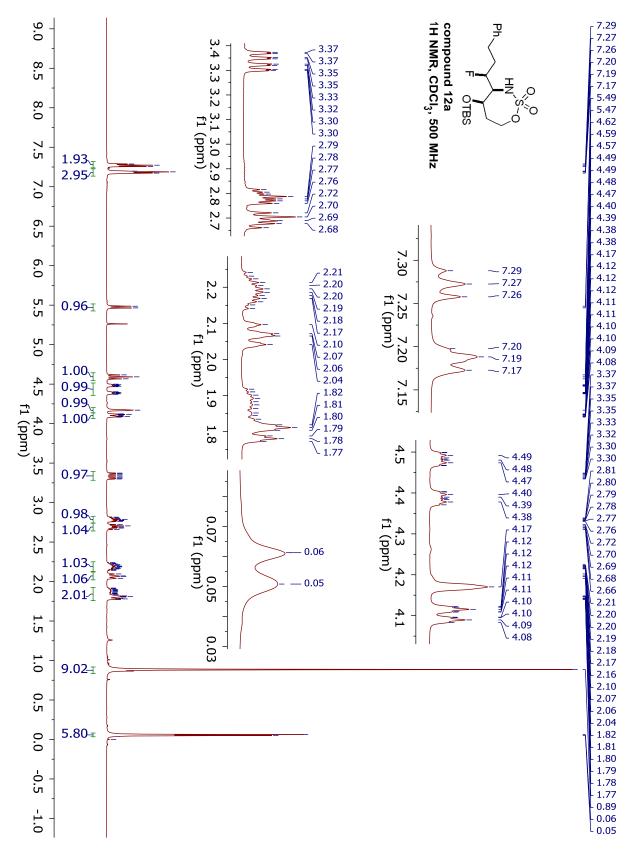
¹³C NMR for compound 10a.

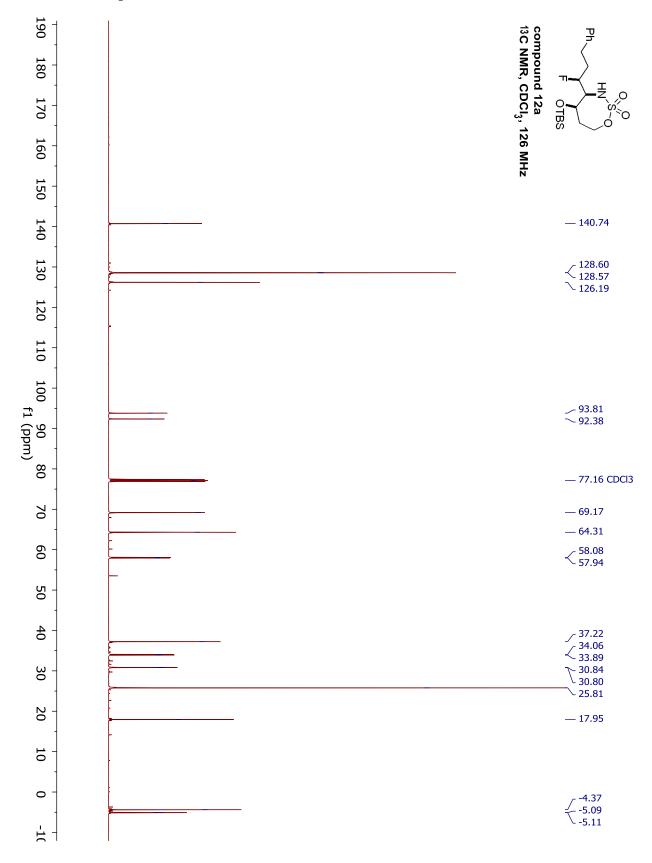


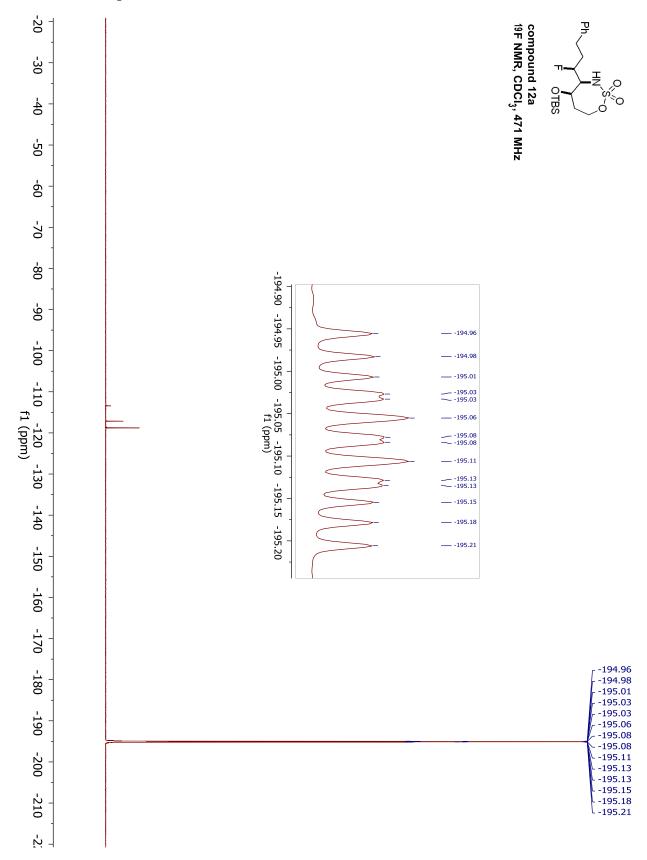
S-83

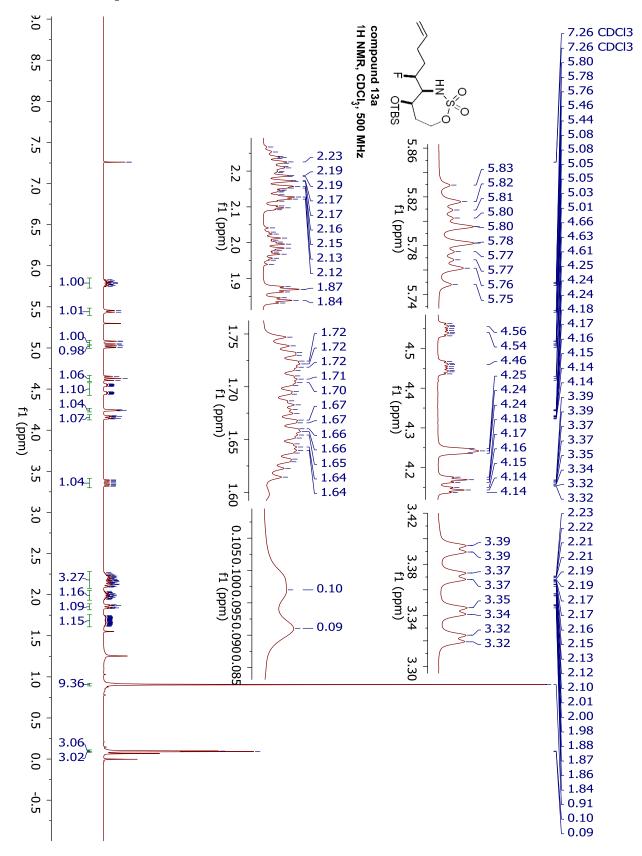

¹⁹F NMR for compound 10a.

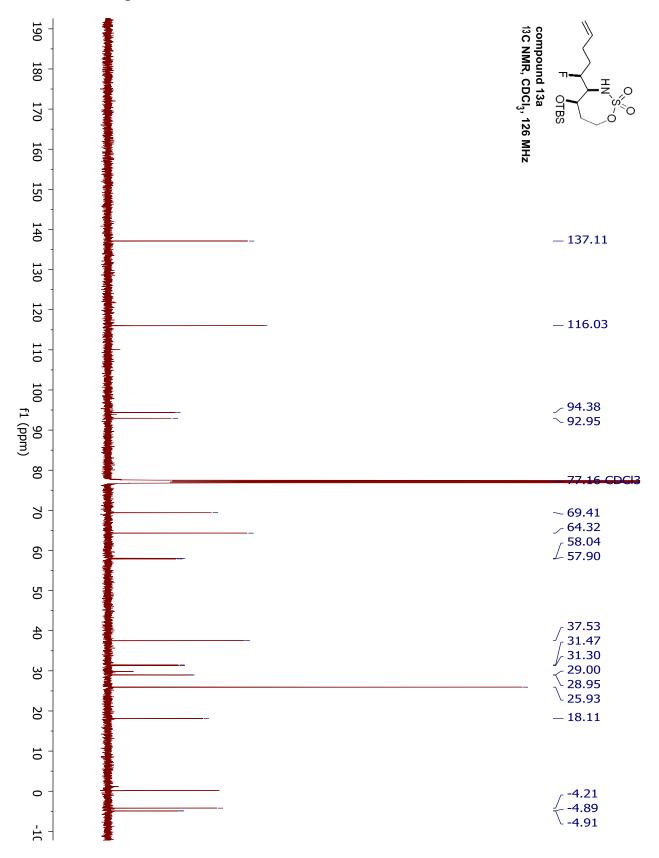

¹H NMR for compound 11a.

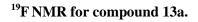

¹³C NMR for compound 11a.

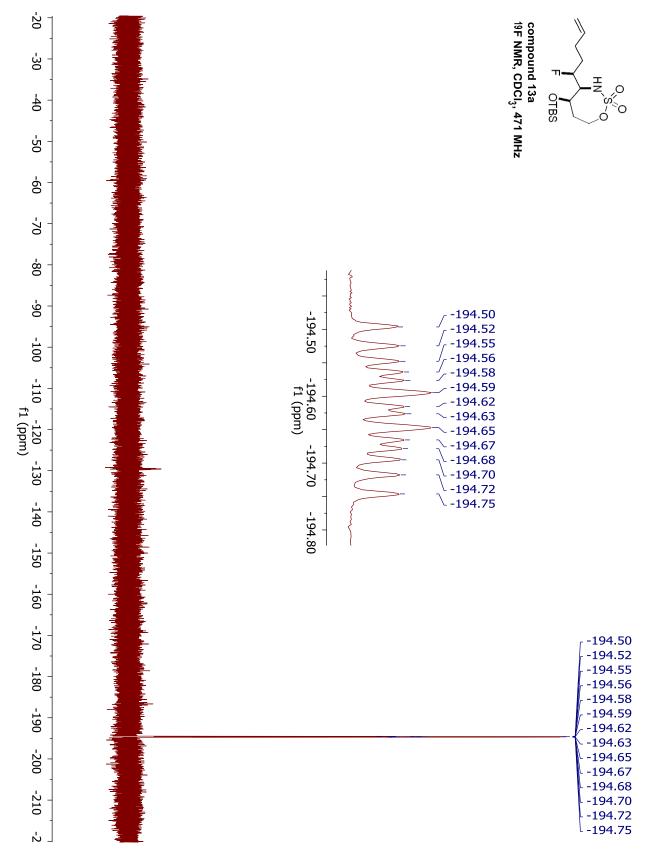

¹⁹F NMR for compound 11a.

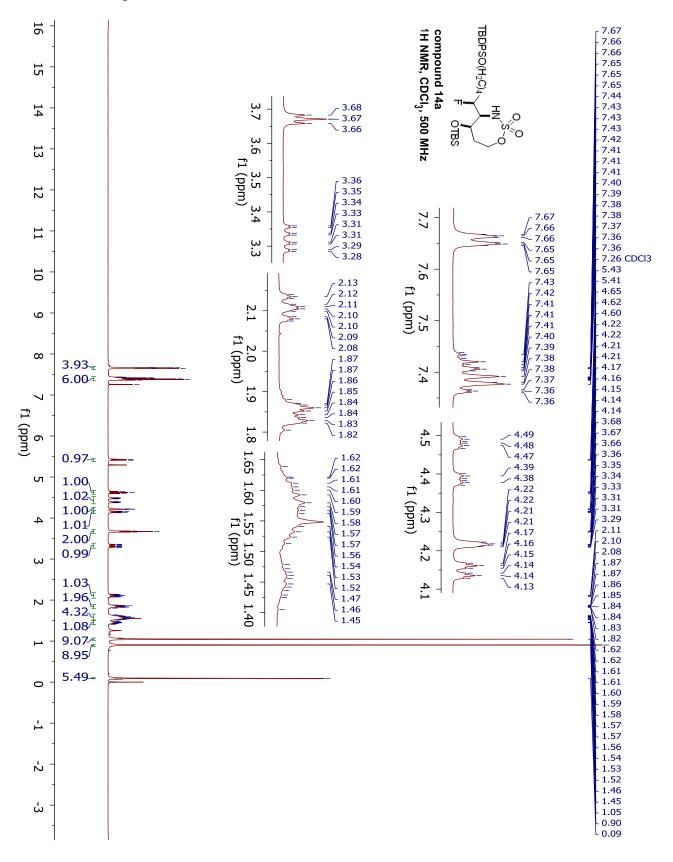

¹H NMR for compound 12a.

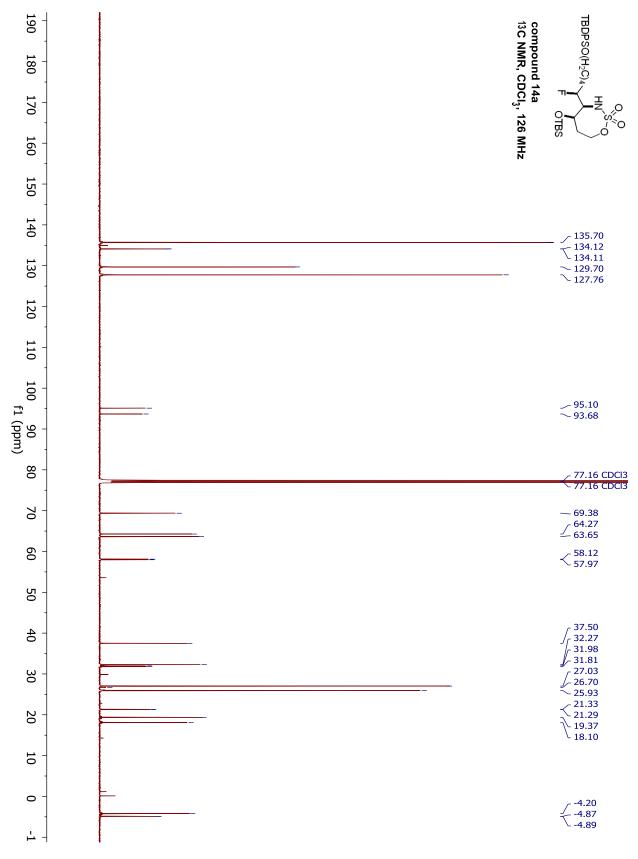

¹³C NMR for compound 12a.

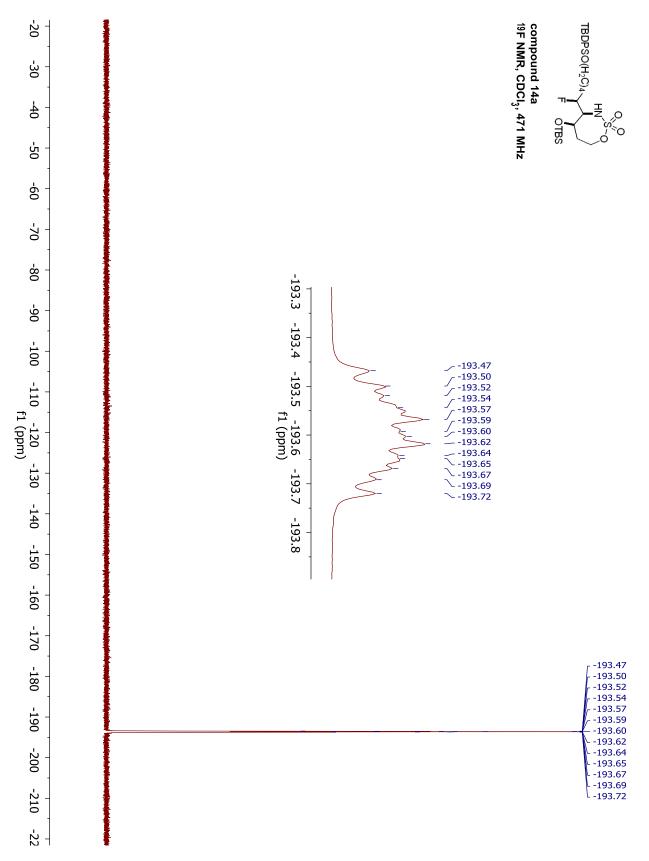

¹⁹F NMR for compound 12a.

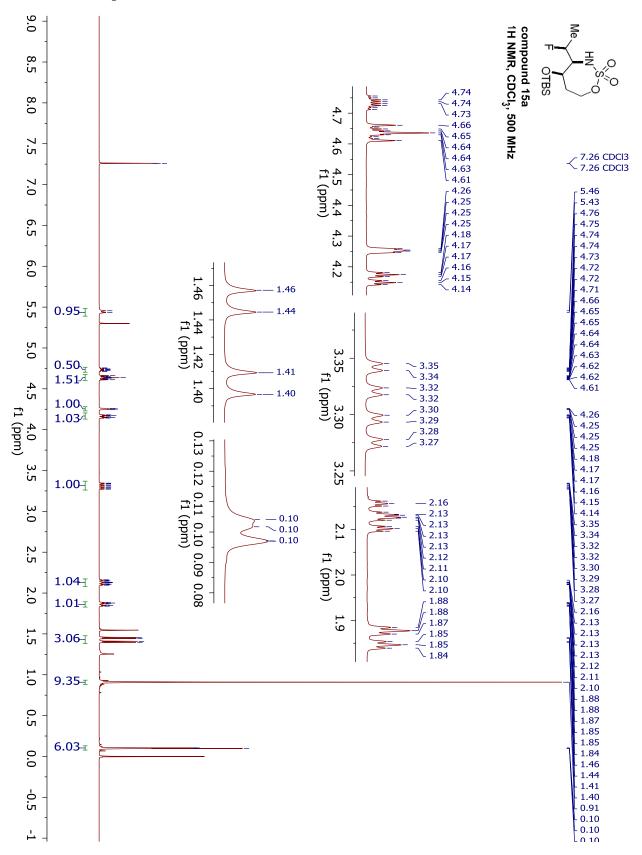


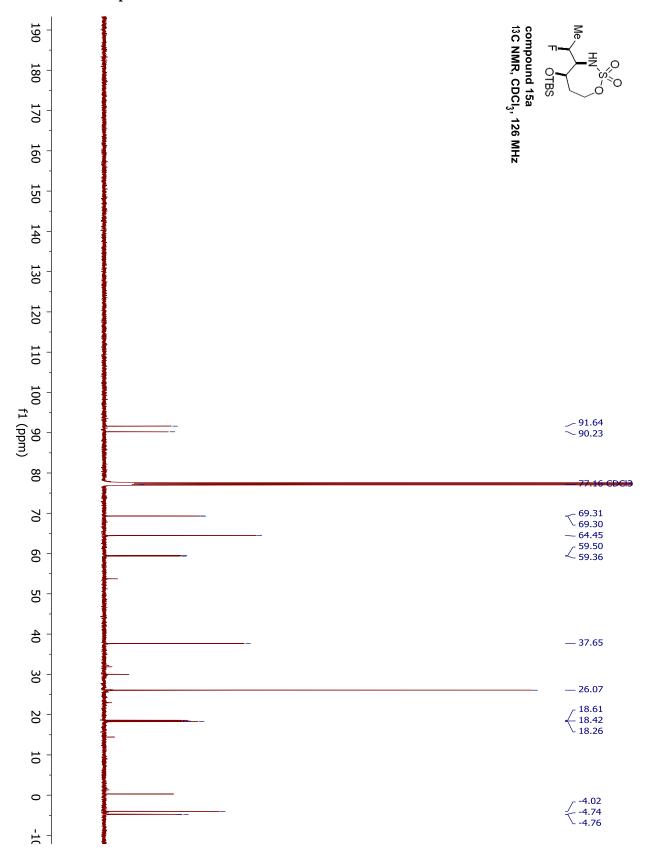

¹H NMR for compound 13a.

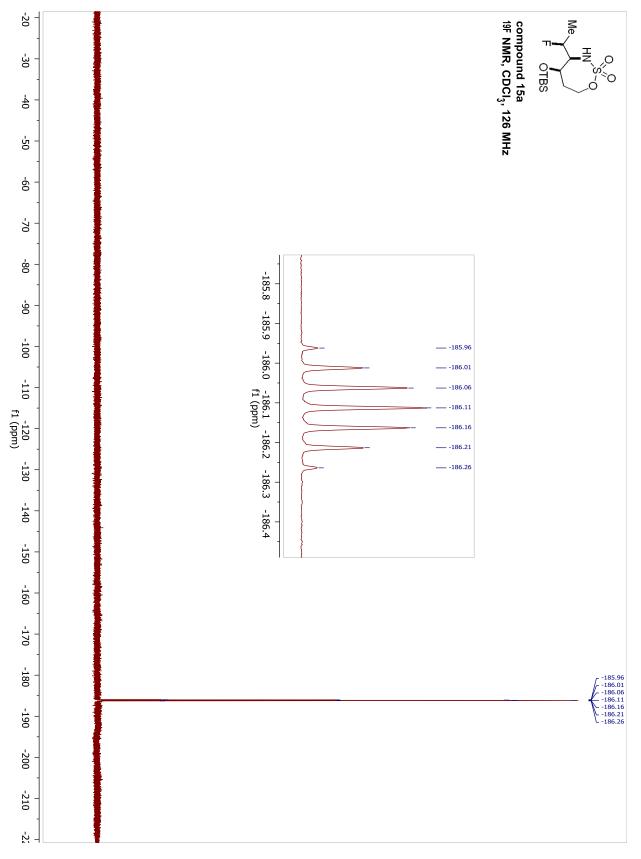

¹³C NMR for compound 13a.

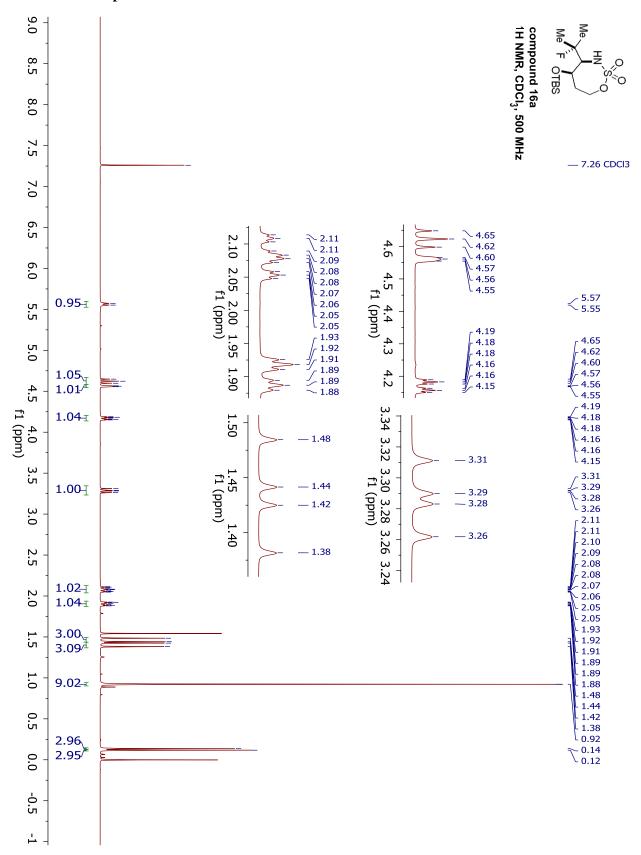



¹H NMR for compound 14a.

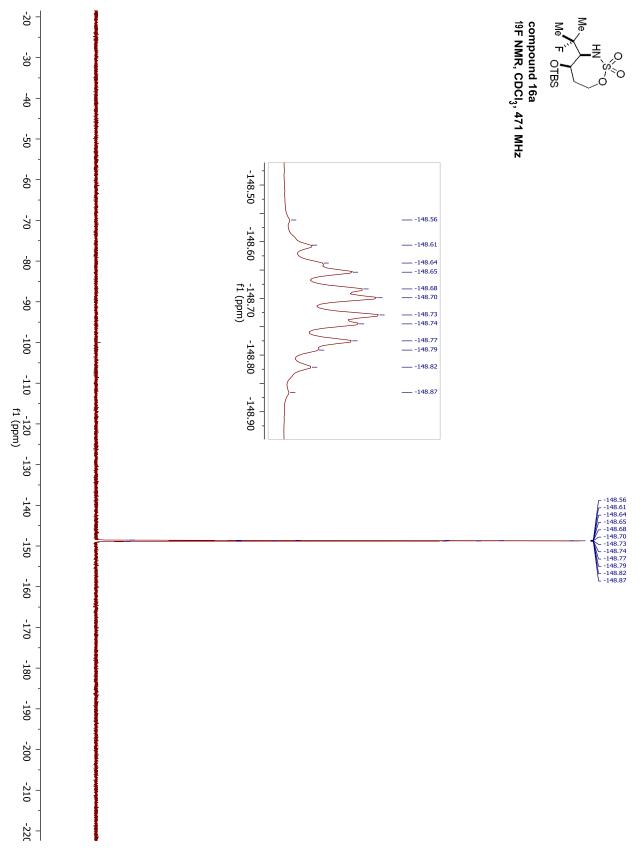

¹³C NMR for compound 14a.


¹⁹F NMR for compound 14a.

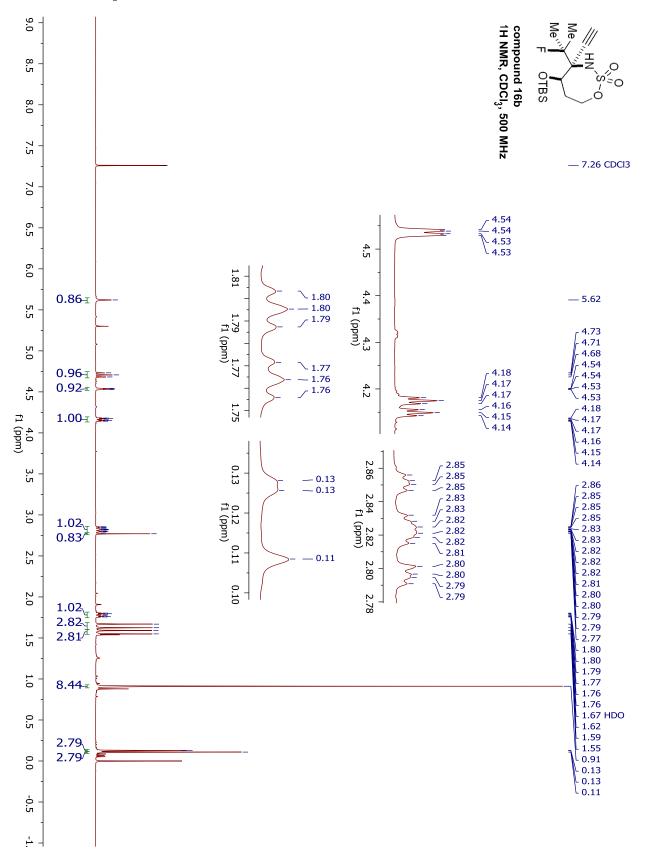

¹H NMR for compound 15a.


¹³C NMR for compound 15a.

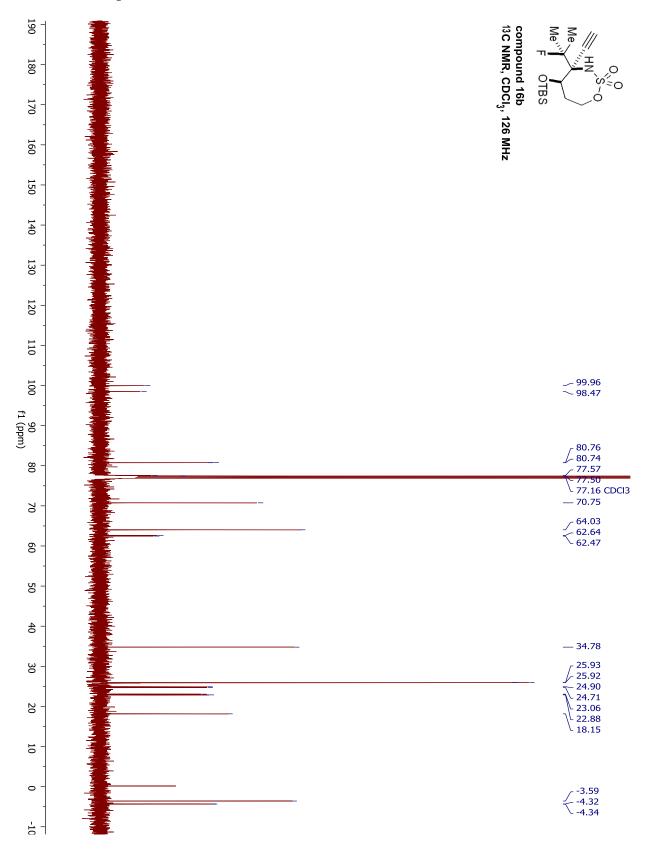
¹H NMR for compound 16a.

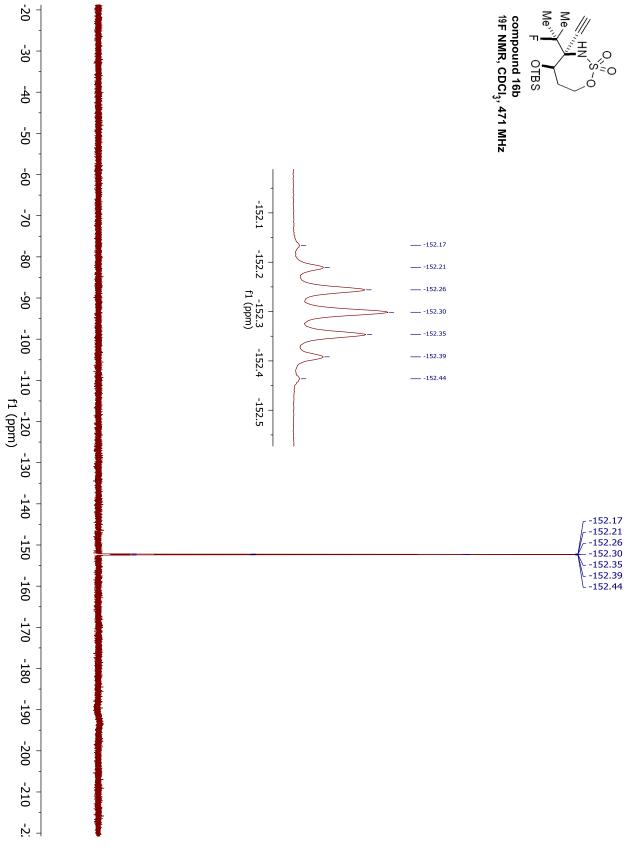


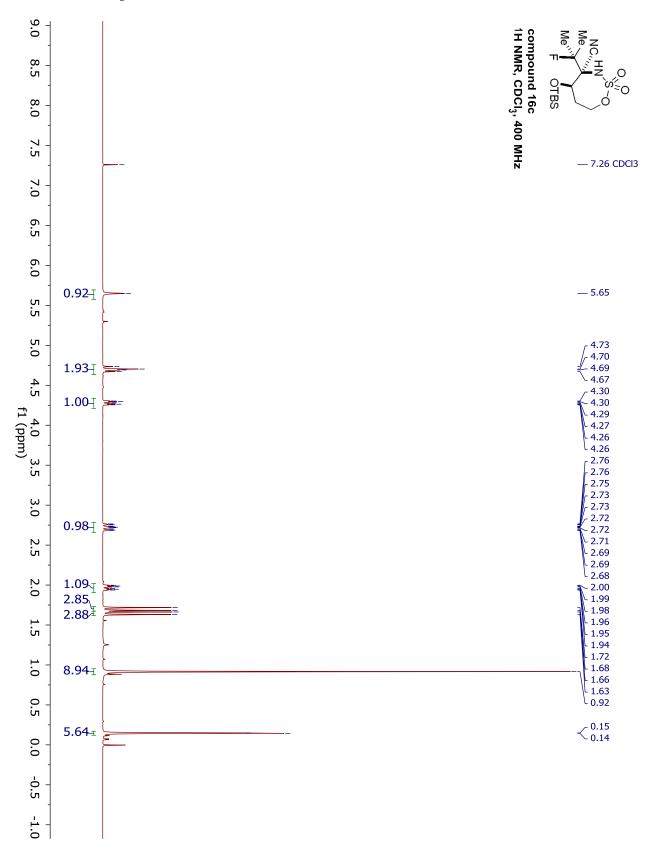
¹³C NMR for compound 16a.

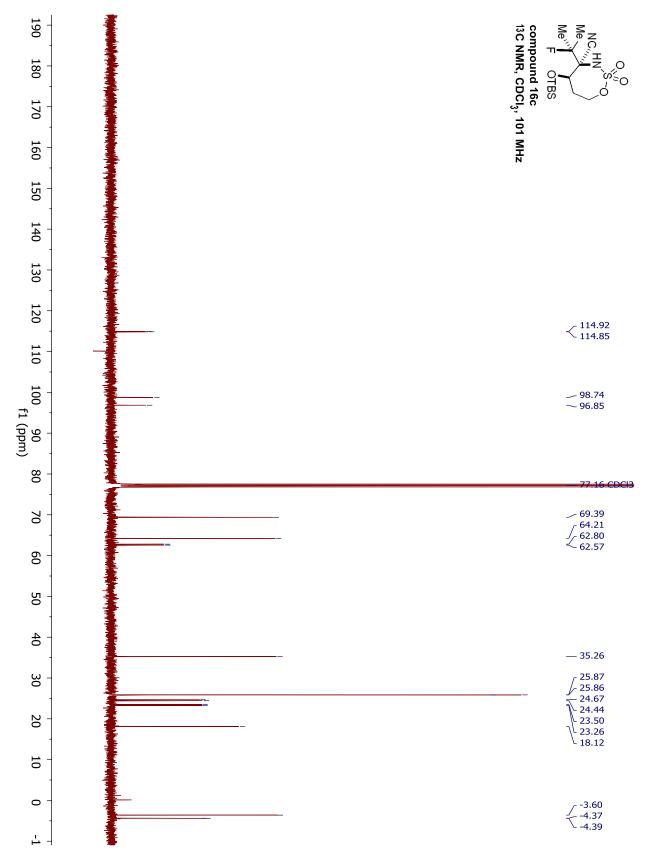


S-101

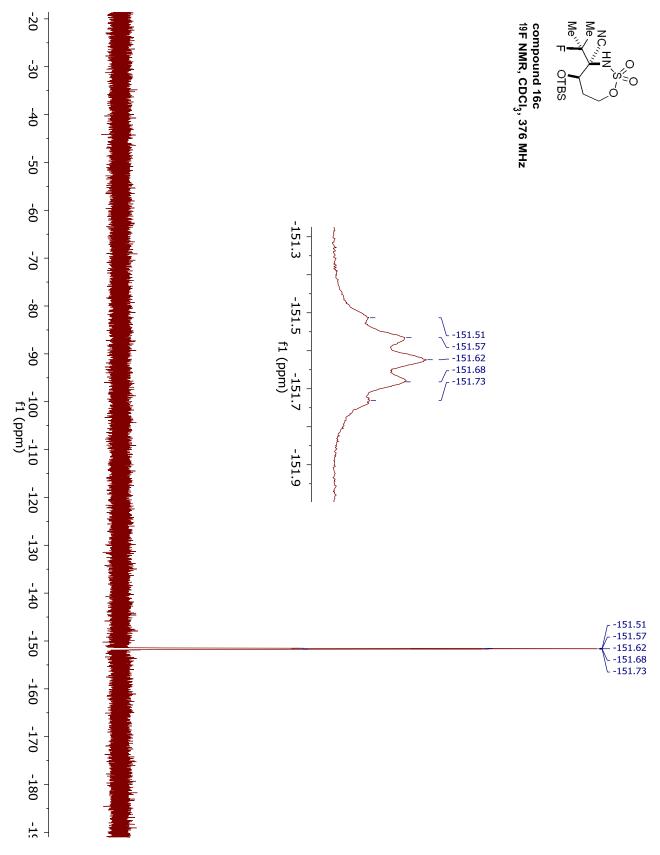

¹⁹F NMR for compound 16a.


¹H NMR for compound 16b.

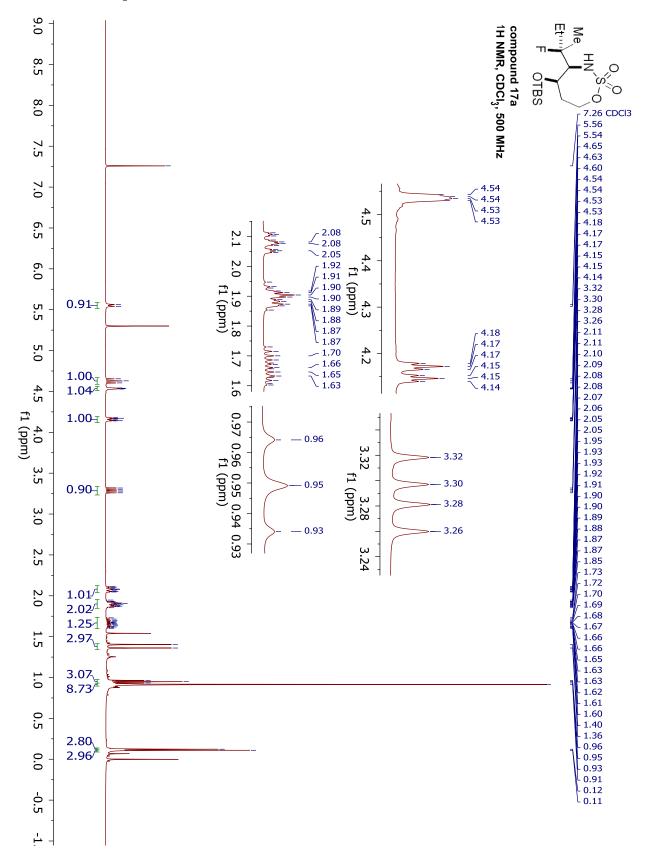

¹³C NMR for compound 16b.


¹⁹F NMR for compound 16b.

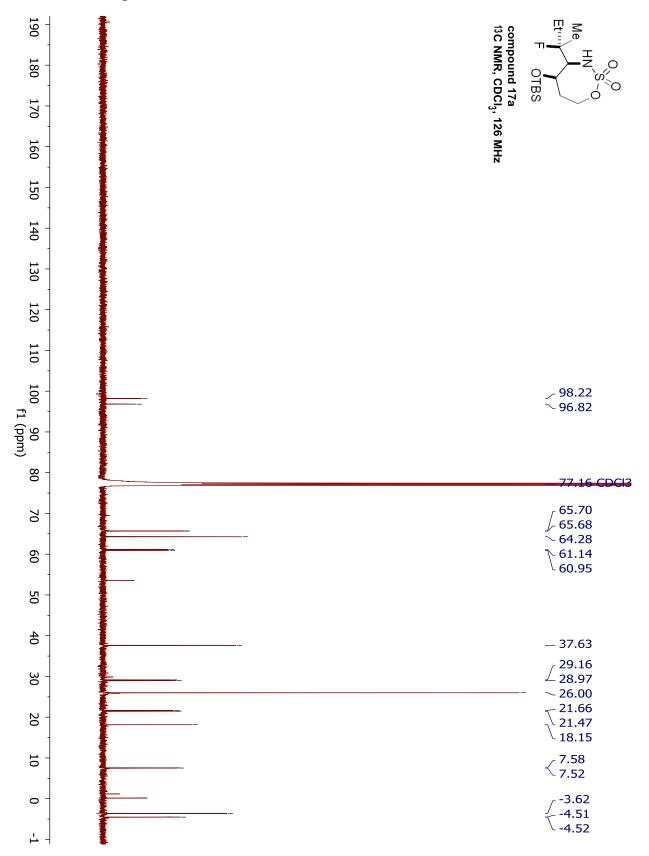
¹H NMR for compound 16c.



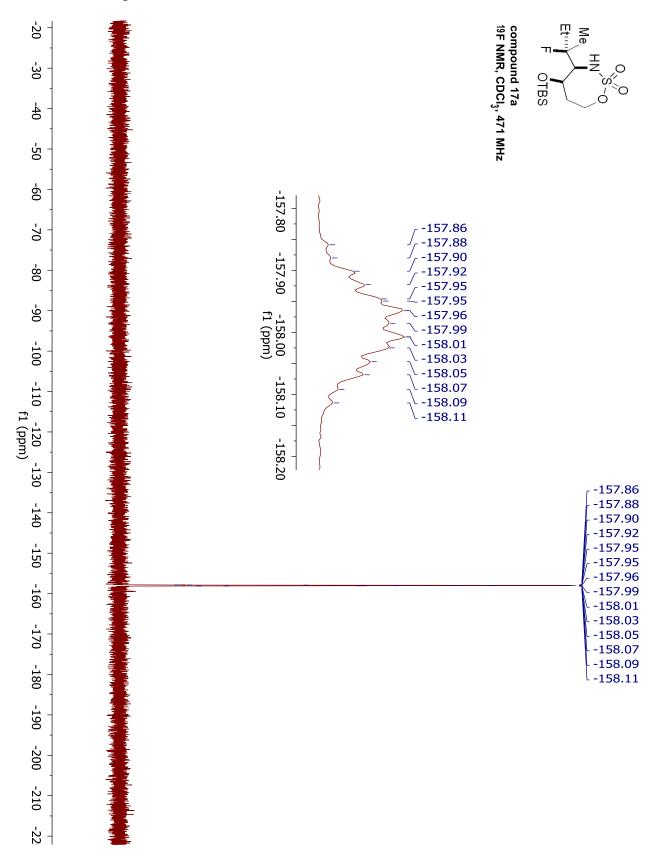
¹³C NMR for compound 16c.

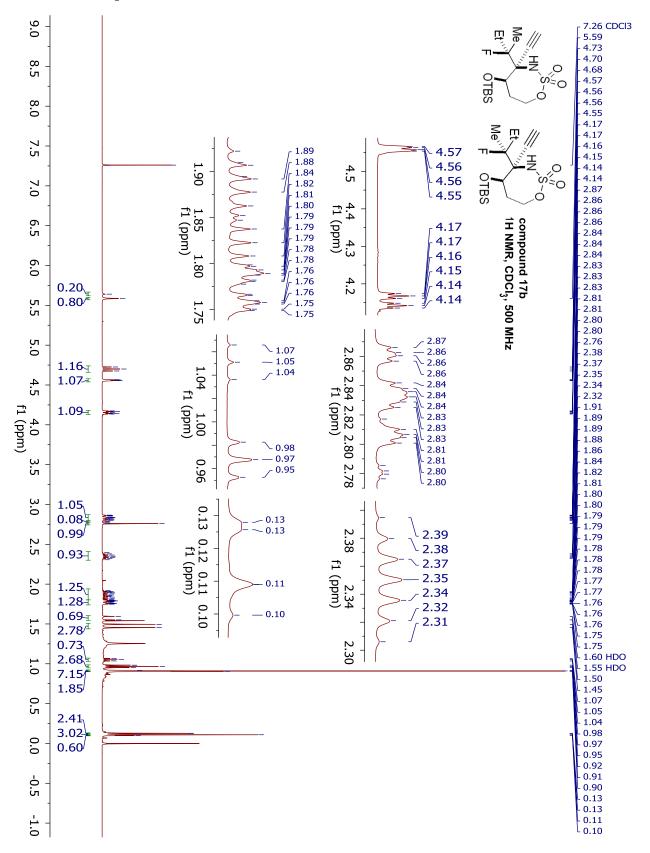

S-107

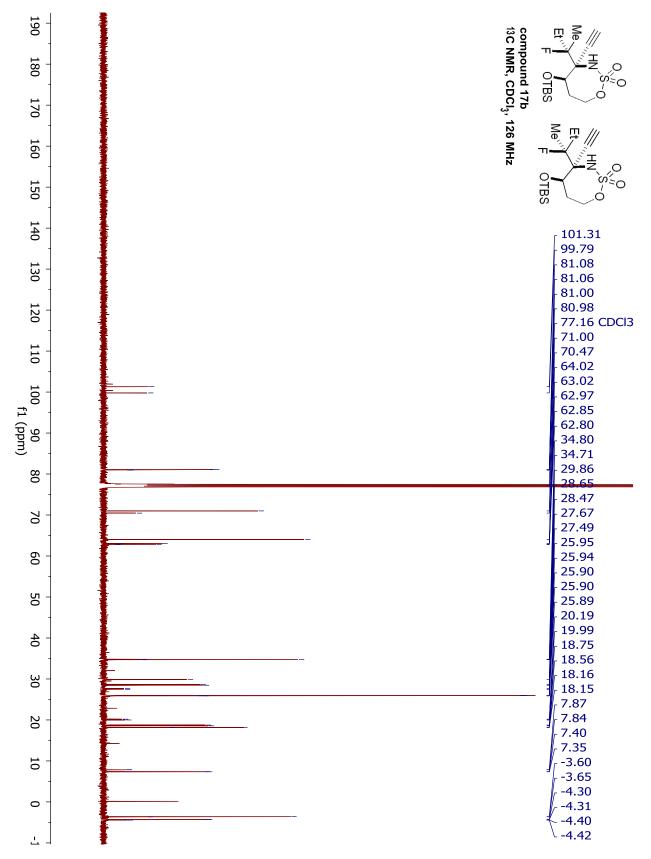
¹⁹F NMR for compound 16c.

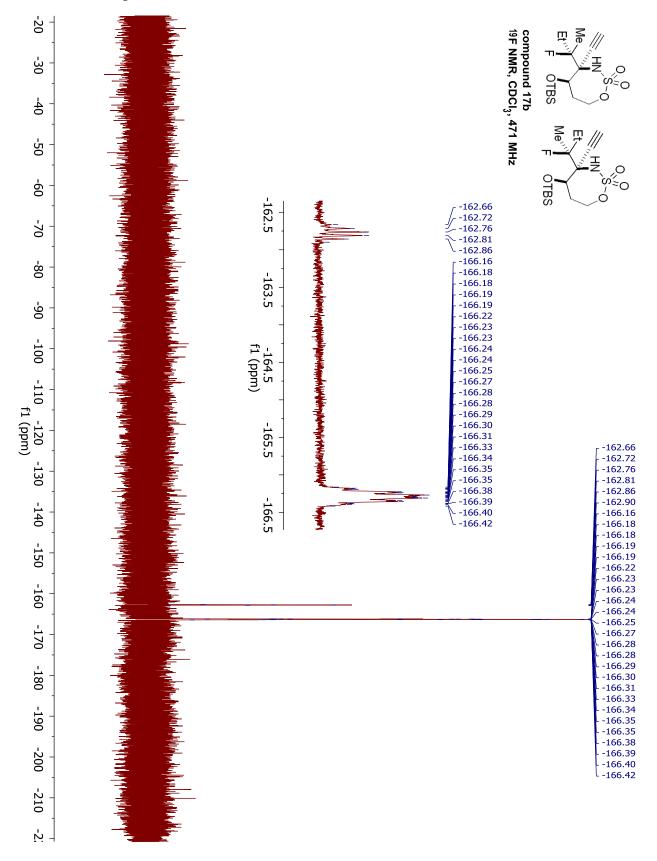


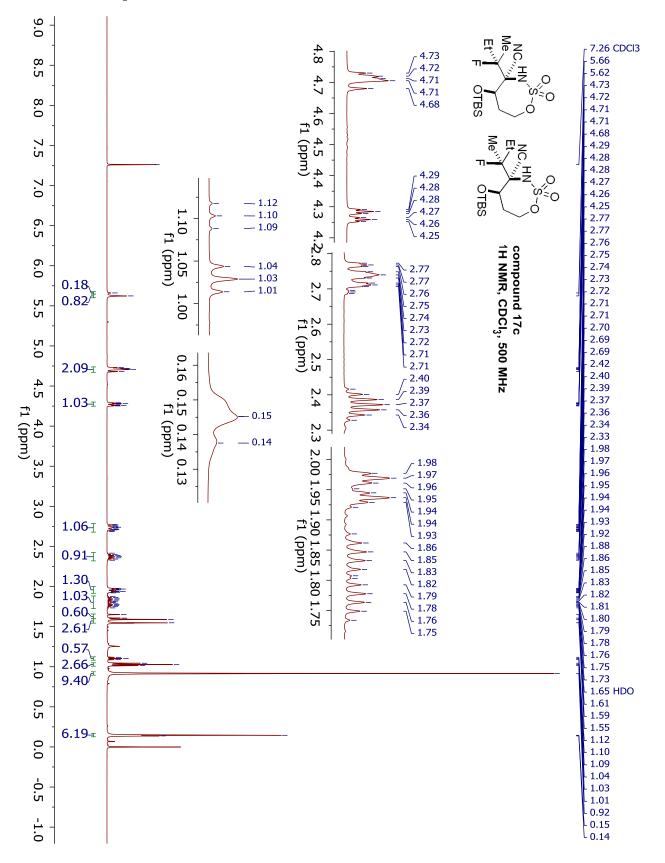
S-108


¹H NMR for compound 17a.

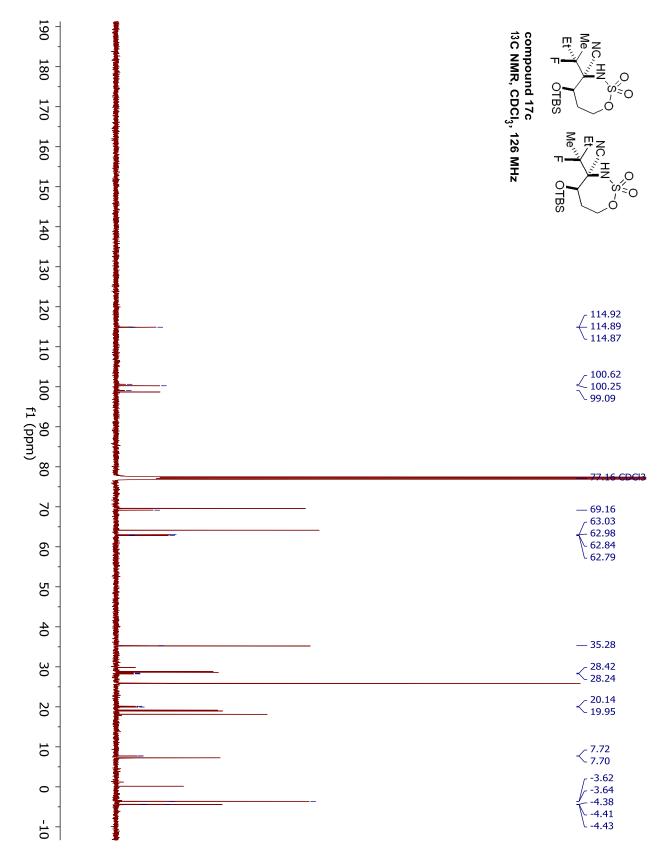

¹³C NMR for compound 17a.

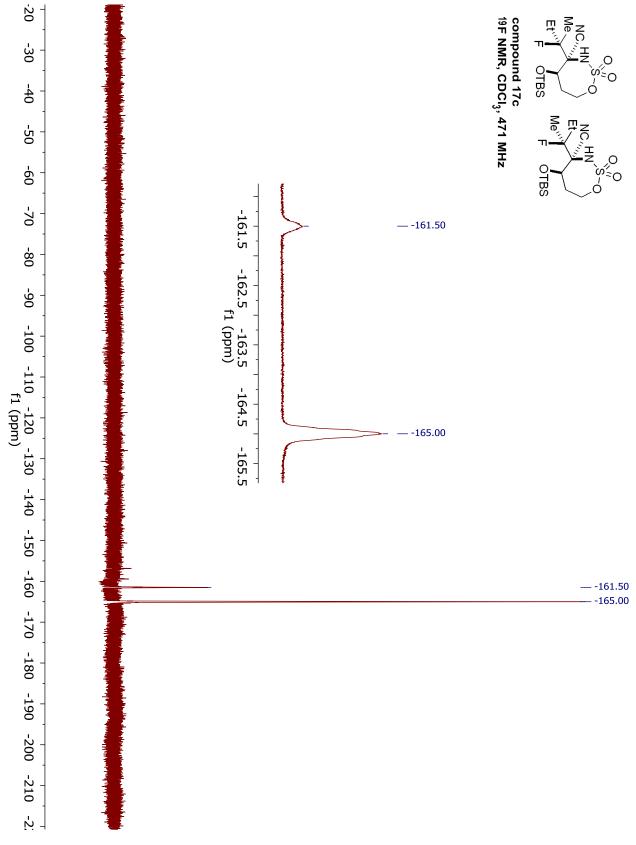

¹⁹F NMR for compound 17a.

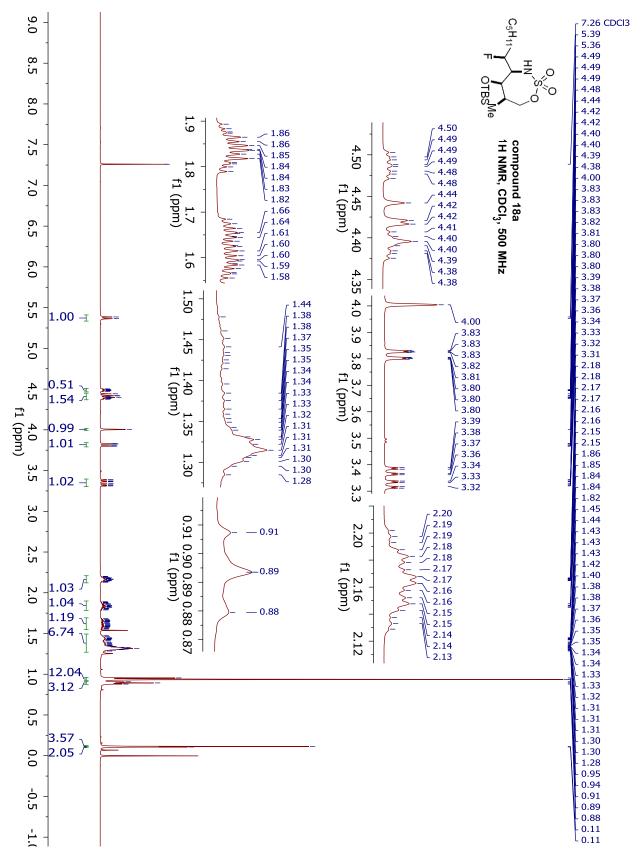

¹H NMR for compound 17b.

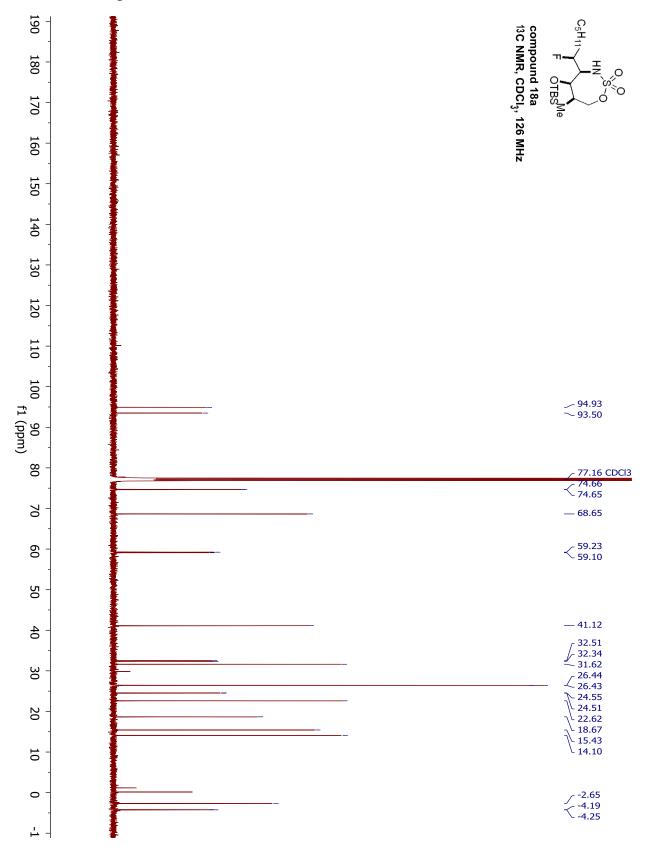

¹³C NMR for compound 17b.

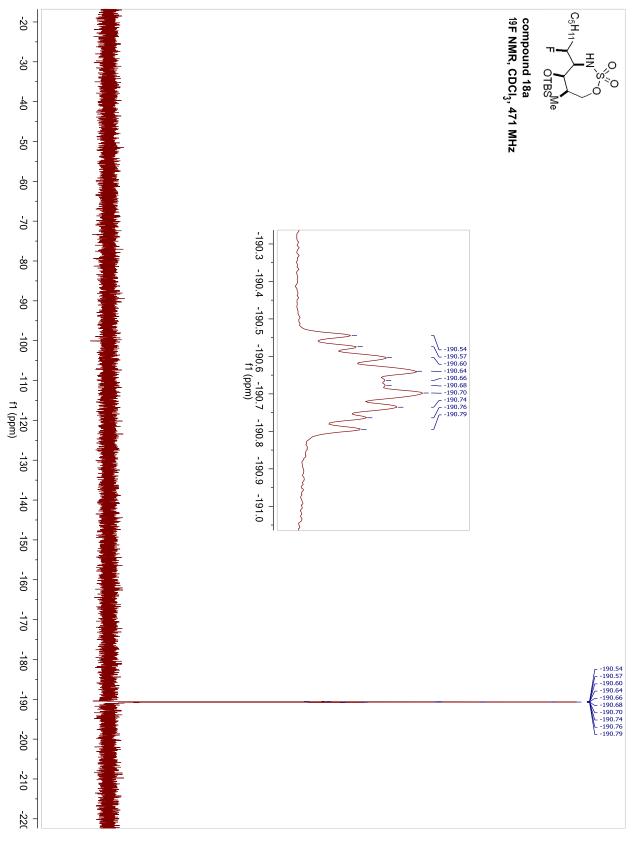


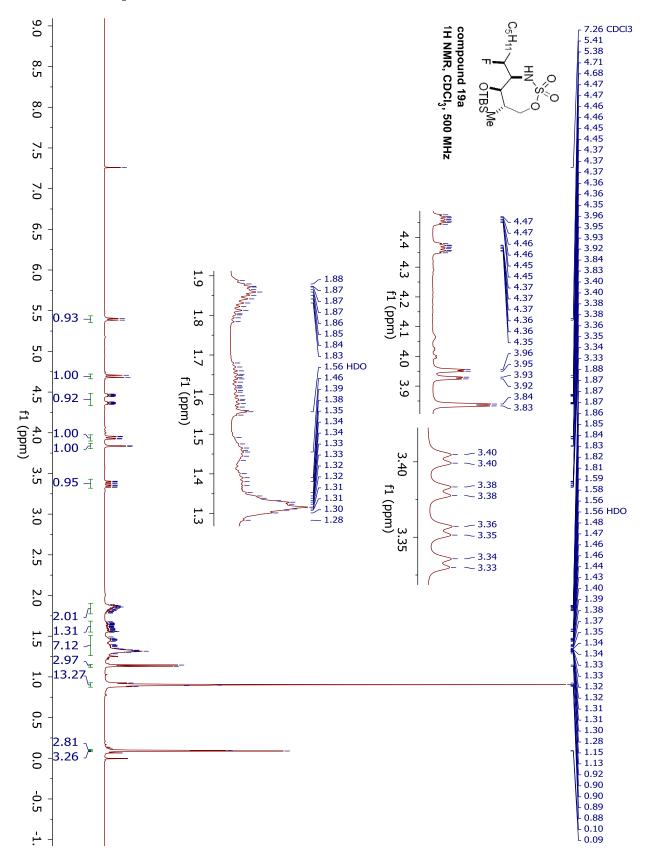

¹⁹F NMR for compound 17b.

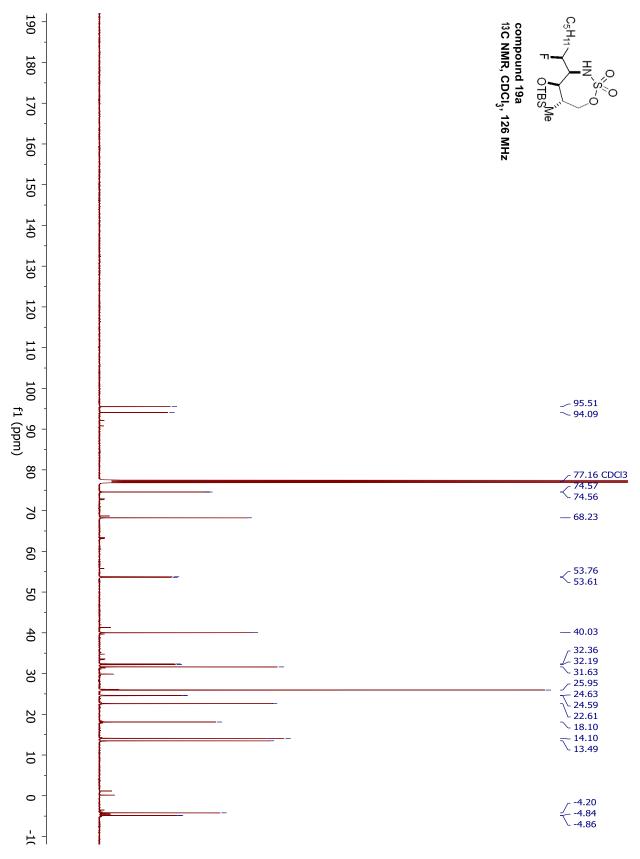

¹H NMR for compound 17c.

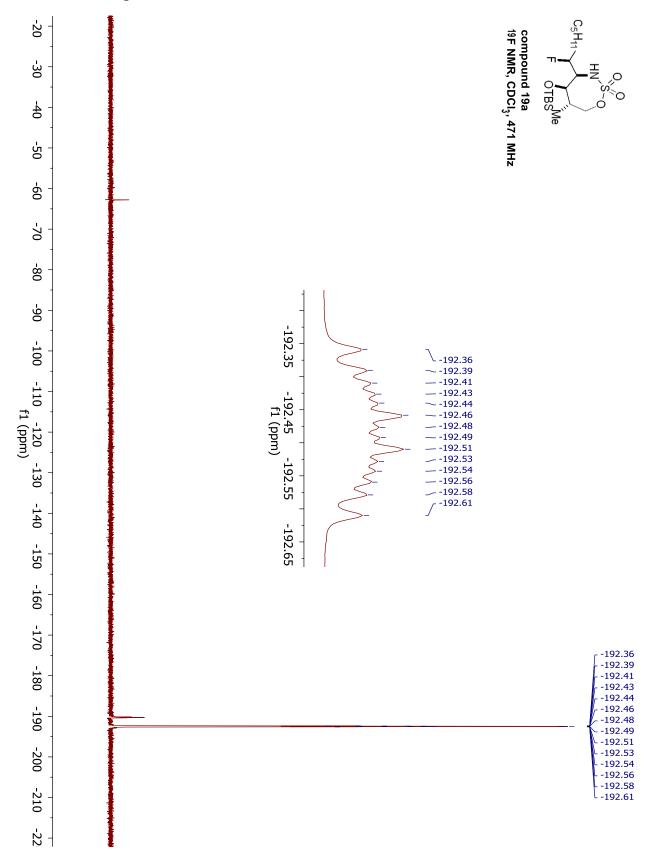


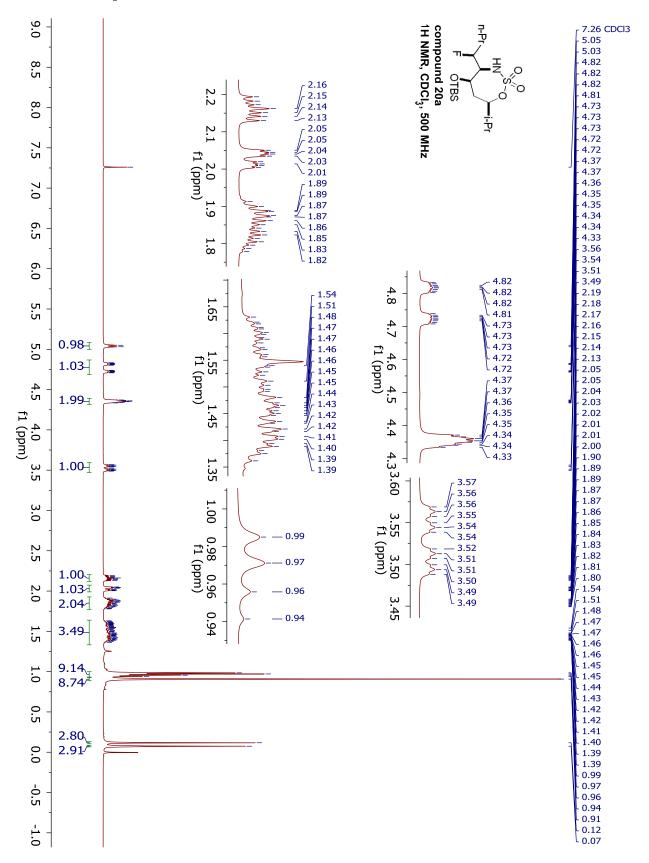

¹⁹F NMR for compound 17c.

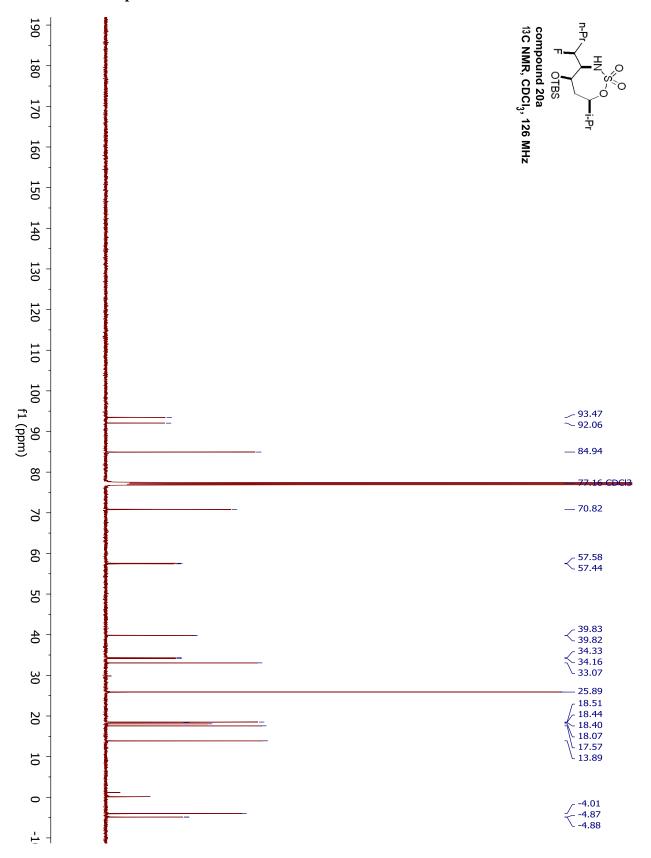

¹H NMR for compound 18a.

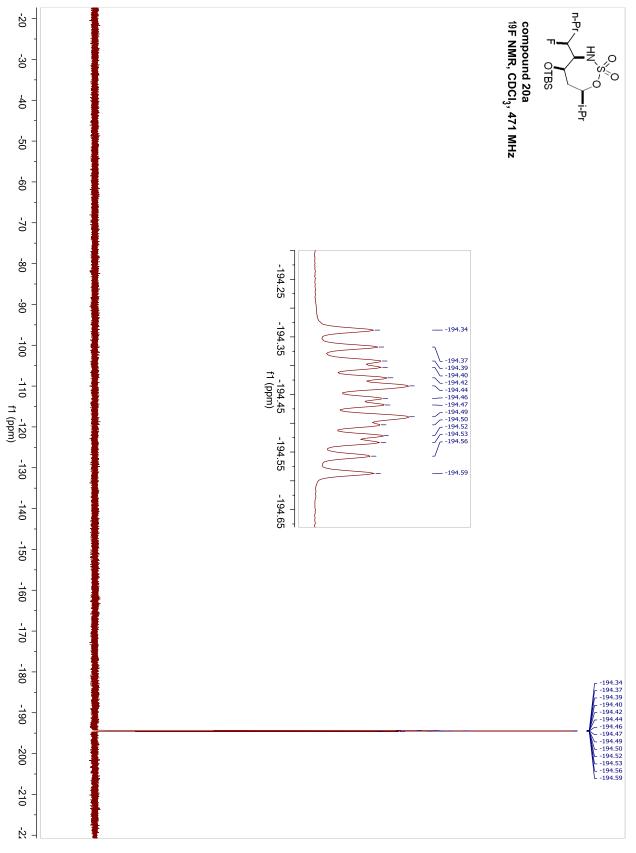

¹³C NMR for compound 18a.

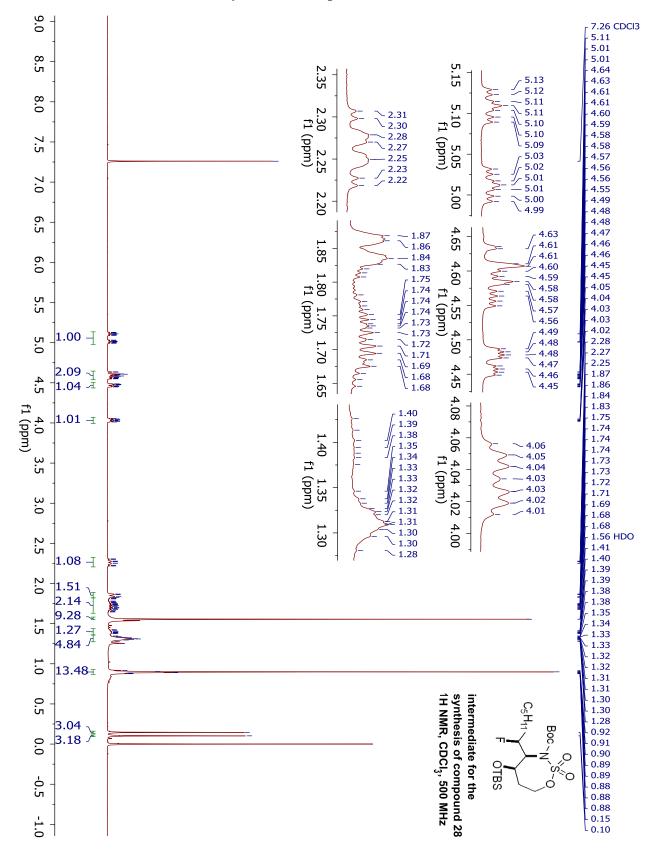

¹⁹F NMR for compound 18a.


¹H NMR for compound 19a.

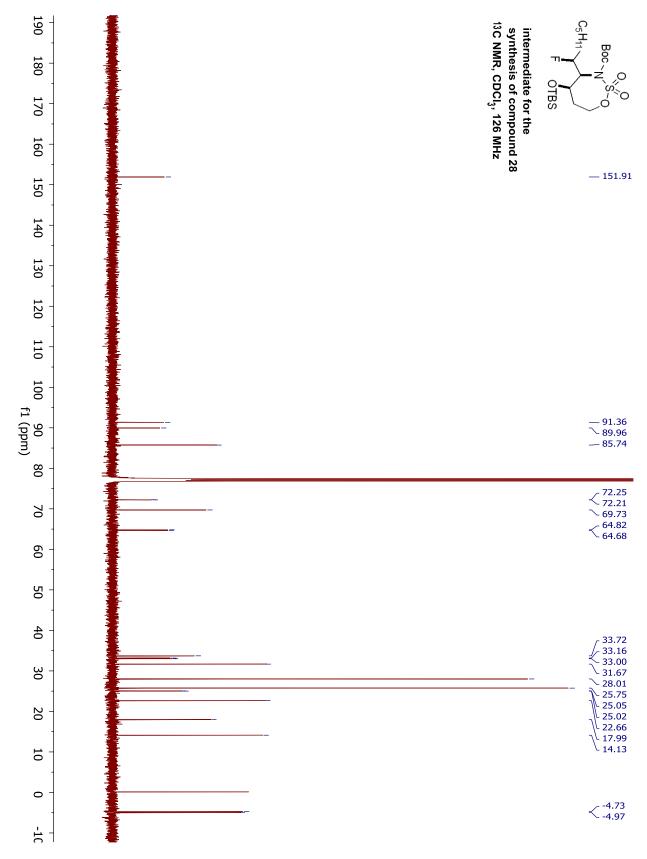

¹³C NMR for compound 19a.


¹⁹F NMR for compound 19a.

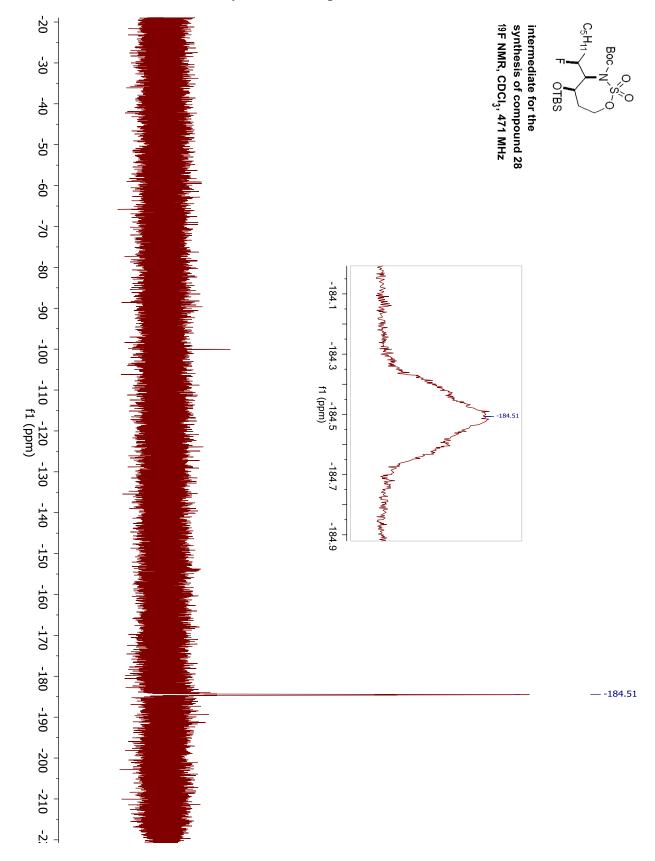

¹H NMR for compound 20a.



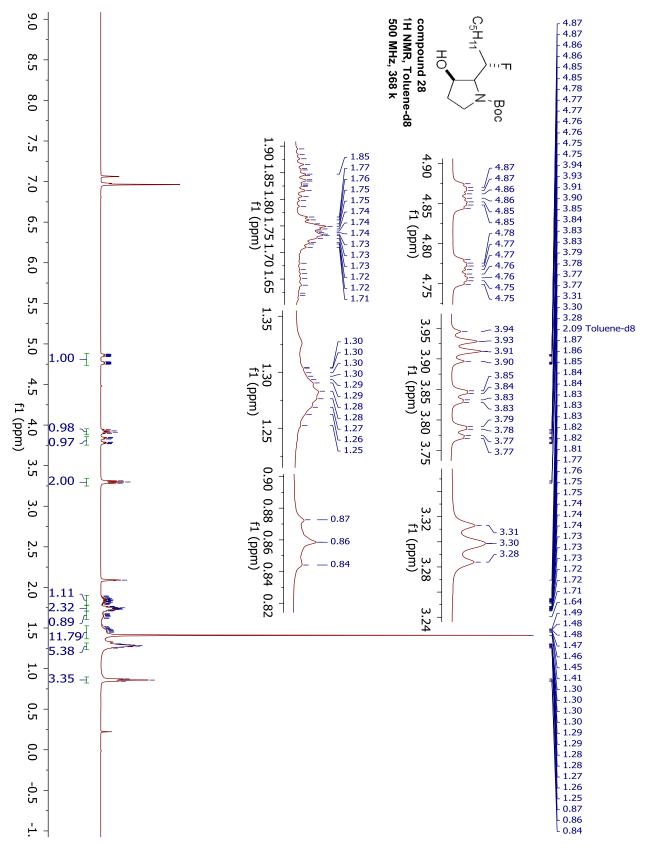
¹³C NMR for compound 20a.



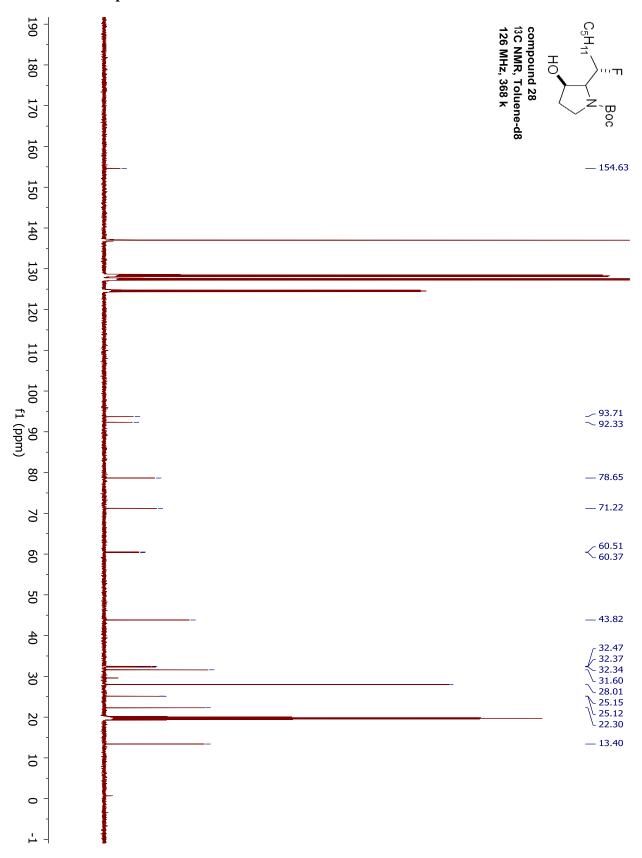
¹⁹F NMR for compound 20a.



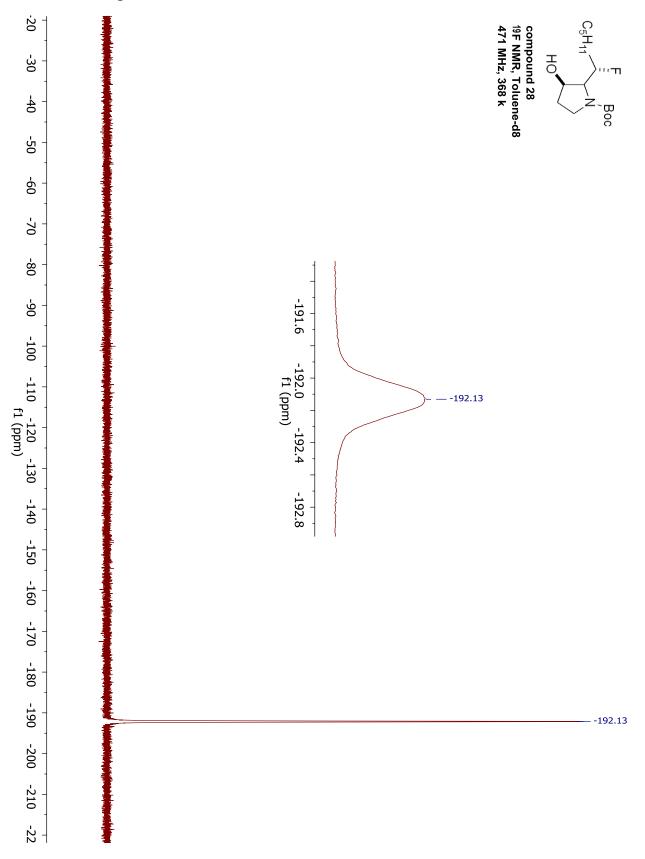
¹H NMR for intermediate for the synthesis of compound 28.

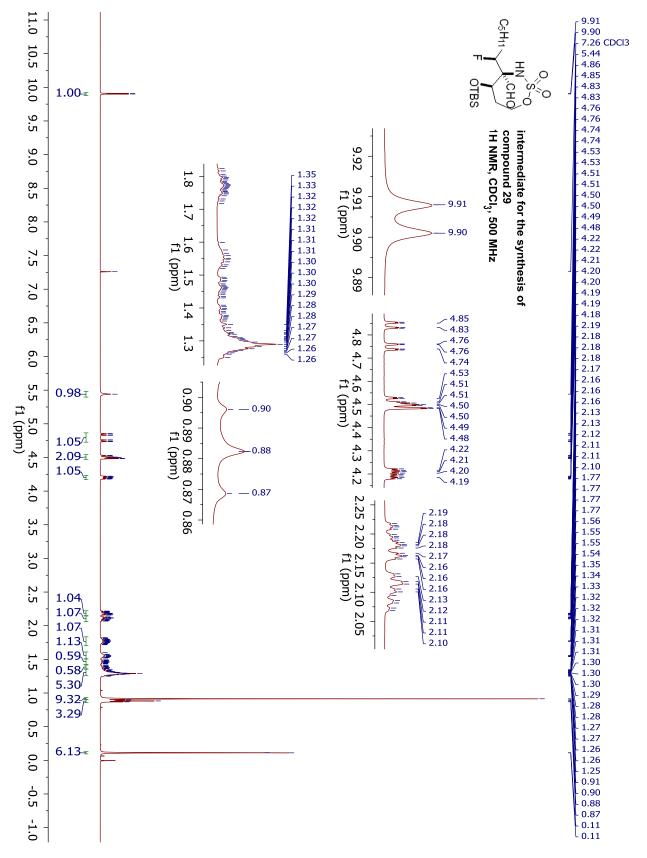


¹³C NMR for intermediate for the synthesis of compound 28.

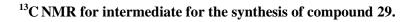


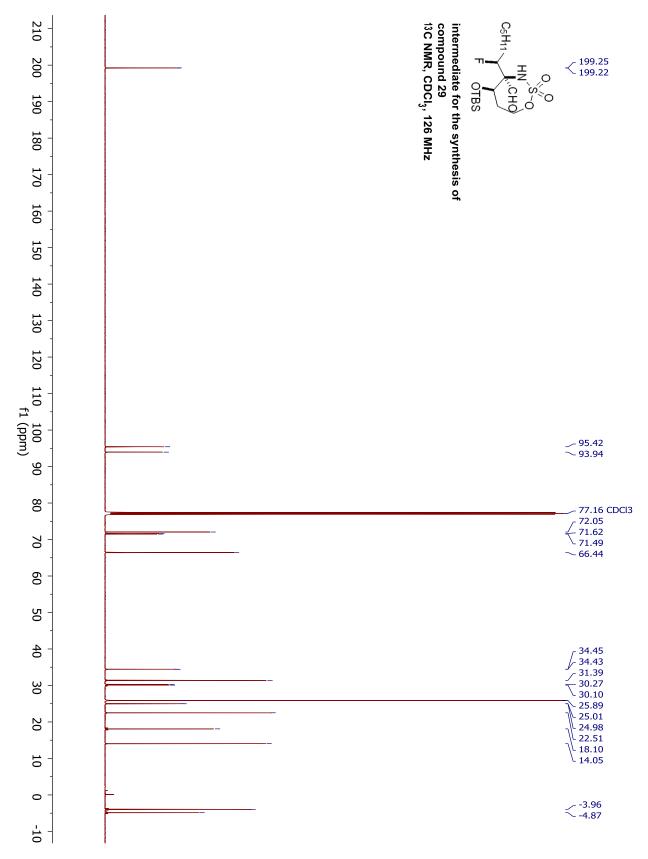
¹⁹F NMR for intermediate for the synthesis of compound 28.

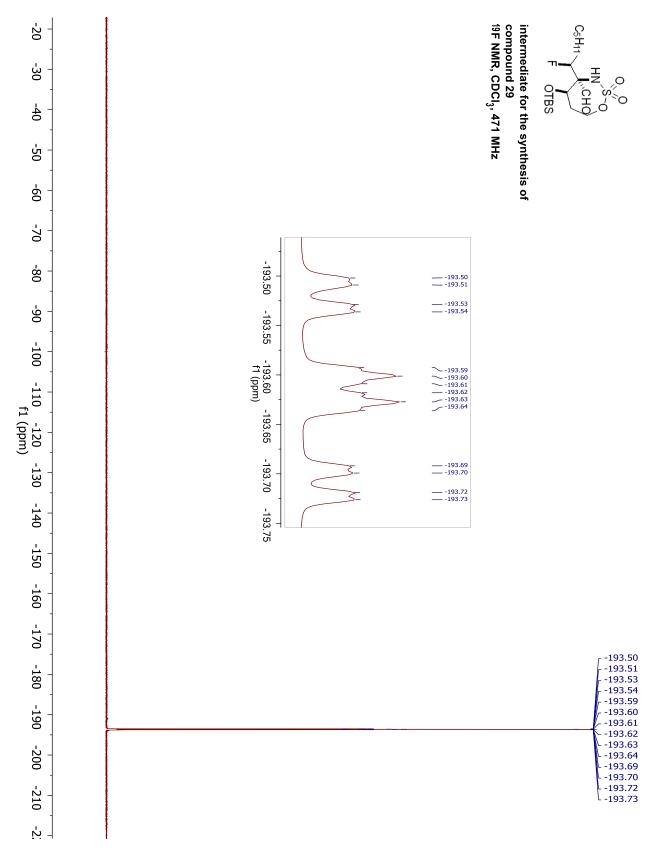

¹H NMR for compound 28.



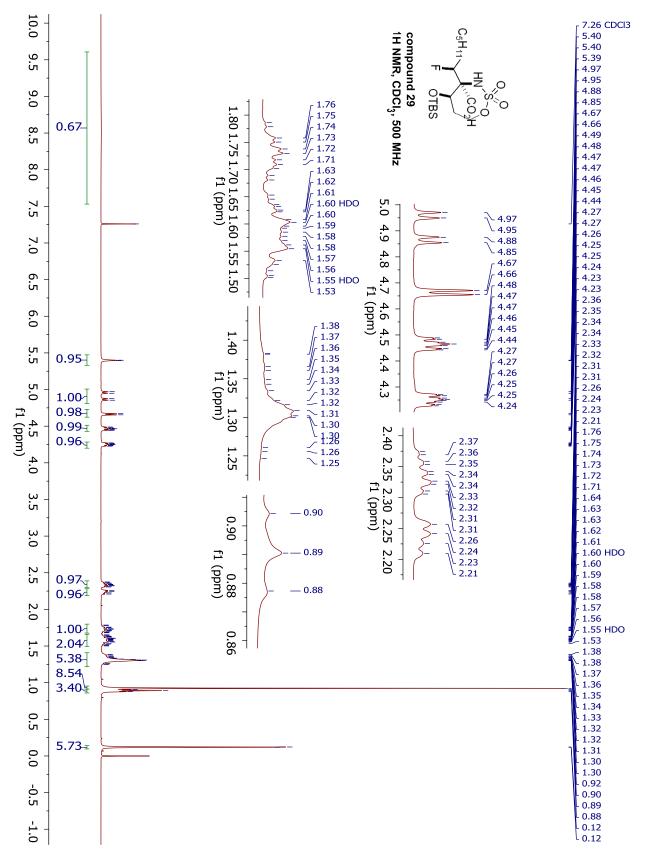
¹³C NMR for compound 28.

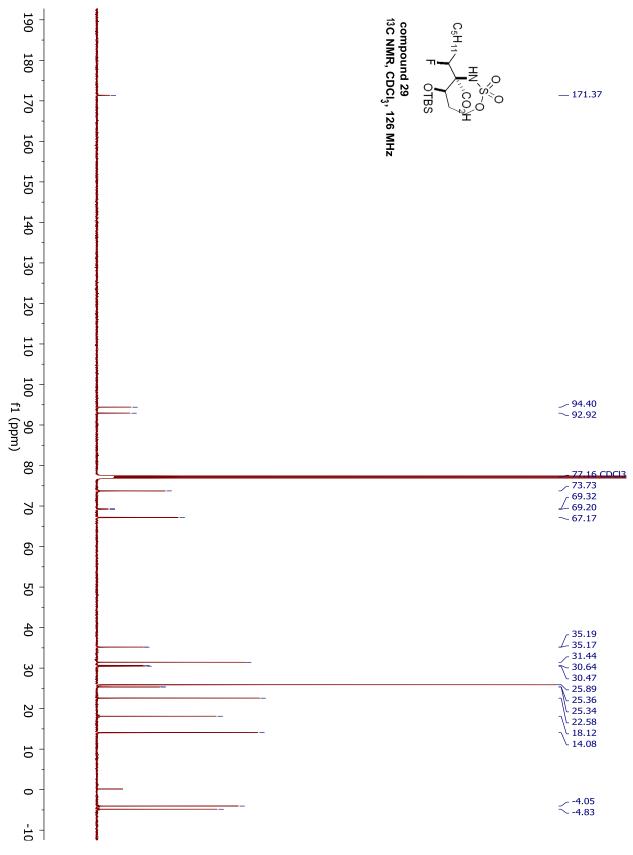



¹⁹F NMR for compound 28.

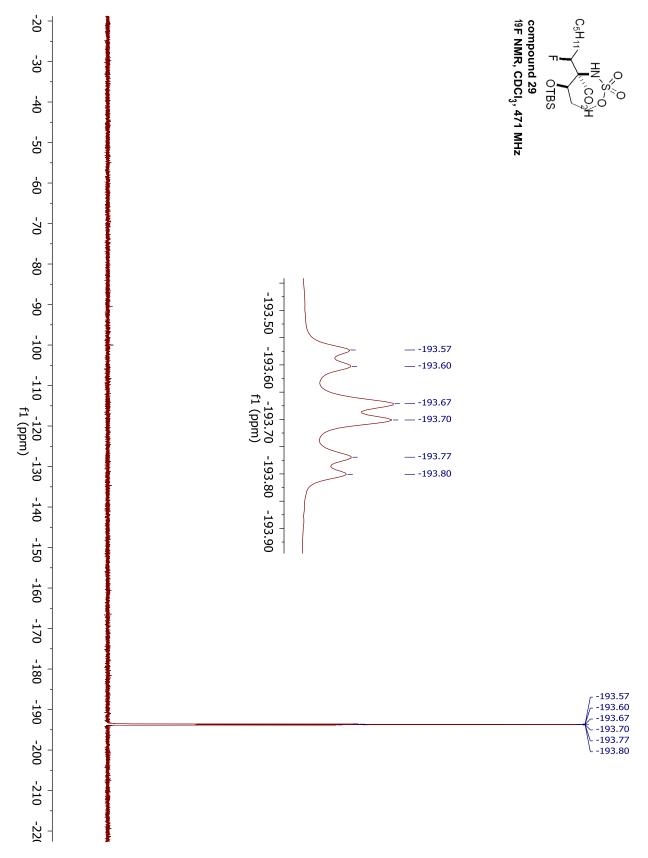


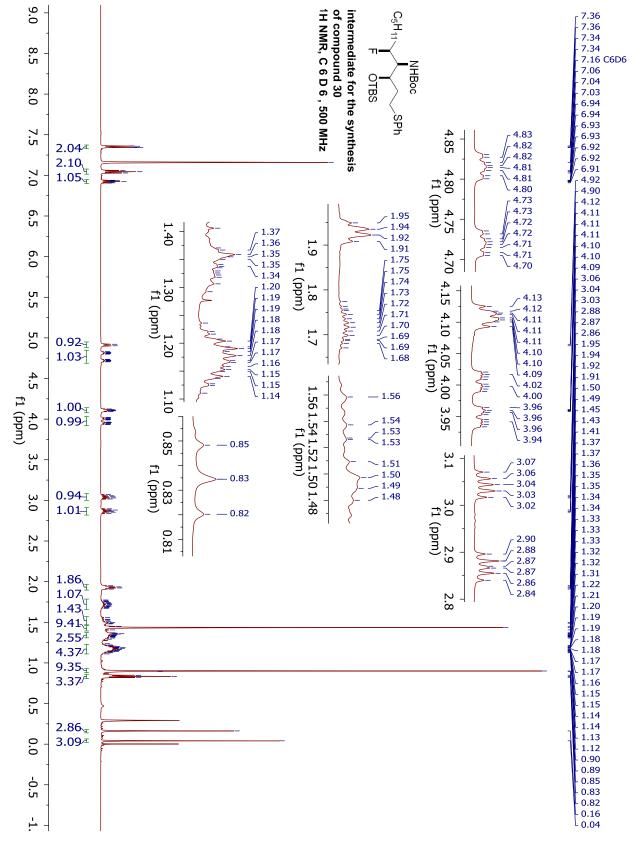
¹H NMR for intermediate for the synthesis of compound 29.



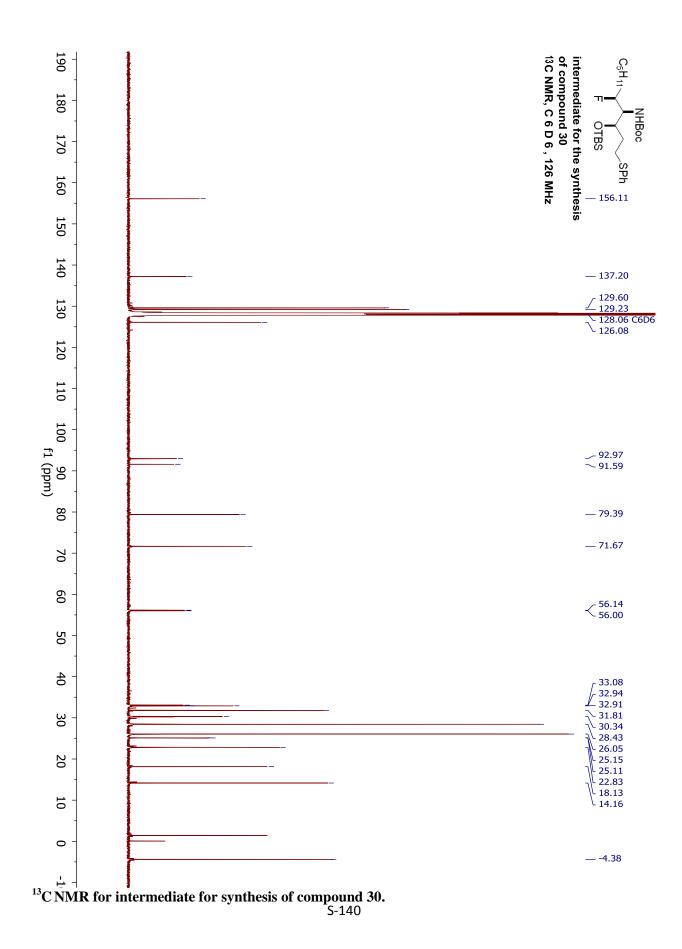


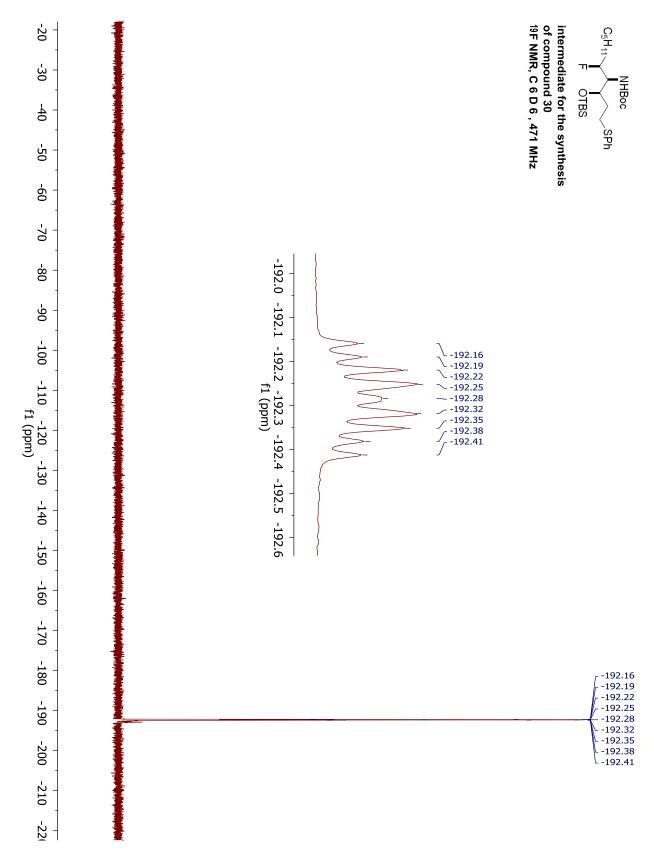
¹⁹F NMR for intermediate for the synthesis of compound 29.

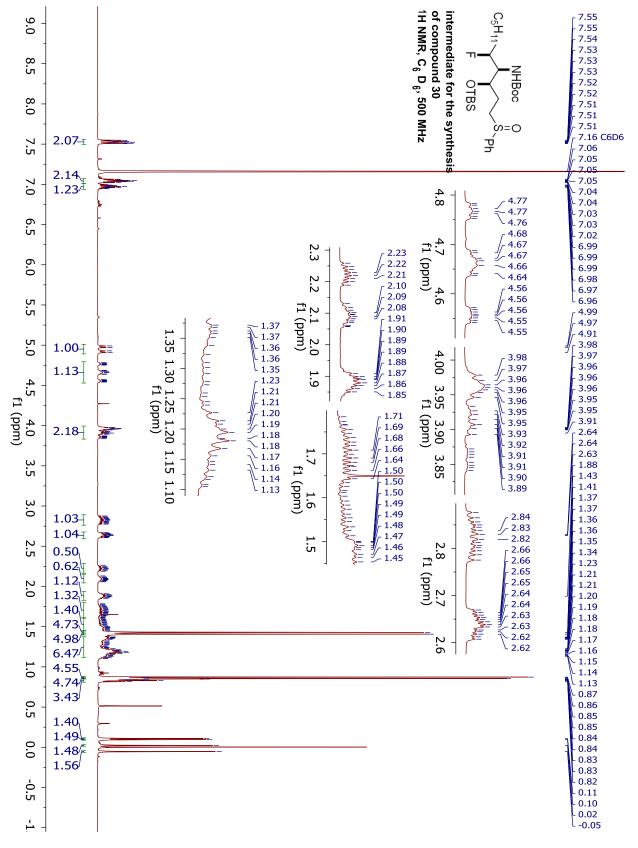

¹H NMR for compound 29.



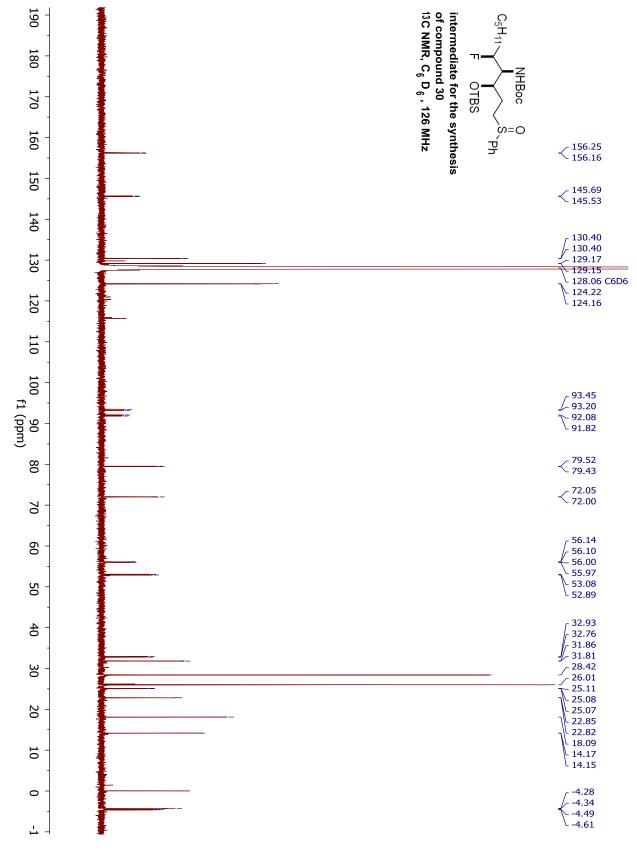
¹³C NMR for compound 29.



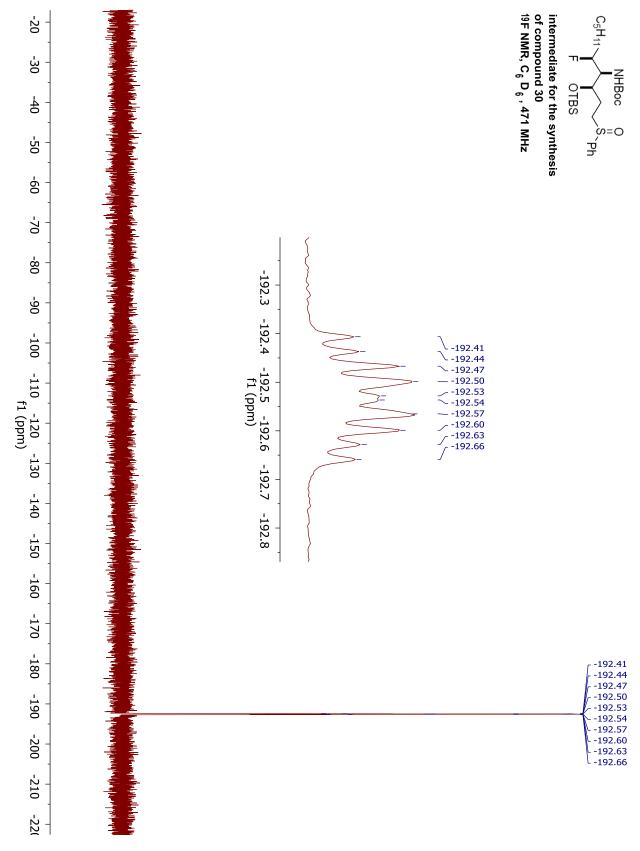

¹⁹F NMR for compound 29.



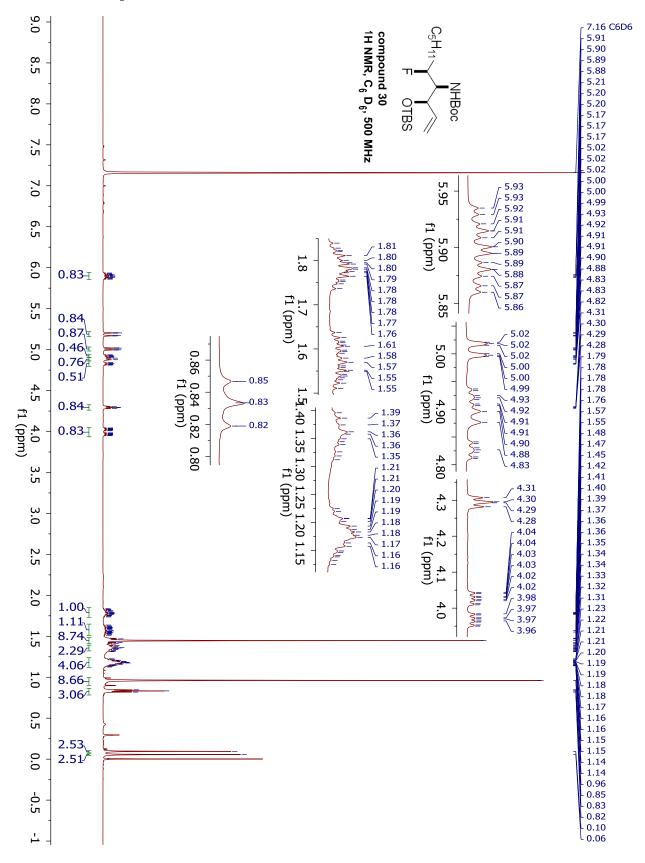
¹H NMR for intermediate for synthesis of compound 30.

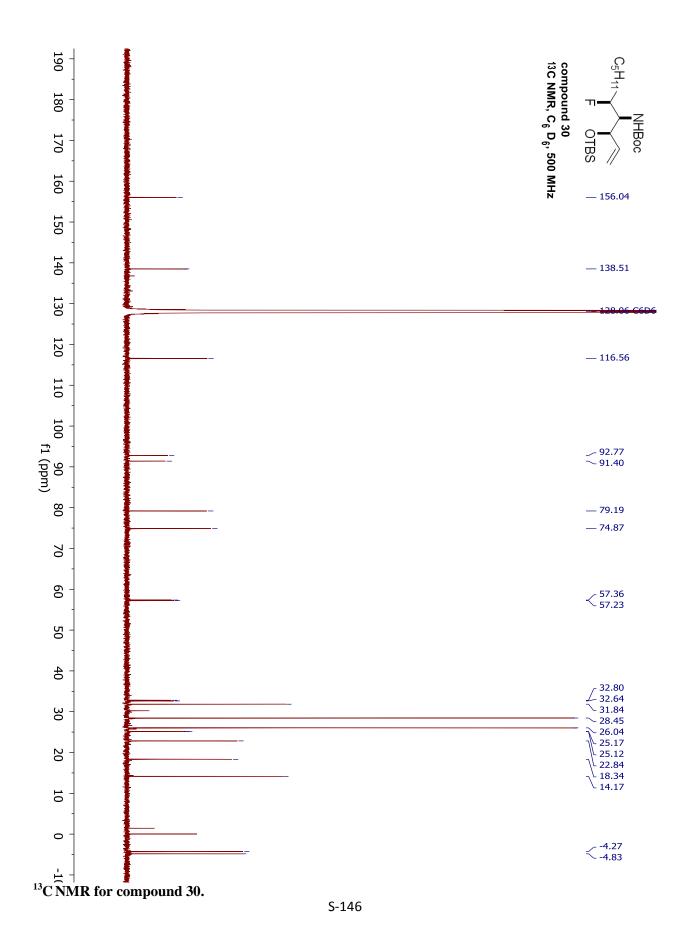


¹⁹F NMR for intermediate for synthesis of compound 30.

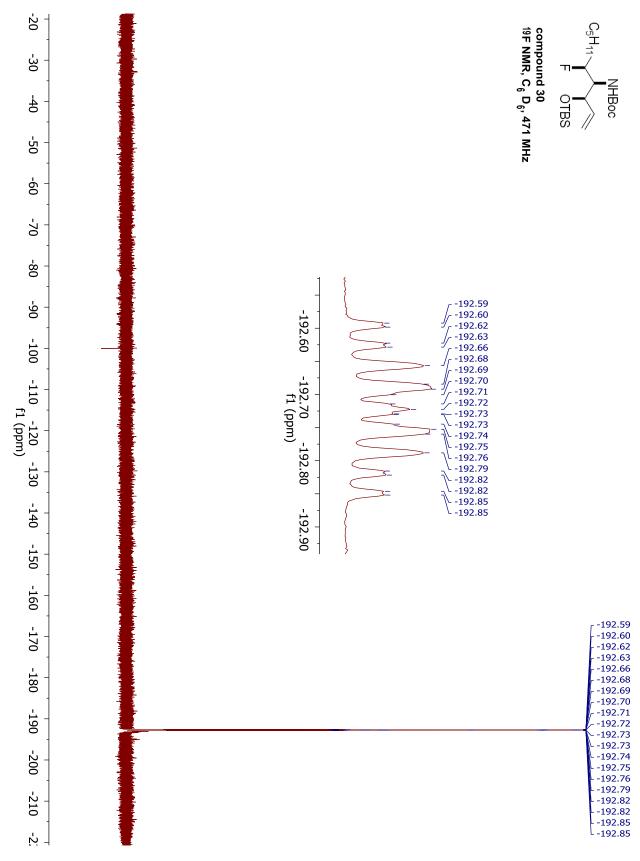


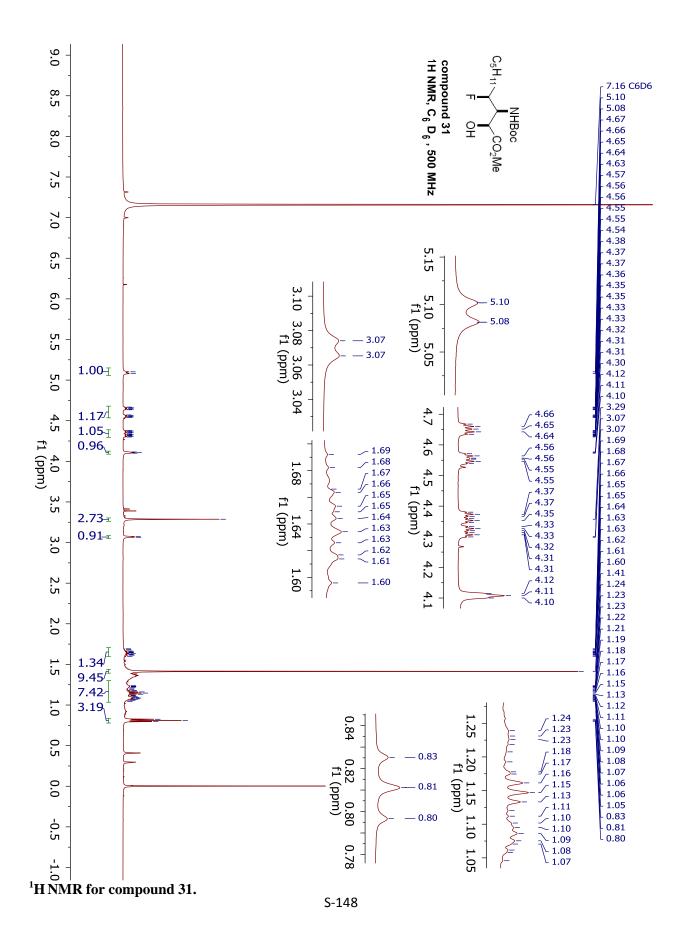
¹H NMR for intermediate for synthesis of compound 30.

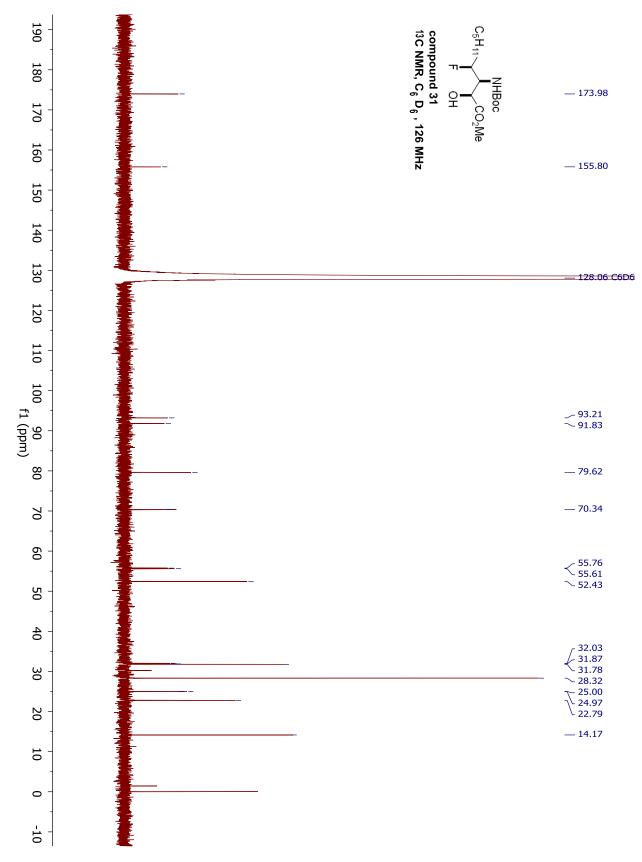


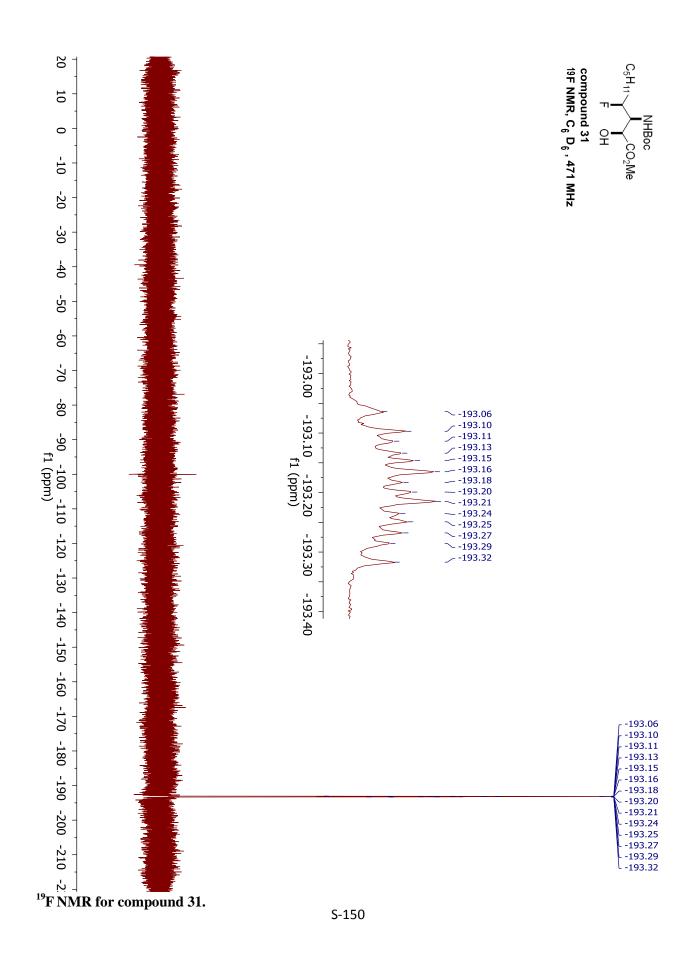

¹³C NMR for intermediate for synthesis of compound 30.

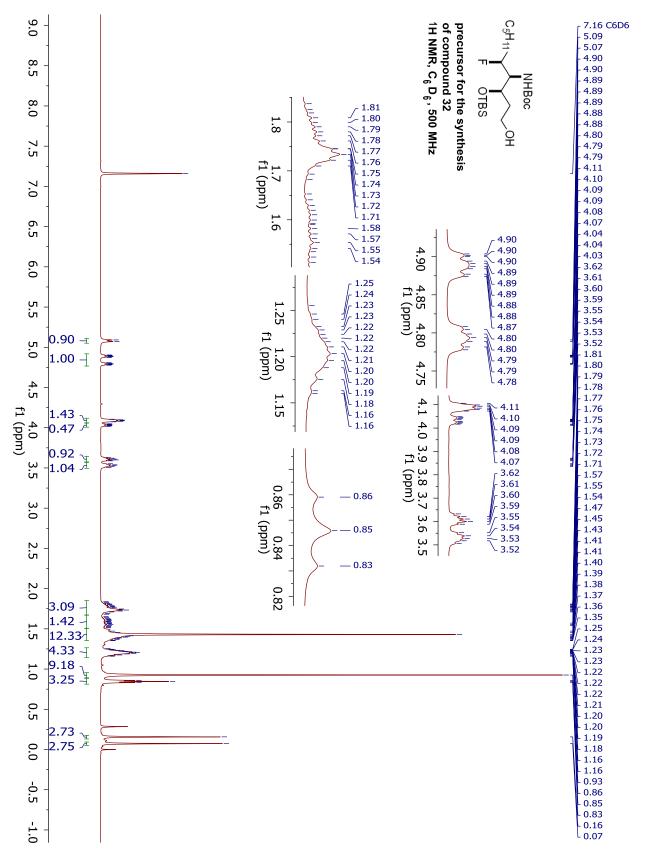
¹⁹F NMR for compound intermediate for synthesis of compound 30.

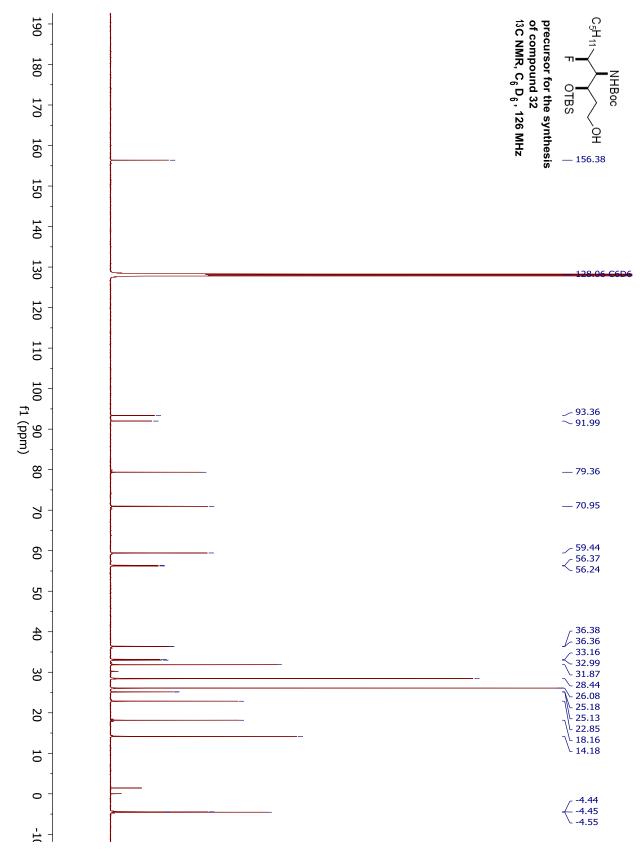



¹H NMR for compound 30.

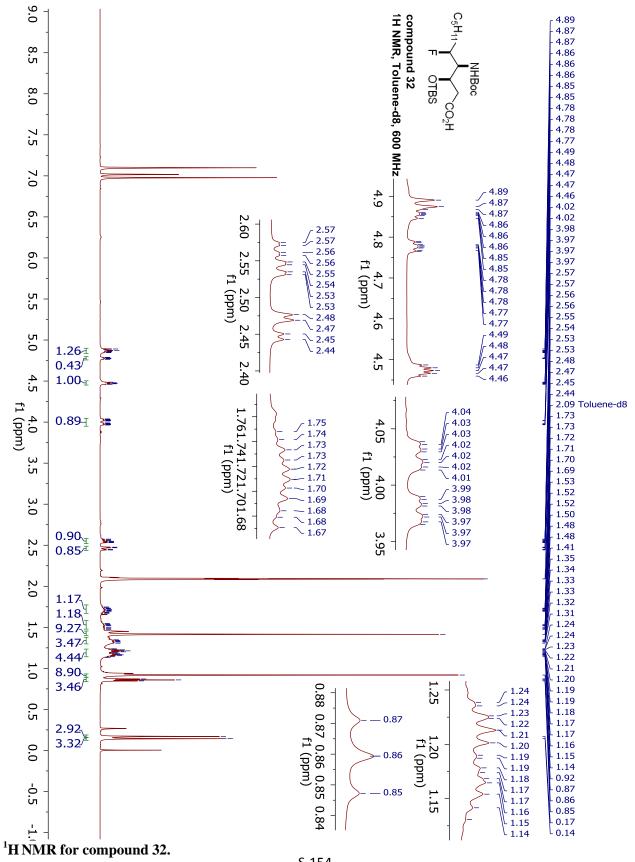


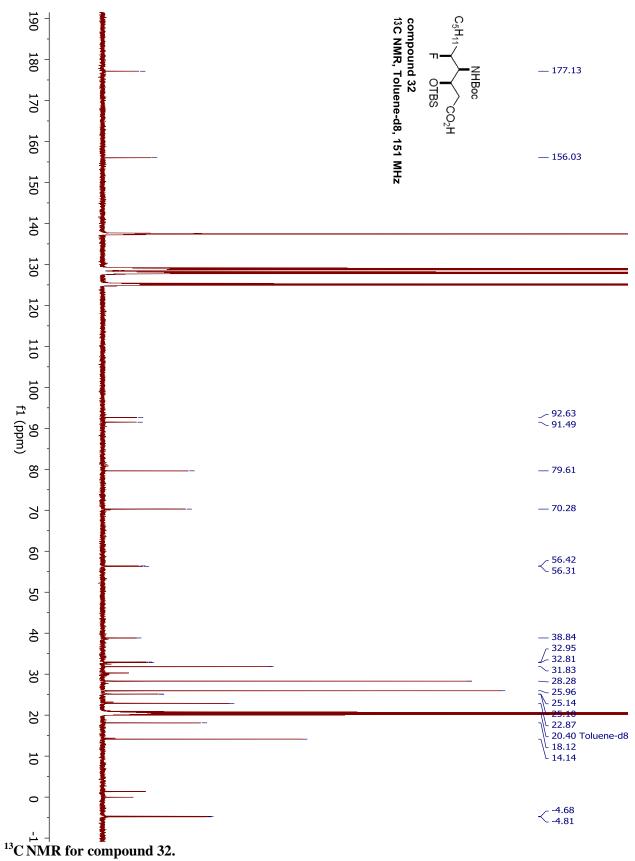

¹⁹F NMR for compound 30.



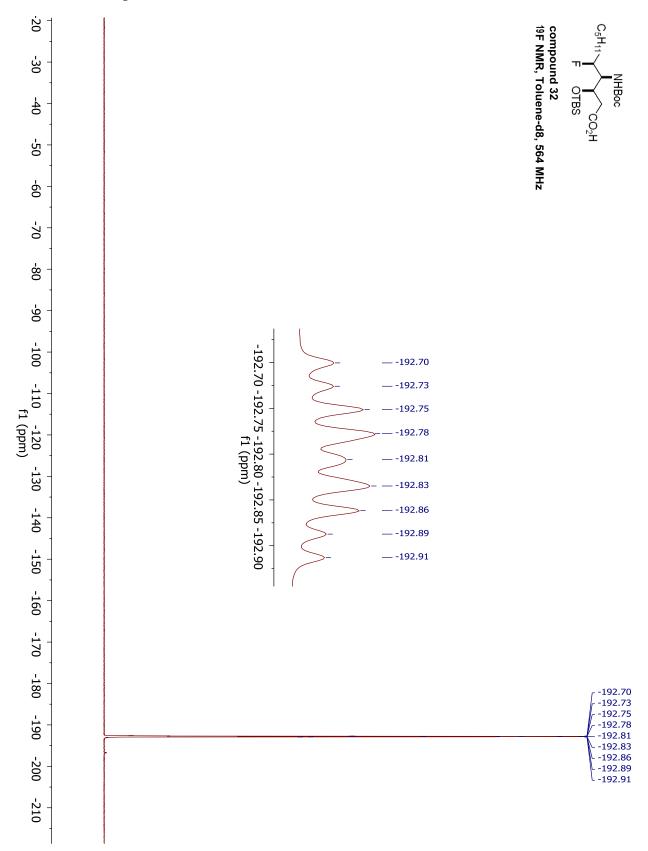

¹³C NMR for compound 31.

¹H NMR for precursor to compound 32.





¹³C NMR for precursor to compound 32.


C5H11 -20 precursor for the synthesis of compound 32 19F NMR, C₆ D₆ , 471 MHz ÷ NHBoc **OTBS** 40 È 50 -60 -70 -80 -192.45 -90 -192.47 -100 - -192.50 -192.55 f1 (ppm) -110 -120 f1 (ppm) - -192.60 -192.65 — -192.63 -130 — -192.66 — -192.69 -140 -192.75 -150 -160 -170 -192.44 -192.47 -192.50 -180 -192.53 -192.54 -190 -192.56 -192.57 - -192.57 - -192.59 - -192.60 - -192.63 - -192.66 - -192.69 -200 -210 ŗ.

¹⁹F NMR for precursor to compound 32.

¹⁹F NMR for compound 32.

VII. X-ray Crystallographic Data.

Crystallographic Experimental Section for 7a. CCDC number 1548236

Data Collection. A colorless crystal with approximate dimensions $0.40 \ge 0.30 \ge 0.20 \text{ mm}^3$ was selected under oil under ambient conditions and attached to the tip of a MiTeGen MicroMount©. The crystal was mounted in a stream of cold nitrogen at 100(1) K and centered in the X-ray beam by using a video camera.

The crystal evaluation and data collection were performed on a Bruker Quazar SMART APEXII diffractometer with Mo K_{α} ($\lambda = 0.71073$ Å) radiation and the diffractometer to crystal distance of 4.96 cm.¹

The initial cell constants were obtained from three series of ω scans at different starting angles. Each series consisted of 12 frames collected at intervals of 0.5° in a 6° range about the ω axis. The reflections were successfully indexed by an automated indexing routine built in the APEXII program suite. The final cell constants were calculated from a set of 9724 strong reflections from the actual data collection.

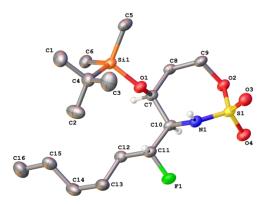
The data were collected by using the full sphere data collection routine to survey the reciprocal space to the extent of a full sphere to a resolution of 0.79 Å. A total of 60494 data were harvested by collecting 4 sets of frames with 0.5° scans in ω and φ with exposure times of 40 sec per frame. These highly redundant datasets were corrected for Lorentz and polarization effects. The absorption correction was based on fitting a function to the empirical transmission surface as sampled by multiple equivalent measurements.²

Structure Solution and Refinement

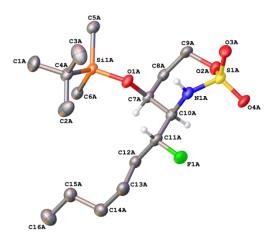
The systematic absences in the diffraction data were consistent for the space groups $P\overline{1}$ and P1. The *E*-statistics strongly suggested the centrosymmetric space group $P\overline{1}$ that yielded chemically reasonable and computationally stable results of refinement.²⁻⁴

A successful solution by the direct methods provided most non-hydrogen atoms from the *E*-map. The remaining non-hydrogen atoms were located in an alternating series of least-squares cycles and difference Fourier maps. All non-hydrogen atoms were refined with anisotropic displacement coefficients. All hydrogen atoms (except those attached to N atoms) were included in the structure factor calculation at idealized positions and were allowed to ride on the neighboring atoms with relative isotropic displacement coefficients.

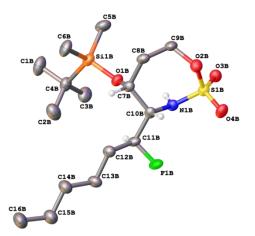
There are four symmetry-independent diastereomers in the asymmetric unit. The chiral centers C7, C10, and C11 in molecules Si1 and Si1a are S,R,R, whereas in molecules Si1b and Si1c/d/e the configurations are R,S,S.

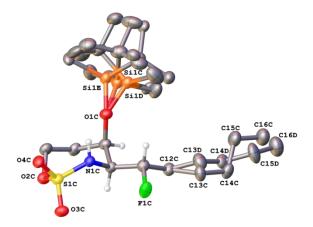

There is positional disorder in two parts of molecule Si1c/d/e. The $SiMe_2^tBu$ group is disordered over three positions in a 55.9(2) : 32.1(2) : 12.0(2) ratio. The n-butyl section of the 1-fluorohexyl is disordered over two positions with the major component occupancy of 74.5(10)%. The disordered parts were refined with restraints and constraints.

The crystal selected for the single-crystal X-ray diffraction experiment proved to be a non-merohedral twin with a 41.68(9)% second component contribution. The twin components are related by a 180.0° rotation about the a axis.


The final least-squares refinement of 1061 parameters against 17804 data resulted in residuals *R* (based on F^2 for $I \ge 2\sigma$) and *wR* (based on F^2 for all data) of 0.0498 and 0.1337, respectively. The final difference Fourier map was featureless.

Summary


Crystal Data for C₁₆H₃₄FNO₄SSi (*M* =383.59 g/mol): triclinic, space group P-1 (no. 2), a = 14.494(5) Å, b = 15.866(5) Å, c = 18.793(9) Å, $a = 96.478(14)^{\circ}$, $\beta = 90.043(10)^{\circ}$, $\gamma = 90.052(18)^{\circ}$, V = 4294(3) Å³, Z = 8, T = 100.01 K, μ (MoK α) = 0.233 mm⁻¹, *Dcalc* = 1.187 g/cm³, 60494 reflections measured (2.18° $\leq 2\Theta \leq 53.212^{\circ}$), 17804 unique ($R_{int} = 0.0584$, $R_{sigma} = 0.0680$) which were used in all calculations. The final R_1 was 0.0498 (I > 2 σ (I)) and wR_2 was 0.1337 (all data).


Figure S-1. A molecular drawing of the Si1 diastereomer in **7a** shown with 50% probability ellipsoids. Among the H atoms, only H atoms on the chiral C atoms and N atom are shown.

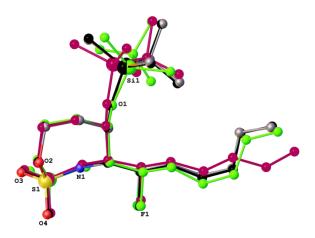

Figure S-2. A molecular drawing of the Si1a diastereomer in **7a** shown with 50% probability ellipsoids. Among the H atoms, only H atoms on the chiral C atoms and N atom are shown.

Figure S-3. A molecular drawing of the Si1b diastereomer in **7a** shown with 50% probability ellipsoids. Among the H atoms, only H atoms on the chiral C atoms and N atom are shown.

Figure S-4. A molecular drawing of the Si1c/d/e diastereomer in **7a** shown with 50% probability ellipsoids. All positions of the disordered atoms in the SiMe₂^tBu group and n-Bu fragments are shown. Among the H atoms, only H atoms on the chiral C atoms and N atom are shown.

Figure S-5. A molecular drawing showing all diastereomers in **7a** superimposed. For the Si1c/d/e molecule only the major disorder component, Si1a was chosen. Note that molecules Si1b and Si1c/d/e had to be inverted due to their opposite absolute configuration. All H atoms are omitted.

Table S-1. Crystal data and structure refinement for 7a.

Identification code	7a
Empirical formula	C ₁₆ H ₃₄ FNO ₄ SSi
Formula weight	383.59
Temperature/K	100.01
Crystal system	triclinic
Space group	PĪ
a/Å	14.494(5)
b/Å	15.866(5)
c/Å	18.793(9)
α/°	96.478(14)
β/°	90.043(10)
$\gamma/^{\circ}$	90.052(18)
Volume/Å ³	4294(3)
Z	8
$\rho_{calc}g/cm^3$	1.187
μ/mm^{-1}	0.233
F(000)	1664.0
Crystal size/mm ³	0.4 imes 0.3 imes 0.2
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/	° 2.18 to 53.212
Index ranges	$-18 \le h \le 18, -19 \le k \le 19, -23 \le l \le 23$
Reflections collected	60494
Independent reflections	17804 [$R_{int} = 0.0584$, $R_{sigma} = 0.0680$]
Data/restraints/parameters	17804/278/1061
Goodness-of-fit on F ²	1.090
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0498, wR_2 = 0.1246$
Final R indexes [all data]	$R_1 = 0.0690, wR_2 = 0.1337$
Largest diff. peak/hole / e Å ⁻⁷	³ 0.47/-0.65

Table S-2. Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displacement
Parameters ($Å^2 \times 10^3$) for 7a. U _{eq} is defined as 1/3 of of the trace of the orthogonalised U _{ex} tensor
U _{IJ} tensor.

Ator	n <i>x</i>	у	z	U(eq)
S 1	10315.4(6)	5623.0(6)	6427.4(4)	26.15(19)
Si1	7780.2(7)	2955.5(6)	6571.4(5)	27.2(2)
01	8715.6(16)	3524.6(14)	6428.2(11)	27.5(5)
C1	7338(3)	1479(3)	7177(2)	46.5(11)
C2	8834(3)	1468(3)	6546(2)	51.6(12)
C3	8667(4)	2335(3)	7734(2)	54.9(12)

C4	8179(3)	2022(2)	7030.7(19)	35.4(9)
C5	6991(2)	3622(2)	7157.3(18)	34.2(9)
C6	7201(3)	2593(2)	5697.8(18)	33.6(8)
C7	8877(2)	3937(2)	5798.5(16)	24.7(7)
F1	11377.8(14)	3499.9(13)	5522.3(12)	39.2(5)
O2	9386.5(16)	5883.2(15)	6079.7(12)	27.4(5)
O3	10364.0(17)	5960.7(15)	7165.8(12)	31.0(5)
O4	10989.2(17)	5887.6(16)	5949.0(13)	32.4(6)
N1	10264(2)	4617.9(18)	6396.5(14)	25.5(6)
C8	8291(2)	4730(2)	5777.4(17)	24.8(7)
C9	8535(2)	5488(2)	6308.7(18)	28.3(8)
C10	9915(2)	4081(2)	5757.7(17)	24.9(7)
C11	10460(2)	3264(2)	5674.0(19)	30.0(8)
C12	10122(2)	2608(2)	5093.1(18)	29.3(8)
C13	10722(3)	1823(2)	4983(2)	39.2(9)
C14	10371(3)	1189(2)	4370(2)	43(1)
C15	9407(3)	824(2)	4461(2)	37.4(9)
C16	9101(3)	183(3)	3834(2)	53.5(12)
S1A	10378.3(6)	4552.6(6)	8604.5(4)	26.60(19)
Si1A	7732.0(7)	7078.5(6)	8425.8(5)	25.8(2)
F1A	11297.9(14)	6699.1(13)	9620.2(11)	38.4(5)
01A	8681.7(16)	6546.0(15)	8591.2(12)	27.1(5)
O2A	9450.1(16)	4214.4(15)	8900.8(12)	29.5(6)
O3A	10479.8(18)	4243.1(15)	7869.9(12)	32.8(6)
	11041.7(17)	4321.0(16)	9110.2(13)	30.9(6)
N1A	10268(2)	5557.9(18)	8655.6(15)	27.2(6)
C1A	7279(3)	8539(3)	7795(2)	45.5(10)
C2A	8788(3)	8584(3)	8447(2)	49.8(11)
C3A	8594(4)	7713(3)	7258(2)	57.0(13)
C4A	8116(3)	8016(2)	7965.8(18)	31.6(8)
C5A	6938(3)	6385(2)	7836.7(18)	32.0(8)
	7151(2)	7441(2)	9286.1(18)	30.3(8)
C7A	8827(2)	6125(2)	9214.0(18)	25.6(7)
C8A	8291(3)	5285(2)	9179.1(18)	28.1(8)
C9A	8591(2)	4566(2)	8652.5(19)	29.1(8)
C10A	A 9879(2)	6032(2)	9293.2(18)	26.5(7)
C11A	A 10384(2)	6886(2)	9435.5(19)	29.3(8)
	A 9986(3)	7491(2)	10028.7(19)	30.8(8)
	A 10557(3)	8293(2)	10213(2)	39.4(9)
	A 10126(3)	8917(2)	10790(2)	39.4(9)
	A 9221(3)	9299(2)	10579(2)	38.3(9)
C16A	A 8847(3)	9946(3)	11153(2)	51.0(11)

S1B 4938.4(6)	4500.5(5)	6301.7(4)	27.34(19)
Si1B 3190.5(7)	7449.9(6)	7134.3(5)	31.6(2)
F1B 6594.4(13)	6347.3(14)	5890.8(12)	38.1(5)
O1B 3955.6(16)	6797.7(15)	6740.7(12)	27.7(5)
O2B 4002.1(17)	4429.7(15)	5872.3(13)	31.2(6)
O3B 4825.6(17)	4160.5(14)	6966.4(12)	30.7(5)
O4B 5581.3(18)	4119.4(16)	5793.0(13)	34.0(6)
N1B 5155(2)	5491.2(18)	6485.4(15)	25.7(6)
C1B 3202(3)	8952(3)	8066(2)	53.7(12)
C2B 4436(3)	8830(3)	7143(2)	55.1(12)
C3B 4533(3)	7998(3)	8183(2)	45.6(10)
C4B 3872(3)	8345(2)	7650.7(19)	36.9(8)
C5B 2499(3)	6864(3)	7747(2)	44.7(10)
C6B 2417(3)	7863(3)	6450(2)	44.9(10)
C7B 4024(2)	6432(2)	6003.6(17)	26.4(8)
C8B 3261(2)	5780(2)	5794.8(18)	28.6(8)
C9B 3255(2)	4978(2)	6160.2(19)	29.8(8)
C10B 4996(2)	6073(2)	5938.4(18)	25.4(7)
C11B 5743(2)	6759(2)	6024.7(19)	29.1(8)
C12B 5652(2)	7437(2)	5524.2(19)	30.5(8)
C13B 6443(3)	8084(2)	5583(2)	35.9(9)
C14B 6211(3)	8867(2)	5227(2)	41.7(9)
C15B 6979(3)	9517(3)	5232(2)	47.3(10)
C16B 6698(4)	10309(3)	4904(3)	62.0(13)
S1C 4824.4(6)	5550.1(5)	8691.7(4)	25.40(19)
Si1C 3221.9(14)	2314.6(12)	8156.4(11)	28.4(4)
O1C 3895.0(17)	3192.0(14)	8348.7(12)	31.5(6)
C1C 2902(8)	1203(5)	6926(5)	66(3)
C2C 3002(6)	2719(5)	6753(4)	47(2)
C3C 4433(5)	1984(5)	7020(4)	48(2)
C4C 3388(4)	2040(4)	7175(3)	45.3(16)
C5C 3662(6)	1466(6)	8665(6)	45(3)
C6C 1976(4)	2496(5)	8379(4)	45.5(18)
C7C 4056(2)	3569(2)	9060.8(16)	27.1(8)
Si1E 3161(4)	2577(4)	7883(4)	28.4(4)
C1E 3160(15)	1015(11)	7030(14)	32(4)
C1E 5100(15) C2E 4360(17)	2038(15)	6755(10)	34(3)
C3E 4513(15)	1305(13)	7859(11)	36(4)
C4E 3835(9)	1693(7)	7363(7)	33(3)
C4E 3833(9) C5E 2364(11)	2134(11)	8510(9)	34(3)
C5E 2304(11) C6E 2484(12)	3185(11)	7257(8)	34(3) 33(6)
Si1D 3651(2)	2193(2)	7990.3(18)	28.4(4)
SILD 3031(2)	2173(2)	(770.3(10)	20.4(4)

C1D 2393(10)	1457(7)	6937(7)	53(3)
C2D 1763(7)	2480(9)	7868(7)	63(3)
C3D 2742(12)	3033(8)	6956(8)	58(4)
C4D 2621(6)	2286(6)	7396(5)	46(2)
C5D 4640(7)	1727(8)	7475(7)	58(3)
C6D 3344(10)	1528(10)	8724(8)	34(3)
F1C 6624.4(14)	3847.0(13)	9051.3(12)	38.9(5)
O2C 3913.1(17)	5574.1(15)	9143.3(12)	28.6(5)
O3C 5473.7(17)	5985.9(15)	9176.2(12)	31.0(6)
O4C 4646.5(18)	5860.6(14)	8021.6(12)	29.0(5)
N1C 5075(2)	4567.8(17)	8518.8(14)	23.3(6)
C8C 3293(2)	4180(2)	9306.6(18)	28.8(8)
C9C 3182(3)	4957(2)	8914.7(19)	30.2(8)
C10C 5021(2)	3991(2)	9078.3(18)	23.2(7)
C11C 5801(2)	3364(2)	8959.3(19)	28.9(8)
C12C 5836(3)	2679(2)	9455.5(19)	30.7(8)
C13C 6739(5)	2180(4)	9389(5)	37.1(19)
C14C 6756(4)	1380(4)	9763(4)	35.4(15)
C15C 6173(4)	654(4)	9402(3)	47.8(17)
C16C 6223(6)	-147(4)	9773(4)	54.9(18)
C13D 6484(16)	1979(12)	9237(14)	47(7)
C14D6353(14)	1281(11)	9713(11)	37(5)
C15D 6980(13)	549(9)	9507(10)	57(6)
C16D 6754(19)	-235(13)	9857(15)	65(6)

Table S-3. Anisotropic Displacement Parameters $(\text{\AA}^2 \times 10^3)$ for 7a. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[\text{h}^2a^{*2}U_{11}+2\text{hka}^*b^*U_{12}+...]$.

		1		L 11	14	1
Ator	m U ₁₁	U_{22}	U ₃₃	U_{23}	U ₁₃	U ₁₂
S 1	22.4(4)	35.7(5)	21.9(4)	9.9(3)	0.3(3)	-2.0(4)
Si1	24.8(5)	34.4(5)	23.5(5)	9.0(4)	1.6(4)	-2.7(4)
01	25.3(12)	35.5(13)	23.5(12)	11.7(10)	-0.2(10)	-2.4(10)
C1	59(3)	40(2)	42(2)	13.8(19)	9(2)	-6(2)
C2	59(3)	49(3)	52(3)	26(2)	20(2)	20(2)
C3	68(3)	55(3)	47(3)	27(2)	-15(2)	-4(2)
C4	42(2)	33(2)	33(2)	12.1(16)	5.0(18)	-0.1(17)
C5	25.7(19)	51(2)	27.0(19)	7.6(17)	-1.2(15)	-4.9(17)
C6	33(2)	36(2)	33(2)	8.4(16)	2.0(17)	-4.5(17)
C7	23.5(17)	31.7(18)	19.9(17)	8.0(14)	2.2(14)	0.5(14)
F1	24.6(11)	43.0(12)	50.9(13)	9.6(10)	4.2(9)	2.1(9)
O2	23.4(13)	34.0(13)	26.6(13)	11.1(10)	-1.9(10)	-2.1(10)
O3	32.1(13)	39.6(14)	21.7(11)	5.8(10)	-1.3(10)	-2.8(11)
O4	28.2(13)	43.2(14)	27.7(13)	12.2(11)	3.8(10)	-3.6(11)

N1	23.9(14)	34.5(16)	19.7(14)	9.3(12)	-1.7(12)	-2.1(12)
C8	21.2(17)	33.9(18)	20.6(16)	9.2(14)	-1.5(14)	0.6(14)
C9	20.7(18)	38(2)	28.4(19)	12.1(15)	2.3(14)	-1.3(15)
C10	20.6(17)	35.8(19)	19.9(16)	10.4(14)	-0.7(13)	-0.3(14)
C11	25.2(18)	33.6(18)	33.0(19)	11.7(15)	4.4(15)	1.0(15)
C12	30.0(19)	30.9(18)	29.2(18)	12.1(14)	4.3(15)	2.6(15)
C13	32(2)	34(2)	52(2)	9.4(18)	9.1(18)	6.3(16)
C14	48(2)	36(2)	46(2)	11.2(18)	19(2)	9.5(18)
C15	41(2)	35(2)	37(2)	8.9(16)	0.9(17)	11.1(17)
C16	61(3)	40(2)	59(3)	3(2)	-1(2)	10(2)
S1A	24.2(4)	36.8(5)	20.2(4)	9.4(3)	0.0(3)	3.4(4)
Si1A	23.4(5)	32.8(5)	22.9(5)	10.3(4)	0.2(4)	1.1(4)
F1A	26.2(11)	42.5(12)	46.1(13)	3.9(10)	-5.2(9)	-1.6(9)
01A	22.6(12)	36.8(13)	24.5(12)	15(1)	1.9(10)	1.4(10)
O2A	25.6(13)	34.7(13)	30.2(13)	11.7(11)	1.1(10)	2.5(10)
	41.5(15)	38.9(13)	18.5(11)	5.4(10)	1.6(10)	6.6(11)
	25.1(13)	44.1(15)	25.2(12)	10.8(11)	-4.9(10)	4.9(11)
	28.0(15)	34.0(15)	21.5(14)	11.0(12)	1.2(12)	2.1(13)
	51(3)	42(2)	47(2)	18.3(19)	-6(2)	7(2)
	49(3)	49(3)	56(3)	28(2)	-13(2)	-16(2)
	80(4)	48(3)	47(3)	21(2)	30(3)	6(2)
	32(2)	38(2)	27.3(19)	13.9(15)	0.7(16)	0.2(16)
	27.8(19)	43(2)	26.6(18)	7.4(16)	1.8(15)	2.6(16)
	28.3(19)	33.6(19)	30.2(19)	7.9(15)	-0.7(15)	1.4(16)
	21.0(17)	32.9(18)	23.9(17)	8.2(14)	-1.1(14)	0.5(14)
	24.1(18)	35.6(19)	26.5(17)	12.2(15)	-1.9(15)	0.8(15)
	21.1(18)	36(2)	30.8(19)	7.8(16)	-4.8(15)	-2.9(15)
	A 22.8(18)	33.8(18)	24.3(17)	9.3(14)	1.3(14)	0.9(14)
	A 20.1(17)	38.8(19)	30.8(18)	12.0(15)	-4.2(14)	-3.2(15)
	A 26.2(18)	32.2(19)	34.8(19)	7.1(15)	-4.2(15)	-0.2(15)
	A 31(2)	39(2)	48(2)	5.3(18)	-5.8(17)	1.2(17)
	A45(2)	33(2)	40(2)	5.4(16)	-5.8(18)	-4.2(17)
	A 34(2)	37(2)	44(2)	6.3(17)	0.6(17)	-0.3(17)
	A 58(3)	41(2)	54(3)	2(2)	10(2)	-1(2)
S1B	30.2(5)	31.9(5)	20.9(4)	7.5(3)	0.0(4)	3.6(4)
	29.0(5)	38.0(5)	28.7(5)	8.4(4)	-0.1(4)	9.1(4)
F1B	19.3(10)	50.3(13)	47.9(13)	18.6(10)	-0.3(9)	3.7(9)
O1B	· · ·	34.1(13)	22.3(12)	5.2(10)	-0.2(10)	7.1(10)
O1B O2B	()	33.0(13)	26.4(13)	3.9(11)	-7.2(11)	0.9(11)
O2B O3B	. ,	33.3(13)	24.1(12)	7.5(10)	1.7(10)	2.4(11)
O3D O4B	38.8(15)	40.1(14)	23.6(13)	5.6(11)	5.3(11)	12.0(12)
N1B	. ,	32.4(15)	19.3(14)	8.4(12)	0.5(12)	2.4(13)
1110	20.7(10)	52.7(15)	17.5(17)	0.7(12)	0.5(12)	2.7(13)

(1)	40(2)	12(2)	2 0 (1 0)		
C1B 68(3)	48(2)	43(2)	-2.8(19)	-3(2)	26(2)
C2B 70(3)	41(2)	54(3)	8(2)	6(2)	-6(2)
C3B 46(2)	42(2)	47(2)	-4.8(18)	-11(2)	2.5(19)
C4B 41(2)	35(2)	34.6(19)	2.7(16)	0.7(16)	8.6(17)
C5B 30(2)	61(3)	46(2)	13(2)	7.6(17)	4.1(19)
C6B 46(2)	47(2)	41(2)	5.2(18)	-5.9(18)	21.5(19)
C7B 24.6(18)	32.9(19)	23.4(18)	10.4(15)	-1.4(14)	2.2(15)
C8B 20.8(17)	41(2)	25.1(17)	8.6(15)	0.0(14)	1.0(15)
C9B 19.8(17)	35.4(19)	34.4(19)	4.7(15)	0.7(15)	-1.8(15)
C10B 28.7(18)	30.3(18)	18.6(16)	8.6(13)	1.5(14)	2.6(15)
C11B 18.9(17)	41(2)	29.5(19)	11.5(16)	-1.0(14)	0.4(15)
C12B 29.9(19)	35.6(19)	27.7(18)	10.2(15)	-2.4(14)	-1.0(15)
C13B 33(2)	41(2)	36(2)	14.8(17)	-1.1(16)	-7.0(16)
C14B 41(2)	37(2)	48(2)	11.5(18)	-4.1(19)	-6.9(18)
C15B 47(2)	42(2)	55(3)	14.9(19)	0(2)	-4.2(19)
C16B 61(3)	39(2)	87(4)	16(2)	2(3)	-6(2)
S1C 28.4(5)	28.9(4)	20.0(4)	7.5(3)	0.9(3)	-3.2(4)
Si1C 28.7(11)	28.5(8)	29.3(10)	8.7(7)	-1.8(8)	-1.5(8)
O1C 35.7(14)	32.1(13)	26.6(13)	3.7(10)	-5.0(11)	-4.2(11)
C1C 96(8)	54(5)	45(5)	-2(4)	-8(5)	-33(5)
C2C 57(5)	56(5)	29(4)	9(3)	-5(3)	-11(4)
C3C 57(4)	50(5)	35(4)	-2(4)	1(3)	-6(3)
C4C 53(4)	50(4)	33(3)	6(3)	-2(3)	-15(3)
C5C 42(6)	38(5)	58(5)	23(4)	-12(4)	-6(4)
C6C 33(4)	37(4)	67(5)	5(4)	3(3)	-3(3)
C7C 29.7(19)	29.4(18)	23.3(17)	7.6(14)	-2.9(15)	-5.8(15)
Si1E 28.7(11)	28.5(8)	29.3(10)	8.7(7)	-1.8(8)	-1.5(8)
C1E 39(7)	30(6)	28(8)	10(5)	-7(6)	-1(5)
C2E 42(6)	31(6)	30(5)	2(4)	-1(5)	-6(5)
C3E 40(7)	36(8)	33(7)	5(6)	-4(6)	4(6)
C4E 36(5)	32(4)	32(5)	6(3)	-3(4)	0(4)
C5E 42(6)	31(6)	30(5)	2(4)	-1(5)	-6(5)
C6E 43(10)	34(10)	22(8)	1(7)	2(7)	12(8)
Si1D 28.7(11)	28.5(8)	29.3(10)	8.7(7)	-1.8(8)	-1.5(8)
C1D 55(7)	47(5)	55(6)	3(4)	-22(5)	-10(4)
C2D 55(4)	60(7)	73(6)	1(5)	-16(4)	0(4)
C3D 64(8)	56(6)	58(7)	16(5)	-39(5)	-14(5)
C4D 48(4)	41(4)	48(4)	6(3)	-24(3)	-5(3)
C5D 48(5)	47(7)	77(7)	-6(6)	17(5)	-5(4)
C6D 21(7)	41(7)	40(5)	15(5)	-9(4)	-3(4) -8(5)
F1C 25.7(11)	43.4(12)	51.6(13)	22.4(10)	4.3(10)	-1.9(9)
O2C 26.1(13)	43.4(12) 35.8(14)	24.0(12)	3.8(10)	4.5(10) 4.6(10)	-1.6(11)
$020 \ 20.1(13)$	33.0(14)	24.0(12)	5.0(10)	4 .0(10)	-1.0(11)

O3C 32.4(14)	36.0(13)	25.3(12)	6.2(10)	-1.6(11)	-9.6(11)
O4C 37.3(14)	32.0(12)	19.2(11)	8.9(9)	-0.6(10)	2.8(11)
N1C 24.9(15)	25.9(14)	20.2(14)	7.1(12)	0.3(12)	-1.0(12)
C8C 20.7(17)	38.1(19)	29.4(18)	11.6(15)	1.6(14)	-2.8(15)
C9C 23.2(17)	37(2)	30.9(18)	7.8(15)	-1.1(15)	-4.3(16)
C10C 23.0(17)	27.5(17)	20.3(16)	8.1(13)	0.9(13)	-3.7(14)
C11C 29.0(19)	33.4(19)	25.2(18)	7.8(15)	2.9(15)	-1.3(15)
C12C 32.6(19)	33.5(19)	27.1(18)	8.1(15)	2.8(15)	2.1(15)
C13C 38(3)	30(3)	45(4)	12(3)	7(3)	7(3)
C14C 23(3)	43(3)	43(3)	19(2)	1(3)	2(2)
C15C 52(4)	42(3)	52(3)	16(3)	-8(3)	3(3)
C16C 58(4)	43(3)	66(4)	16(3)	-8(4)	3(3)
C13D63(13)	38(7)	41(10)	4(7)	9(10)	9(8)
C14D36(11)	41(7)	34(8)	1(6)	7(9)	10(7)
C15D61(12)	37(7)	72(11)	9(7)	24(9)	19(7)
C16D70(15)	46(8)	82(15)	16(8)	4(13)	9(9)

Table S-4. Bond Lengths for 7a.

Aton	n Aton	n Length/Å	Atom Atom Length/Å
S 1	O2	1.572(2)	O1B C7B 1.444(4)
S 1	03	1.432(2)	O2B C9B 1.456(4)
S 1	O4	1.423(3)	N1B C10B 1.475(4)
S 1	N1	1.591(3)	C1B C4B 1.521(5)
Si1	01	1.667(2)	C2B C4B 1.527(5)
Si1	C4	1.888(3)	C3B C4B 1.530(5)
Si1	C5	1.839(4)	C7B C8B 1.533(5)
Si1	C6	1.875(4)	C7B C10B 1.521(5)
01	C7	1.434(3)	C8B C9B 1.513(5)
C1	C4	1.534(5)	C10B C11B 1.529(5)
C2	C4	1.525(5)	C11B C12B 1.513(5)
C3	C4	1.531(5)	C12B C13B 1.534(5)
C7	C8	1.523(4)	C13B C14B 1.512(5)
C7	C10	1.524(5)	C14B C15B 1.516(5)
F1	C11	1.419(4)	C15B C16B 1.517(5)
O2	C9	1.471(4)	S1C O2C 1.569(3)
N1	C10	1.481(4)	S1C O3C 1.431(3)
C8	C9	1.515(5)	S1C O4C 1.426(2)
C10	C11	1.511(5)	S1C N1C 1.598(3)
C11	C12	1.503(5)	Si1C O1C 1.704(3)
C12	C13	1.515(5)	Si1C C4C 1.862(5)
C13	C14	1.529(6)	Si1C C5C 1.851(6)
C14	C15	1.529(6)	Si1C C6C 1.870(6)

C15 C16 1.531(6)	O1C C7C 1.422(3)
S1A O2A 1.573(3)	O1C Si1E 1.629(4)
S1A O3A 1.420(2)	O1C Si1D 1.688(4)
S1A O4A 1.429(2)	C1C C4C 1.528(7)
S1A N1A 1.595(3)	C2C C4C 1.517(7)
Si1A O1A 1.663(2)	C3C C4C 1.544(8)
Si1A C4A 1.887(4)	C7C C8C 1.510(5)
Si1A C5A 1.866(4)	C7C C10C 1.550(5)
Si1A C6A 1.857(4)	Si1E C4E 1.890(5)
F1A C11A1.409(4)	Si1E C5E 1.845(6)
O1A C7A 1.427(4)	Si1E C6E 1.880(6)
O2A C9A 1.462(4)	C1E C4E 1.534(7)
N1A C10A1.456(4)	C2E C4E 1.525(7)
C1A C4A 1.525(5)	C3E C4E 1.531(7)
C2A C4A 1.546(5)	Si1D C4D 1.880(7)
C3A C4A 1.529(5)	Si1D C5D 1.838(7)
C7A C8A 1.538(5)	Si1D C6D 1.882(8)
C7A C10A1.540(5)	C1D C4D 1.525(8)
C8A C9A 1.489(5)	C2D C4D 1.538(9)
C10A C11A 1.537(5)	C3D C4D 1.530(9)
C11AC12A1.502(5)	F1C C11C 1.418(4)
C12AC13A1.523(5)	O2C C9C 1.473(4)
C13A C14A 1.519(5)	N1C C10C 1.471(4)
C14AC15A1.517(5)	C8C C9C 1.514(5)
C15AC16A1.504(6)	C10C C11C 1.507(5)
S1B O2B 1.576(3)	C11C C12C 1.510(5)
S1B O3B 1.425(2)	C12C C13C 1.529(7)
S1B O4B 1.421(3)	C12C C13D 1.479(15)
S1B N1B 1.601(3)	C13C C14C 1.520(6)
Si1B O1B 1.636(2)	C14C C15C 1.524(7)
Si1B C4B 1.903(4)	C15C C16C 1.519(8)
Si1B C5B 1.853(4)	C13DC14D1.511(14)
Si1B C6B 1.879(4)	C14DC15D1.491(14)
F1B C11B 1.406(4)	C15DC16D1.508(14)

Table S-5. Bond Angles for 7a.

-	Tuble 5 5. Dona Angles for 74.									
A	Atom Atom Atom Angle/°					Atom Atom Atom Angle/°				
C	02	S 1	N1	104.78(14)	C1B	C4B	Si1B	108.8(3)		
C)3	S 1	O2	110.92(14)	C1B	C4B	C2B	109.2(3)		
C)3	S 1	N1	107.55(14)	C1B	C4B	C3B	108.6(3)		
C)4	S 1	O2	102.43(13)	C2B	C4B	Si1B	111.0(3)		
C)4	S 1	O3	118.34(16)	C2B	C4B	C3B	108.5(3)		

0.4	G 4			
04	S1	N1	111.97(16)	C3B C4B Si1B 110.7(3)
01	Si1	C4	106.97(15)	O1B C7B C8B 112.5(3)
01	Si1	C5	108.50(15)	O1B C7B C10B 104.4(3)
01	Si1	C6	109.88(14)	C10B C7B C8B 114.3(3)
C5	Si1	C4	110.21(17)	C9B C8B C7B 117.7(3)
C5	Si1	C6	110.17(17)	O2B C9B C8B 109.0(3)
C6	Si1	C4	111.02(17)	N1B C10B C7B 110.3(3)
C7	01	Si1	124.9(2)	N1B C10B C11B 108.0(3)
C1	C4	Si1	108.9(3)	C7B C10B C11B 113.1(3)
C2	C4	Si1	110.3(2)	F1B C11B C10B 107.0(3)
C2	C4	C1	107.8(3)	F1B C11B C12B 108.3(3)
C2	C4	C3	109.7(4)	C12B C11B C10B 114.8(3)
C3	C4	Si1	110.0(3)	C11B C12B C13B 114.1(3)
C3	C4	C1	110.2(3)	C14B C13B C12B 112.2(3)
01	C7	C8	112.6(3)	C13B C14B C15B 115.3(3)
01	C7	C10	106.7(3)	C14B C15B C16B 113.3(4)
C8	C7	C10	114.9(3)	O2C S1C N1C 105.42(15)
C9	O2	S 1	117.14(19)	O3C S1C O2C 103.20(14)
C10	N1	S 1	121.9(2)	O3C S1C N1C 111.68(15)
C9	C8	C7	116.7(3)	O4C S1C O2C 109.63(15)
O2	C9	C8	109.6(3)	O4C S1C O3C 119.34(15)
N1	C10	C7	111.8(3)	O4C S1C N1C 106.72(14)
N1	C10	C11	108.3(3)	O1C Si1C C4C 103.3(2)
C11	C10	C7	113.0(3)	O1C Si1C C5C 108.5(4)
F1	C11	C10	105.6(3)	O1C Si1C C6C 113.8(3)
F1	C11	C12	109.6(3)	C4C Si1C C6C 111.1(3)
C12	C11	C10	114.9(3)	C5C Si1C C4C 111.3(4)
C11	C12	C13	113.8(3)	C5C Si1C C6C 108.7(4)
C12	C13	C14	111.9(3)	C7C O1C Si1C 122.6(2)
C13			116.4(3)	C7C O1C Si1E 140.8(3)
			113.8(3)	C7C O1C Si1D 133.3(2)
			105.74(15)	C1C C4C Si1C 110.0(5)
			109.83(15)	C1C C4C C3C 111.3(6)
			119.33(15)	C2C C4C Si1C 111.7(5)
			107.62(15)	C2C C4C C1C 108.3(6)
			102.49(14)	C2C C4C C3C 107.0(6)
			110.99(16)	C3C C4C Si1C 108.5(4)
			106.54(15)	O1C C7C C8C 110.8(3)
			110.04(15)	01C C7C C10C 107.6(3)
			109.13(14)	C8C C7C C10C 113.2(3)
			110.63(16)	O1C Si1E C4E 107.7(4)
			110.49(17)	OIC SIIE C4E 107.7(4) OIC SIIE C5E 108.3(5)
CUA	SIIA	CHA	110.7/17)	OIC SHE CJE 100.5(5)

C6A Si1A C5A 109.95(17)	O1C Si1E C6E 111.0(5)
C7A O1A Si1A 124.8(2)	C5E Si1E C4E 109.9(5)
C9A O2A S1A 117.2(2)	C5E Si1E C6E 109.4(5)
C10AN1A S1A 120.6(2)	C6E Si1E C4E 110.5(5)
C1A C4A Si1A 109.7(3)	C1E C4E Si1E 109.1(6)
C1A C4A C2A 109.1(3)	C2E C4E Si1E 109.7(6)
C1A C4A C3A 107.7(3)	C2E C4E C1E 107.8(7)
C2A C4A Si1A 110.8(2)	C2E C4E C3E 109.8(7)
C3A C4A Si1A 110.2(3)	C3E C4E Si1E 110.1(6)
C3A C4A C2A 109.2(4)	C3E C4E C1E 110.3(7)
O1A C7A C8A 112.0(3)	O1C Si1D C4D 105.6(3)
O1A C7A C10A106.5(3)	O1C Si1D C5D 110.6(4)
C8A C7A C10A114.3(3)	O1C Si1D C6D 109.6(6)
C9A C8A C7A 118.4(3)	C4D Si1D C6D 109.6(5)
O2A C9A C8A 109.2(3)	C5D Si1D C4D 111.1(5)
N1A C10AC7A 110.6(3)	C5D Si1D C6D 110.2(6)
N1A C10AC11A108.8(3)	C1D C4D Si1D 112.7(7)
C11AC10AC7A 113.3(3)	C1D C4D C2D 104.9(8)
F1A C11AC10A106.5(3)	C1D C4D C3D 112.9(8)
F1A C11AC12A108.3(3)	C2D C4D Si1D 109.0(7)
C12AC11AC10A115.0(3)	C3D C4D Si1D 110.3(7)
C11AC12AC13A114.0(3)	C3D C4D C2D 106.7(9)
C14AC13AC12A113.5(3)	C9C O2C S1C 118.2(2)
C15AC14AC13A114.7(3)	C10C N1C S1C 120.9(2)
C16AC15AC14A112.7(3)	C7C C8C C9C 117.4(3)
O2B S1B N1B 106.85(15)	O2C C9C C8C 109.4(3)
O3B S1B O2B 109.74(15)	N1C C10C C7C 109.6(3)
O3B S1B N1B 107.03(15)	N1C C10C C11C 107.9(3)
O4B S1B O2B 102.73(15)	C11C C10C C7C 113.4(3)
O4B S1B O3B 119.39(15)	F1C C11C C10C 105.9(3)
O4B S1B N1B 110.47(16)	F1C C11C C12C 108.3(3)
O1B Si1B C4B 106.06(15)	C10C C11C C12C 116.3(3)
O1B Si1B C5B 108.17(16)	C11C C12C C13C 112.3(4)
O1B Si1B C6B 110.31(15)	C13DC12CC11C114.9(9)
C5B Si1B C4B 111.16(18)	C14C C13C C12C 115.3(5)
C5B Si1B C6B 109.92(19)	C13C C14C C15C 114.4(5)
C6B Si1B C4B 111.12(18)	C16C C15C C14C 113.5(5)
C7B O1B Si1B 130.3(2)	C12C C13D C14D 109.5(14)
C9B O2B S1B 116.5(2)	C15DC14DC13D111.7(14)
C10B N1B S1B 119.7(2)	C14DC15DC16D114.3(16)
· ·	

Table S-6. Hydrogen Bonds for 7a.

D	Н	Ă	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
N1	H1	O3A	0.870(10)	2.13(2)	2.914(4)	149(4)
N1A	H1AA	03	0.879(10)	2.098(16)	2.944(4)	162(4)
N1B	H1BA	O4C	0.880(10)	2.109(13)	2.974(4)	167(4)
N1C	H1C	O3B	0.878(10)	2.114(18)	2.938(4)	156(3)

Table S-7. Torsion Angles for 7a.

Tabl	e 5-7.	1 01 510	лі Ац	gies 101 /a.					
Α	B	С	D	Angle/°	Α	B	С	D	Angle/°
S 1	O2	C9	C8	-96.4(3)	O4B	S1B	O2B	C9B	-162.3(2)
S 1	N1	C10	C7	-90.2(3)	O4B	S1B	N1B	C10B	69.3(3)
S 1	N1	C10	C11	144.7(2)	N1B	S1B	O2B	C9B	-46.0(3)
Si1	01	C7	C8	74.2(3)	N1B	C10B	C11B	F1B	62.7(3)
Si1	01	C7	C10	-158.8(2)	N1B	C10B	C11B	C12B	-177.1(3)
01	Si1	C4	C1	179.8(2)	C4B	Si1B	O1B	C7B	-130.0(3)
01	Si1	C4	C2	-62.2(3)	C5B	Si1B	O1B	C7B	110.7(3)
01	Si1	C4	C3	59.0(3)	C6B	Si1B	O1B	C7B	-9.5(3)
01	C7	C8	C9	70.4(4)	C7B	C8B	C9B	O2B	-73.7(4)
01	C7	C10	N1	-59.9(3)	C7B	C10B	C11B	F1B	-175.0(3)
01	C7	C10	C11	62.6(4)	C7B	C10B	C11B	C12B	-54.8(4)
C4	Si1	01	C7	141.5(3)	C8B	C7B	C10B	N1B	-68.8(4)
C5	Si1	01	C7	-99.6(3)	C8B	C7B	C10B	C11B	170.1(3)
C5	Si1	C4	C1	62.0(3)	C10B	C7B	C8B	C9B	53.8(4)
C5	Si1	C4	C2	-180.0(3)	C10B	C11B	C12B	C13B	-176.0(3)
C5	Si1	C4	C3	-58.8(3)	C11B	C12B	C13B	C14B	-165.0(3)
C6	Si1	01	C7	20.9(3)	C12B	C13B	C14B	C15B	-177.1(3)
C6	Si1	C4	C1	-60.4(3)	C13B	C14B	C15B	C16B	-177.0(4)
C6	Si1	C4	C2	57.7(3)	S1C	O2C	C9C	C8C	93.1(3)
C6	Si1	C4	C3	178.8(3)	S1C	N1C	C10C	C7C	92.6(3)
C7	C8	C9	O2	74.1(3)	S1C	N1C	C10C	C11C	-143.5(3)
C7	C10	C11	F1	170.3(3)	Si1C	01C	C7C	C8C	-85.3(3)
C7	C10	C11	C12	49.4(4)	SilC	01C	C7C	C10C	150.5(2)
F1	C11	C12	C13	56.9(4)	01C	Si1C	C4C	C1C	174.2(6)
02	S 1	N1	C10	42.0(3)	01C	Si1C	C4C	C2C	-65.5(5)
03	S 1	O2	C9	-70.3(3)	01C	Si1C	C4C	C3C	52.2(5)
03	S 1	N1	C10	160.1(2)	01C	C7C	C8C	C9C	-64.3(4)
04	S 1	O2	C9	162.5(2)	01C	C7C	C10C	N1C	53.3(3)
04	S 1	N1	C10	-68.3(3)	01C	C7C	C10C	C11C	-67.3(3)
N1	S 1	O2	C9	45.5(3)	01C	Si1E	C4E	C1E	169.6(11)
N1	C10	C11	F1	-65.3(3)	01C	Si1E	C4E	C2E	-72.5(11)
N1	C10	C11	C12	173.8(3)	01C	Si1E	C4E	C3E	48.5(11)
C8	C7	C10	N1	65.7(3)	01C	Si1D	C4D	C1D	171.1(8)

C8 C7 C10 C11 -171.8(3)	O1C Si1D C4D C2D -72.9(7)
C10 C7 C8 C9 -52.1(4)	O1C Si1D C4D C3D 43.9(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4C Si1C O1C C7C -173.0(3)
C11 C12 C13 C14 -177.9(3)	C5C Si1C O1C C7C -54.7(4)
C12 C13 C14 C15 -62.0(4)	C5C Si1C C4C C1C 57.9(7)
C13 C14 C15 C16 -179.1(3)	C5C Si1C C4C C2C 178.2(6)
S1A O2A C9A C8A -94.7(3)	C5C Si1C C4C C3C -64.1(6)
S1A N1A C10AC7A -91.5(3)	C6C Si1C O1C C7C 66.4(4)
S1A N1A C10AC11A143.5(2)	C6C Si1C C4C C1C -63.4(7)
Si1A O1A C7A C8A 76.1(3)	C6C Si1C C4C C2C 56.9(6)
Si1A O1A C7A C10A-158.3(2)	C6C Si1C C4C C3C 174.6(5)
F1A C11AC12AC13A54.8(4)	C7C O1C Si1E C4E -128.5(6)
O1A Si1A C4A C1A 180.0(3)	C7C O1C Si1E C5E -9.7(8)
O1A Si1A C4A C2A -59.4(3)	C7C O1C Si1E C6E 110.4(8)
O1A Si1A C4A C3A 61.6(3)	C7C O1C Si1D C4D 130.0(4)
O1A C7A C8A C9A 69.5(4)	C7C O1C Si1D C5D -109.7(6)
O1A C7A C10AN1A -58.3(4)	C7C O1C Si1D C6D 12.1(6)
O1A C7A C10AC11A64.1(4)	C7C C8C C9C O2C -75.7(4)
O2A S1A N1A C10A43.9(3)	C7C C10C C11C F1C -175.3(3)
O3A S1A O2A C9A -70.9(3)	C7C C10C C11C C12C -55.0(4)
O3A S1A N1A C10A161.2(3)	Si1E O1C C7C C8C -63.5(6)
O4A S1A O2A C9A 161.3(2)	Si1E O1C C7C C10C 172.3(5)
O4A S1A N1A C10A-66.5(3)	C5E Si1E C4E C1E 51.8(12)
N1A S1A O2A C9A 45.0(3)	C5E Si1E C4E C2E 169.7(12)
N1A C10AC11AF1A -66.8(3)	C5E Si1E C4E C3E -69.3(12)
N1A C10AC11AC12A173.3(3)	C6E Si1E C4E C1E -69.0(12)
C4A Si1A O1A C7A 143.8(3)	C6E Si1E C4E C2E 48.9(12)
C5A Si1A O1A C7A -96.2(3)	C6E Si1E C4E C3E 169.9(12)
C5A Si1A C4A C1A 60.4(3)	Si1D O1C C7C C8C -113.2(3)
C5A Si1A C4A C2A -179.0(3)	Si1D O1C C7C C10C 122.6(3)
C5A Si1A C4A C3A -58.0(3)	C5D Si1D C4D C1D 51.1(9)
C6A Si1A O1A C7A 24.5(3)	C5D Si1D C4D C2D 167.1(8)
C6A Si1A C4A C1A -61.6(3)	C5D Si1D C4D C3D -76.1(9)
C6A Si1A C4A C2A 59.0(3)	C6D Si1D C4D C1D -70.9(10)
C6A Si1A C4A C3A 180.0(3)	C6D Si1D C4D C2D 45.0(9)
C7A C8A C9A O2A 73.3(4)	C6D Si1D C4D C3D 161.8(10)
C7A C10AC11AF1A 169.8(3)	F1C C11CC12CC13C-50.2(5)
C7A C10AC11AC12A49.8(4)	F1C C11CC12CC13D-72.8(13)
C8A C7A C10AN1A 65.9(4)	O2C S1C N1C C10C -44.7(3)
C8A C7A C10AC11A-171.7(3)	O3C S1C O2C C9C -160.2(2)
C10A C7A C8A C9A -51.7(4)	O3C S1C N1C C10C 66.7(3)
C10AC11AC12AC13A173.8(3)	O4C S1C O2C C9C 71.6(2)

C11AC12AC13AC14A177.4(3)	O4C S1C N1C C10C-161.2(3)
C12AC13AC14AC15A-65.4(4)	N1C S1C O2C C9C -42.9(3)
C13AC14AC15AC16A-177.0(3)	N1C C10CC11CF1C 63.2(3)
S1B O2B C9B C8B 94.6(3)	N1C C10C C11C C12C -176.6(3)
S1B N1B C10B C7B 91.0(3)	C8C C7C C10C N1C -69.4(3)
S1B N1B C10B C11B -145.0(3)	C8C C7C C10C C11C 169.9(3)
Si1B O1B C7B C8B -69.6(4)	C10C C7C C8C C9C 56.7(4)
Si1B O1B C7B C10B 166.0(2)	C10C C11C C12C C13C -169.2(4)
F1B C11B C12B C13B -56.6(4)	C10C C11C C12C C13D 168.2(13)
O1B C7B C8B C9B -65.0(4)	C11C C12C C13C C14C -169.0(5)
O1B C7B C10B N1B 54.5(3)	C11C C12C C13D C14D -171.8(13)
O1B C7B C10B C11B -66.6(3)	C12C C13C C14C C15C 71.8(8)
O2B S1B N1B C10B-41.7(3)	C12C C13D C14D C15D 179(2)
O3B S1B O2B C9B 69.7(3)	C13C C14C C15C C16C 178.3(6)
O3B S1B N1B C10B-159.2(2)	C13DC14DC15DC16D-168(2)

Table S-8. Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 7a.

Atom	x	у	z	U(eq)
H1A	6879	1834	7452	70
H1B	7531	1020	7452	70
H1D	7067	1237	6721	70
H2A	8515	1258	6101	77
H2B	9036	987	6791	77
H2C	9372	1804	6435	77
H3A	9205	2677	7634	82
H3B	8868	1847	7971	82
H3C	8240	2681	8048	82
H5A	7242	3701	7645	51
H5B	6387	3346	7161	51
H5C	6925	4176	6978	51
H6A	6967	3087	5484	50
H6B	6686	2216	5781	50
H6C	7646	2288	5372	50
H7	8700	3529	5376	30
H1	10120(30)	4420(20)	6796(11)	38
H8A	8331	4906	5289	30
H8B	7640	4577	5858	30
H9A	8025	5905	6337	34
H9B	8624	5303	6790	34
H10	10039	4384	5329	30
H11	10454	3015	6140	36

H12E 10091	2866	4638	35
H12F 9488	2437	5212	35
H13E 10734	1548	5430	47
H13F 11361	1991	4879	47
H14E 10813	711	4301	52
H14F 10374	1471	3926	52
H15E 8958	1296	4518	45
H15F 9395	543	4905	45
H16G 9109	455	3391	80
H16H 8475	-13	3922	80
H16I 9524	-301	3788	80
H1AA 10190(30)	5750(20)	8241(11)	41
H1AB 6861	8187	7477	68
H1AC 7482	9027	7560	68
H1AD 6956	8738	8240	68
H2AA 8498	8751	8912	75
H2AB 8935	9092	8217	75
H2AC 9356	8269	8516	75
H3AA 9127	7362	7350	86
H3AB 8801	8205	7029	86
H3AC 8160	7378	6941	86
H5AA7199	6286	7354	48
H5AB 6337	6663	7816	48
H5AC 6862	5841	8031	48
H6AA 6999	6949	9536	46
H6AB 6584	7745	9191	46
H6AC 7564	7822	9585	46
H7A 8599	6505	9638	31
H8AA 8313	5090	9661	34
H8AB 7637	5407	9078	34
H9AA 8108	4122	8602	35
H9AB 8689	4768	8178	35
H10A 9997	5704	9708	32
H11A 10391	7166	8985	35
H12G 9928	7195	10463	37
H12H 9359	7655	9889	37
H13G 11176	8131	10376	47
H13H 10640	8576	9774	47
H14G 10021	8624	11221	47
H14H 10570	9382	10922	47
H15G 9314	9571	10135	46
H15H 8761	8840	10475	46

H16J 8259	10166	10995	77
H16K 9289	10414	11246	77
H16L 8750	9680	11593	77
H1BA 4940(30)	5650(20)	6917(10)	39
H1BB 2800	9208	7730	81
H1BC 3548	9399	8354	81
H1BD 2825	8640	8381	81
H2BA 4884	8446	6887	83
H2BB 4762	9299	7420	83
H2BC 4022	9055	6798	83
H3BA 4177	7724	8536	68
H3BB 4895	8465	8428	68
H3BC 4948	7583	7925	68
H5BA 2212	6370	7475	67
H5BB 2019	7237	7973	67
H5BC 2902	6676	8117	67
H6BA 2793	8107	6092	67
H6BB 2010	8301	6687	67
H6BC 2044	7396	6215	67
H7B 3972	6898	5689	32
H8BA 2660	6066	5888	34
H8BB 3302	5613	5272	34
H9BA 3337	5121	6683	36
H9BB 2656	4682	6076	36
H10B 5064	5746	5454	30
H11B 5736	7035	6530	35
H12I 5063	7742	5626	37
H12J 5623	7160	5026	37
H13I 6583	8254	6095	43
H13J 7002	7815	5357	43
H14I 5667	9143	5471	50
H14J 6035	8687	4724	50
H15I 7513	9255	4963	57
H15J 7180	9680	5732	57
H16M 6486	10152	4411	93
H16N 7228	10693	4902	93
H16O 6198	10595	5187	93
H1CA 3138	757	7198	98
H1CB 3021	1048	6415	98
H1CC 2237	1268	7006	98
H2CA 2332	2755	6819	70
H2CB 3141	2574	6243	70

H2CC 3284	3267	6922	70
H3CA 4734	2511	7222	72
H3CB 4534	1900	6501	72
H3CC 4696	1505	7238	72
H5CA 4312	1356	8545	67
H5CB 3302	947	8541	67
H5CC 3606	1646	9180	67
H6CA 1895	2548	8900	68
H6CB 1610	2017	8157	68
H6CC 1769	3019	8197	68
H7C 4068	3108	9383	33
H1EA 2532	1244	7054	48
H1EB 3189	517	7294	48
H1EC 3327	850	6528	48
H2EA 4750	1589	6513	52
H2EB 4747	2515	6950	52
H2EC 3920	2230	6412	52
H3EA 4172	1082	8247	55
H3EB 4947	1741	8062	55
H3EC 4853	843	7586	55
H5EA 2679	2095	8966	52
H5EB 2165	1567	8306	52
H5EC 1824	2504	8590	52
H6EA 1965	3473	7515	50
H6EB 2249	2792	6858	50
H6EC 2885	3607	7071	50
H1DA 2888	1320	6588	79
H1DB 1810	1518	6685	79
H1DC 2337	1000	7244	79
H2DA 1635	2000	8138	94
H2DB 1232	2575	7563	94
H2DC 1875	2990	8202	94
H3DA 3056	3499	7247	87
H3DB 2136	3224	6809	87
H3DC 3113	2853	6530	87
H5DA 4894	2144	7181	87
H5DB 4436	1224	7163	87
H5DC 5115	1565	7804	87
H6DA 3873	1501	9045	50
H6DB 3180	954	8514	50
H6DC 2817	1783	8996	50
H1C 4880(30)	4340(20)	8097(10)	35

H8CA 3395	4375	9820	35
H8CB 2703	3864	9270	35
H9CA 3222	4792	8392	36
H9CB 2569	5216	9022	36
H10C 5108	4331	9555	28
H11C 5773	3089	8454	35
H12A 5313	2284	9345	37
H12B 5764	2942	9956	37
H12C 6011	2942	9940	37
H12D 5209	2438	9489	37
H13A 6869	2022	8874	44
H13B 7244	2558	9585	44
H14A 6535	1521	10261	43
H14B 7403	1184	9788	43
H15A 5522	842	9392	57
H15B 6381	522	8901	57
H16A 5860	-596	9503	82
H16B 5973	-33	10259	82
H16C 6867	-329	9798	82
H13C 7127	2191	9278	57
H13D 6371	1755	8732	57
H14C 6474	1509	10216	45
H14D 5705	1083	9679	45
H15C 7620	724	9633	68
H15D 6953	406	8980	68
H16D 6224	-525	9615	98
H16E 6604	-74	10363	98
H16F 7287	-617	9822	98

Table S-9. Atomic Occupancy for 7a.

Atom Occupancy	Atom Occupancy	Atom Occupancy
Si1C 0.559(2)	C1C 0.559(2)	H1CA 0.559(2)
H1CB 0.559(2)	H1CC 0.559(2)	C2C 0.559(2)
H2CA 0.559(2)	H2CB 0.559(2)	H2CC 0.559(2)
C3C 0.559(2)	H3CA 0.559(2)	H3CB 0.559(2)
H3CC 0.559(2)	C4C 0.559(2)	C5C 0.559(2)
H5CA 0.559(2)	H5CB 0.559(2)	H5CC 0.559(2)
C6C 0.559(2)	H6CA 0.559(2)	H6CB 0.559(2)
H6CC 0.559(2)	Si1E 0.1203(19)	C1E 0.1203(19)
H1EA 0.1203(19)	H1EB 0.1203(19)	H1EC 0.1203(19)
C2E 0.1203(19)	H2EA 0.1203(19)	H2EB 0.1203(19)
H2EC 0.1203(19)	C3E 0.1203(19)	H3EA 0.1203(19)

H3EB 0.1203(19)	H3EC 0.1203(19)	C4E 0.1203(19)
C5E 0.1203(19)	H5EA 0.1203(19)	H5EB 0.1203(19)
H5EC 0.1203(19)	C6E 0.1203(19)	H6EA 0.1203(19)
H6EB 0.1203(19)	H6EC 0.1203(19)	Si1D 0.3207(19)
C1D 0.3207(19)	H1DA 0.3207(19)	H1DB 0.3207(19)
H1DC 0.3207(19)	C2D 0.3207(19)	H2DA 0.3207(19)
H2DB 0.3207(19)	H2DC 0.3207(19)	C3D 0.3207(19)
H3DA 0.3207(19)	H3DB 0.3207(19)	H3DC 0.3207(19)
C4D 0.3207(19)	C5D 0.3207(19)	H5DA 0.3207(19)
H5DB 0.3207(19)	H5DC 0.3207(19)	C6D 0.3207(19)
H6DA 0.3207(19)	H6DB 0.3207(19)	H6DC 0.3207(19)
H12A 0.745(10)	H12B 0.745(10)	H12C 0.255(10)
H12D 0.255(10)	C13C 0.745(10)	H13A 0.745(10)
H13B 0.745(10)	C14C 0.745(10)	H14A 0.745(10)
H14B 0.745(10)	C15C 0.745(10)	H15A 0.745(10)
H15B 0.745(10)	C16C 0.745(10)	H16A 0.745(10)
H16B 0.745(10)	H16C 0.745(10)	C13D 0.255(10)
H13C 0.255(10)	H13D 0.255(10)	C14D 0.255(10)
H14C 0.255(10)	H14D 0.255(10)	C15D 0.255(10)
H15C 0.255(10)	H15D 0.255(10)	C16D 0.255(10)
H16D 0.255(10)	H16E 0.255(10)	H16F 0.255(10)

Crystallographic Experimental Section for 10a.

CCDC number 1548237

Data Collection. A colorless crystal with approximate dimensions $0.158 \ge 0.106 \ge 0.043$ mm³ was selected under oil under ambient conditions and attached to the tip of a MiTeGen MicroMount©. The crystal was mounted in a stream of cold nitrogen at 100(1) K and centered in the X-ray beam by using a video camera.

The crystal evaluation and data collection were performed on a Bruker Quazar SMART APEXII diffractometer with Mo K_{α} ($\lambda = 0.71073$ Å) radiation and the diffractometer to crystal distance of 4.96 cm.¹

The initial cell constants were obtained from three series of ω scans at different starting angles. Each series consisted of 12 frames collected at intervals of 0.5° in a 6° range about ω with the exposure time of 10 seconds per frame. The reflections were successfully indexed by an

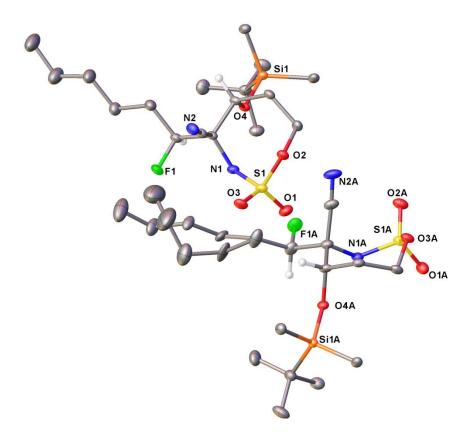
automated indexing routine built in the APEX3 program suite. The final cell constants were calculated from a set of 6515 strong reflections from the actual data collection.

The data were collected by using the full sphere data collection routine to survey the reciprocal space to the extent of a full sphere to a resolution of 0.80 Å. A total of 45920 data were harvested by collecting 3 sets of frames with 0.5° scans in ω with exposure times of 40 sec per frame. These highly redundant datasets were corrected for Lorentz and polarization effects. The absorption correction was based on fitting a function to the empirical transmission surface as sampled by multiple equivalent measurements.²

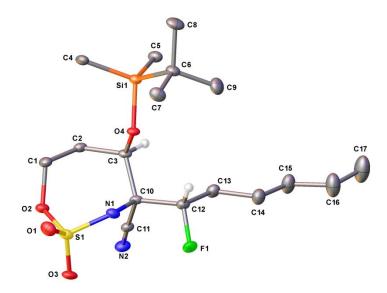
Structure Solution and Refinement

The systematic absences in the diffraction data were uniquely consistent for the space group $P2_1/c$ that yielded chemically reasonable and computationally stable results of refinement.³⁻⁸

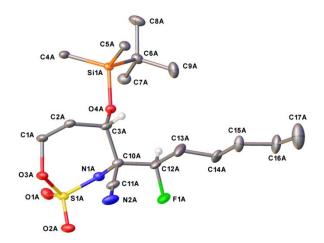
A successful solution by the direct methods provided most non-hydrogen atoms from the *E*-map. The remaining non-hydrogen atoms were located in an alternating series of least-squares cycles and difference Fourier maps. All non-hydrogen atoms were refined with anisotropic displacement coefficients. All hydrogen atoms, except for the amine hydrogen, were included in the structure factor calculation at idealized positions and were allowed to ride on the neighboring atoms with relative isotropic displacement coefficients. The N1–H1 and N1A–H1A distances were constrained to 0.83Å distance, but the isotropic displacement coefficients on the hydrogen atoms were allowed to refine freely.

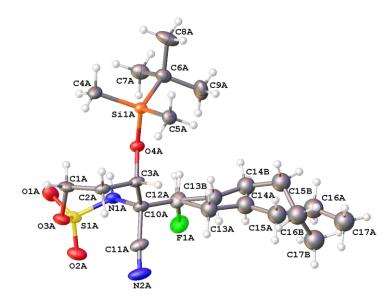

Due to the presence of an inversion center, both stereoisomers are present in the crystal structure. There are two chiral molecules in the asymmetric unit. They have the same composition and connectivity, but opposite handedness. The relative configuration is as follows: chiral centers in the Si1 molecules are C3 - R, C10 - S, and C12 - S; the chiral centers on Si1A molecule are C3A - S, C10A - R and C12A - R.

The second molecule exhibited positional disorder in the fluorohexyl chain (atoms C13a–C17a and C13b–C17b)) with the major component contribution of 70.4(4) %. These disordered atoms were refined isotropically.


The final least-squares refinement of 477 parameters against 9093 data resulted in residuals *R* (based on F^2 for $I \ge 2\sigma$) and *wR* (based on F^2 for all data) of 0.0628 and 0.1701, respectively. The final difference Fourier map was featureless.

Summary


Crystal Data for C₁₇H₃₃FN₂O₄SSi (*M* =408.60 g/mol): monoclinic, space group P2₁/c (no. 14), a = 13.110(4) Å, b = 9.969(4) Å, c = 33.818(12) Å, $\beta = 90.959(14)^{\circ}$, V = 4419(3) Å³, Z = 8, T = 100.0 K, μ (MoK α) = 0.231 mm⁻¹, *Dcalc* = 1.228 g/cm³, 45819 reflections measured (2.408° ≤ 2 Θ ≤ 52.882°), 9093 unique ($R_{int} = 0.0627$, $R_{sigma} = 0.0802$) which were used in all calculations. The final R_1 was 0.0628 (I > 2 σ (I)) and wR_2 was 0.1701 (all data).


Figure S-6. A molecular drawing of **10a** shown with 50% probability ellipsoids showing the two molecules in the asymmetric unit. All H atoms on non-stereoactive atoms are omitted.

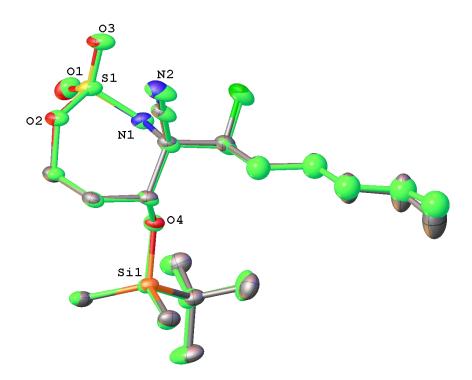

Figure S-7. A molecular drawing of **10a** shown with 50% probability ellipsoids showing the first molecule in the asymmetric unit. All H atoms on non-stereoactive atoms are omitted.

Figure S-8. A molecular drawing of **10a** shown with 50% probability ellipsoids showing the second molecule in the asymmetric unit. The minor disorder component and all H atoms on non-stereoactive atoms are omitted.

Figure S-9. A molecular drawing of **10a** shown with 50% probability ellipsoids showing the second molecule in the asymmetric unit. Both disorder components are shown.

Figure S-10. A molecular drawing of **10a** shown with 50% probability ellipsoids showing the overlay of the two molecules in the asymmetric unit. The minor disorder component of Si1A molecule and all H atoms are omitted.

Table 5-10. Crystal uata al	iu structure refinement for roa.
Identification code	Schomaker70b
Empirical formula	$C_{17}H_{33}FN_2O_4SSi$
Formula weight	408.60
Temperature/K	100.0
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	13.110(4)
b/Å	9.969(4)
c/Å	33.818(12)
α/°	90
β/°	90.959(14)
$\gamma/^{\circ}$	90
Volume/Å ³	4419(3)
Z	8
$\rho_{calc}g/cm^3$	1.228
μ/mm^{-1}	0.231
F(000)	1760.0
Crystal size/mm ³	$0.158 \times 0.106 \times 0.043$
Radiation	MoKα (λ = 0.71073)
2Θ range for data collection/	° 2.408 to 52.882
Index ranges	$-16 \le h \le 15, -12 \le k \le 12, -42 \le l \le 42$
Reflections collected	45819
Independent reflections	9093 [$R_{int} = 0.0627, R_{sigma} = 0.0802$]
Data/restraints/parameters	9093/29/477
Goodness-of-fit on F ²	1.040
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0628, wR_2 = 0.1538$
Final R indexes [all data]	$R_1 = 0.0933, wR_2 = 0.1701$
Largest diff. peak/hole / e Å-	³ 0.66/-0.88

Table S-10. Crystal data and structure refinement for 10a.

Table S-11. Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displacement
Parameters ($Å^2 \times 10^3$) for 10a. U _{eq} is defined as 1/3 of of the trace of the orthogonalised
U _{IJ} tensor.

Atom	x	у	z	U(eq)
S 1	6457.4(6)	5655.4(7)	6976.5(2)	25.67(19)
Si1	5799.3(6)	10828.2(8)	6555.0(3)	22.7(2)
F1	4723.8(14)	5687.8(18)	5994.4(5)	35.8(5)
01	7533.2(16)	5778(2)	6959.5(7)	36.2(6)
O2	6030.8(15)	6402(2)	7348.1(6)	26.7(5)
O3	5992.4(17)	4369(2)	6987.8(6)	30.7(5)
O4	5657.1(14)	9161.9(19)	6543.8(6)	21.4(4)

N1	6017.0(19)	6486(2)	6594.0(8)	23.9(5)
N2	3634(2)	5461(3)	6929.5(8)	32.7(6)
C1	6094(2)	7877(3)	7354.6(9)	27.2(7)
C2	5101(2)	8462(3)	7200.9(9)	24.1(6)
C3	4912(2)	8420(3)	6755.2(9)	21.6(6)
C4	6700(2)	11260(3)	6961.5(10)	29.3(7)
C5	4527 (2)	11611(3)	6623.2(10)	29.9(7)
C6	6338(2)	11241(3)	6057.2(10)	29.6(7)
C7	7321(3)	10438(4)	5996.0(11)	38.1(8)
C8	6593(3)	12745(3)	6036.3(11)	42.6(9)
C9	5570(3)	10899(4)	5726.3(10)	44.6(9)
C10	4958(2)	6992(3)	6573.7(9)	22.2(6)
C11	4243(2)	6090(3)	6778.0(9)	24.3(6)
C12	4665(2)	7014(3)	6130.6(9)	26.6(7)
C13	3610(2)	7540(3)	6034.8(9)	32.4(7)
C14	3333(3)	7513(4)	5600.7(10)	39.3(8)
C15	2274(3)	8022(5)	5512(1)	51.5(10)
C16	1969(3)	8146(6)	5095.5(12)	70.2(14)
C17	964(4)	8755(6)	5006.4(14)	78.5(16)
S1A	11435.6(6)	8586.8(7)	6978.9(2)	27.81(19)
Si1A	10802.1(6)	3415.7(8)	6555.0(2)	21.99(19)
F1A	9750.8(15)	8561(2)	5981.4(6)	42.1(5)
O1A	12509.3(17)	8466(2)	6971.7(7)	36.6(6)
O2A	10971.3(18)	9863(2)	6987.5(7)	36.3(6)
O3A	10986.3(16)	7848(2)	7346.7(6)	29.0(5)
O4A	10660.0(14)	5092(2)	6539.4(6)	24.1(5)
N1A	11014.3(18)	7762(3)	6594.3(8)	24.8(5)
N2A	8623(2)	8788(3)	6907.6(10)	45.4(8)
C1A	11038(2)	6369(3)	7355.2(10)	28.3(7)
C2A	10061(2)	5786(3)	7190.3(9)	25.0(6)
C3A	9901(2)	5822(3)	6742.8(9)	24.0(6)
C4A	11667(2)	2986(3)	6972.7(9)	28.3(7)
C5A	9525(2)	2630(3)	6605.5(10)	30.1(7)
C6A	11389(2)	3009(3)	6065.1(10)	33.0(7)
C7A	12399(3)	3779(3)	6026.8(11)	37.5(8)
C8A	11611(3)	1500(4)	6041.1(12)	50.2(10)
C9A	10671(3)	3421(5)	5725(1)	49.3(10)
C10A	9964(2)	7252(3)	6560.7(9)	26.0(7)
C11A	9231(2)	8155(3)	6759.4(10)	33.1(8)
C12A	9699(2)	7231(3)	6113.8(10)	33.4(8)
C13B	8786(8)	6487(13)	5936(3)	43.4(5)
C14B	8727(8)	6431(14)	5487(3)	47.7(6)

C15B	7848(7)	5656(12)	5314(4)	52.0(7)
C16B	6801(8)	6156(13)	5380(4)	56.4(7)
C17B	6534(11)	7376(13)	5139(4)	60.7(8)
C13A	8616(4)	6762(6)	6035.6(15)	43.4(5)
C14A	8333(4)	6832(6)	5597.6(15)	47.7(6)
C15A	7255(4)	6396(6)	5514.7(16)	52.0(7)
C16A	6954(4)	6341(7)	5084.3(17)	56.4(7)
C17A	5873(4)	6057(7)	5005.9(19)	60.7(8)

Table S-12. Anisotropic Displacement Parameters $(\text{\AA}^2 \times 10^3)$ for 10a. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[\text{h}^2a^{*2}U_{11}+2\text{hka}^*b^*U_{12}+...]$.

displacement factor exponent takes the form: -2π [if $a^* = 0_{11} + 2\pi a^* b^* = 0_{12} + \dots$].							
Atom	U_{11}	\mathbf{U}_{22}	U ₃₃	U_{23}	U ₁₃	U_{12}	
S 1	24.7(4)	19.2(4)	33.4(4)	1.9(3)	6.4(3)	2.2(3)	
Si1	20.8(4)	16.4(4)	31.1(5)	1.6(3)	2.7(3)	0.2(3)	
F1	45.3(11)	27.7(10)	34.6(11)	-11.4(8)	2.3(9)	3.8(8)	
01	23.9(11)	37.1(14)	47.9(14)	7.2(11)	4.7(10)	3.6(9)	
O2	31.9(12)	16.4(11)	31.9(12)	-0.4(9)	4.7(9)	-0.5(8)	
O3	40.4(13)	13.8(10)	38.1(13)	2.3(9)	9.8(10)	-1.4(9)	
O4	23(1)	13(1)	28.6(11)	-0.1(8)	6.9(8)	-2.5(8)	
N1	22.6(13)	18.1(13)	31.4(14)	2.0(11)	8.8(11)	0.8(10)	
N2	31.3(15)	27.1(14)	40.0(16)	-3.0(12)	8.7(12)	-7.9(12)	
C1	28.4(16)	19.8(15)	33.5(17)	-2.3(13)	0.6(13)	-3.5(12)	
C2	27.1(15)	17.5(14)	27.9(16)	-3.8(12)	6.5(12)	-2.6(11)	
C3	20.9(14)	14.0(13)	30.2(16)	-0.1(12)	8.4(12)	-2.4(11)	
C4	27.5(16)	19.0(15)	41.2(19)	0.7(13)	-3.0(13)	2.1(12)	
C5	24.6(16)	23.5(16)	41.5(19)	-1.1(14)	2.1(13)	2.8(12)	
C6	30.9(17)	20.8(16)	37.2(18)	4.5(14)	5.4(13)	-1.0(12)	
C7	36.1(19)	38(2)	41(2)	4.9(16)	12.4(15)	4.1(15)	
C8	52(2)	26.2(18)	50(2)	11.5(16)	17.7(18)	-1.1(15)	
C9	48(2)	53(2)	32(2)	10.7(17)	0.0(16)	-3.5(18)	
C10	21.2(14)	15.7(14)	30.0(16)	-2.7(12)	6.7(12)	-1.0(11)	
C11	26.3(15)	18.3(14)	28.5(16)	-4.3(12)	4.1(12)	-2.5(12)	
C12	29.0(16)	20.7(15)	30.2(17)	-2.9(13)	5.7(13)	-0.6(12)	
C13	30.8(17)	32.5(18)	34.1(18)	-8.6(14)	2.5(14)	2.5(13)	
C14	39.4(19)	47(2)	31.8(18)	-3.0(16)	0.0(15)	0.4(16)	
C15	45(2)	74(3)	36(2)	-9(2)	-4.1(17)	12(2)	
C16	54(3)	114(4)	43(2)	-4(3)	-7(2)	20(3)	
C17	58(3)	122(5)	55(3)	-13(3)	-12(2)	26(3)	
S1A	29.6(4)	19.2(4)	35.0(4)	-1.5(3)	11.1(3)	-1.1(3)	
Si1A	19.6(4)	18.0(4)	28.3(4)	-1.1(3)	1.9(3)	-1.7(3)	

F1A	46.1(12)	33.2(11)	47.1(12)	18.9(9)	1.8(9)	-2.7(9)
O1A	29.0(12)	37.5(14)	43.7(14)	-8.1(11)	8.9(10)	-6.9(10)
O2A	45.1(14)	21.0(12)	43.2(14)	0.8(10)	17.2(11)	-0.3(10)
O3A	38.2(12)	19.2(11)	30.1(12)	-1.4(9)	10.3(9)	2.4(9)
O4A	20.5(10)	22.1(11)	29.8(11)	1.3(9)	6.9(8)	1.1(8)
N1A	21.8(13)	21.7(13)	31.2(14)	0.0(11)	8.9(11)	1.7(10)
N2A	36.6(17)	27.6(16)	73(2)	13.1(15)	19.8(15)	11.7(13)
C1A	36.4(17)	15.5(15)	33.1(17)	-0.2(13)	6.4(14)	3.7(12)
C2A	23.7(15)	19.7(15)	31.7(17)	4.0(13)	8.5(12)	4.6(11)
C3A	21.0(15)	16.4(14)	34.9(17)	6.8(12)	7.0(12)	3.1(11)
C4A	27.7(16)	17.2(14)	39.9(18)	1.2(13)	-3.2(13)	-0.9(12)
C5A	26.7(16)	26.3(16)	37.4(18)	-0.8(14)	1.3(13)	-5.8(13)
C6A	30.7(17)	31.0(18)	37.7(19)	-5.8(15)	6.3(14)	-1.8(14)
C7A	37.3(19)	33.1(19)	42(2)	1.4(16)	14.9(15)	-3.7(15)
C8A	63(3)	29(2)	60(3)	-15.1(18)	25(2)	-6.7(17)
C9A	46(2)	72(3)	30(2)	-10.1(19)	-1.1(16)	-1.3(19)
C10A	22.2(15)	22.6(15)	33.5(17)	4.4(13)	8.2(12)	3.2(12)
C11A	28.0(17)	24.2(17)	47(2)	13.6(15)	10.3(15)	5.1(13)
C12A	36.2(18)	26.6(17)	37.5(19)	14.9(14)	0.4(14)	-3.6(14)

Table S-13. Bond Lengths for 10a.

Aton	n Atom	Length/Å	Atom Atom	Length/Å
S 1	01	1.418(2)	S1A N1A	1.628(3)
S 1	O2	1.571(2)	Si1A O4A	1.682(2)
S 1	O3	1.421(2)	Si1A C4A	1.847(3)
S 1	N1	1.633(3)	Si1A C5A	1.859(3)
Si1	O4	1.672(2)	Si1A C6A	1.883(3)
Si1	C4	1.848(3)	F1A C12A	1.402(3)
Si1	C5	1.860(3)	O3A C1A	1.476(3)
Si1	C6	1.882(3)	O4A C3A	1.419(3)
F1	C12	1.403(3)	N1A C10A	1.470(4)
O2	C1	1.474(3)	N2A C11A	1.140(4)
O4	C3	1.427(3)	C1A C2A	1.505(4)
N1	C10	1.477(4)	C2A C3A	1.525(4)
N2	C11	1.143(4)	C3A C10A	1.556(4)
C1	C2	1.511(4)	C6A C7A	1.538(4)
C2	C3	1.524(4)	C6A C8A	1.535(5)
C3	C10	1.553(4)	C6A C9A	1.530(5)
C6	C7	1.535(4)	C10AC11A	1.485(4)
C6	C8	1.538(4)	C10AC12A	1.545(4)

C6	C9	1.531(5)	C12AC13B	1.523(7)
C10	C11	1.479(4)	C12AC13A	1.515(5)
C10	C12	1.541(4)	C13B C14B	1.522(8)
C12	C13	1.509(4)	C14B C15B	1.499(8)
C13	C14	1.507(4)	C15B C16B	1.482(9)
C14	C15	1.504(5)	C16B C17B	1.502(9)
C15	C16	1.463(5)	C13AC14A	1.522(6)
C16	C17	1.478(5)	C14AC15A	1.501(6)
S1A	O1A	1.413(2)	C15AC16A	1.503(6)
S1A	O2A	1.411(2)	C16AC17A	1.465(7)
S1A	O3A	1.569(2)		

Table S-14. Bond Angles for 10a.

Aton	n Ator	n Atom	Angle/°	Atom Atom Atom	Angle/°
01	S 1	O2	111.05(14)	O2A S1A O3A	103.85(13)
01	S 1	03	120.45(14)	O2A S1A N1A	109.34(15)
01	S 1	N1	105.23(14)	O3A S1A N1A	105.63(13)
O2	S 1	N1	105.52(12)	O4A Si1A C4A	108.71(12)
03	S 1	O2	104.32(12)	O4A Si1A C5A	108.78(13)
03	S 1	N1	109.43(14)	O4A Si1A C6A	103.47(13)
O4	Si1	C4	108.54(12)	C4A Si1A C5A	111.99(15)
O4	Si1	C5	108.66(13)	C4A Si1A C6A	111.61(15)
O4	Si1	C6	103.91(12)	C5A Si1A C6A	111.86(15)
C4	Si1	C5	111.91(15)	C1A O3A S1A	117.83(18)
C4	Si1	C6	111.72(15)	C3A O4A Si1A	124.89(17)
C5	Si1	C6	111.70(15)	C10AN1A S1A	122.8(2)
C1	O2	S 1	117.65(18)	O3A C1A C2A	109.9(2)
C3	O4	Si1	125.48(17)	C1A C2A C3A	117.5(2)
C10	N1	S 1	121.95(19)	O4A C3A C2A	112.5(2)
O2	C1	C2	109.4(2)	O4A C3A C10A	103.6(2)
C1	C2	C3	117.0(2)	C2A C3A C10A	114.0(3)
O4	C3	C2	112.3(2)	C7A C6A Si1A	109.4(2)
O4	C3	C10	104.2(2)	C8A C6A Si1A	109.8(2)
C2	C3	C10	114.2(2)	C8A C6A C7A	108.7(3)
C7	C6	Si1	109.6(2)	C9A C6A Si1A	110.4(2)
C7	C6	C8	108.6(3)	C9A C6A C7A	108.8(3)
C8	C6	Si1	109.9(2)	C9A C6A C8A	109.8(3)
C9	C6	Si1	110.7(2)	N1A C10AC3A	110.0(2)
C9	C6	C7	109.2(3)	N1A C10AC11A	111.6(3)
C9	C6	C8	108.9(3)	N1A C10AC12A	106.0(2)

N1	C10	C3	109.7(2)	C11AC10AC3A	109.7(2)
N1	C10	C11	111.9(2)	C11AC10AC12A	108.3(3)
N1	C10	C12	105.6(2)	C12AC10AC3A	111.2(3)
C11	C10	C3	110.1(2)	N2A C11AC10A	175.7(4)
C11	C10	C12	108.2(2)	F1A C12AC10A	106.7(3)
C12	C10	C3	111.1(2)	F1A C12AC13B	112.1(6)
N2	C11	C10	174.9(3)	F1A C12AC13A	106.7(3)
F1	C12	C10	106.9(2)	C13B C12A C10A	123.7(5)
F1	C12	C13	108.2(2)	C13AC12AC10A	111.7(3)
C13	C12	C10	115.3(2)	C14B C13B C12A	115.9(7)
C14	C13	C12	114.1(3)	C15B C14B C13B	115.7(8)
C15	C14	C13	113.3(3)	C16B C15B C14B	118.4(9)
C16	C15	C14	117.2(3)	C15B C16B C17B	113.5(9)
C15	C16	C17	117.3(4)	C12AC13AC14A	111.6(4)
01A	S1A	O3A	111.16(14)	C15AC14AC13A	112.4(4)
O1A	S1A	N1A	105.54(13)	C14AC15AC16A	115.0(5)
O2A	S1A	O1A	120.49(14)	C17AC16AC15A	114.8(5)

Table S-15. Torsion Angles for 10a.

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
S 1	O2	C1	C2	94.8(3)	Si1A	O4A	C3A	C2A	67.7(3)
S 1	N1	C10	C3	89.2(3)	Si1A	O4A	C3A	C10A	- 168.63(18)
S 1	N1	C10	C11	-33.3(3)	F1A	C12A	C13B	C14B	57.5(12)
S 1	N1	C10	C12	-150.9(2)	F1A	C12A	C13A	C14A	59.9(5)
Si1	O4	C3	C2	-67.6(3)	01A	S1A	O3A	C1A	-68.8(2)
Si1	O4	C3	C10	168.25(18)	01A	S1A	N1A	C10A	158.9(2)
F1	C12	C13	C14	-58.7(4)	O2A	S1A	O3A	C1A	160.3(2)
01	S 1	O2	C1	68.1(2)	O2A	S1A	N1A	C10A	-70.1(3)
01	S 1	N1	C10	-159.0(2)	O3A	S1A	N1A	C10A	41.1(3)
O2	S 1	N1	C10	-41.5(3)	O3A	C1A	C2A	C3A	75.8(3)
O2	C1	C2	C3	-76.1(3)	O4A	Si1A	C6A	C7A	58.4(3)
O3	S 1	O2	C1	-160.7(2)	O4A	Si1A	C6A	C8A	177.6(2)
O3	S 1	N1	C10	70.3(3)	O4A	Si1A	C6A	C9A	-61.3(3)
O4	Si1	C6	C7	-56.2(3)	O4A	C3A	C10A	N1A	-54.6(3)
O4	Si1	C6	C8	-175.4(2)	O4A	C3A	C10A	C11A	-177.7(3)
O4	Si1	C6	C9	64.2(3)	O4A	C3A	C10A	C12A	62.5(3)
O4	C3	C10	N1	54.2(3)	N1A	S1A	O3A	C1A	45.2(2)
O4	C3	C10	C11	177.8(2)	N1A	C10A	C12A	F1A	-62.0(3)
O4	C3	C10	C12	-62.2(3)	N1A	C10A	C12A	C13B	165.7(7)

N1 S1 O2 C	C1 -45.4(2)	N1A C10AC12AC13A	-178.2(3)
N1 C10 C12 F	F1 61.3(3)	C1A C2A C3A O4A	60.9(3)
N1 C10 C12 C	C13 -178.3(2)	C1A C2A C3A C10A	-56.7(3)
C1 C2 C3 C	O4 -61.5(3)	C2A C3A C10AN1A	68.1(3)
C1 C2 C3 C	C10 56.9(3)	C2A C3A C10AC11A	-55.0(3)
C2 C3 C10 N	N1 -68.7(3)	C2A C3A C10AC12A	-174.8(2)
C2 C3 C10 C	54.9(3)	C3A C10AC12AF1A	178.5(2)
C2 C3 C10 C	C12 174.9(2)	C3A C10AC12AC13B	46.2(8)
C3 C10 C12 F	F1 -179.7(2)	C3A C10AC12AC13A	62.2(4)
C3 C10 C12 C	C13 -59.4(3)	C4A Si1A O4A C3A	-89.3(2)
C4 Si1 O4 C	89.8(2)	C4A Si1A C6A C7A	-58.3(3)
C4 Si1 C6 C	60.6(3)	C4A Si1A C6A C8A	60.9(3)
C4 Si1 C6 C	C8 -58.6(3)	C4A Si1A C6A C9A	-178.0(2)
C4 Si1 C6 C	C9 -178.9(2)	C5A Si1A O4A C3A	32.9(3)
C5 Si1 O4 C	C3 -32.1(3)	C5A Si1A C6A C7A	175.3(2)
C5 Si1 C6 C	- 173.2(2)	C5A Si1A C6A C8A	-65.5(3)
C5 Si1 C6 C	C8 67.6(3)	C5A Si1A C6A C9A	55.6(3)
C5 Si1 C6 C	C9 -52.7(3)	C6A Si1A O4A C3A	151.9(2)
C6 Si1 O4 C	C3 -151.1(2)	C10A C12A C13B C14B	-172.3(8)
C10 C12 C13 C	C14 -178.4(3)	C10AC12AC13AC14A	176.2(4)
C11 C10 C12 F	F1 -58.7(3)	C11AC10AC12AF1A	57.8(3)
C11 C10 C12 C	C13 61.6(3)	C11AC10AC12AC13B	-74.5(7)
C12 C13 C14 C	C15 179.2(3)	C11AC10AC12AC13A	-58.4(4)
C13 C14 C15 C	C16 174.7(4)	C12A C13B C14B C15B	177.8(10)
C14 C15 C16 C	C17 -174.8(5)	C12AC13AC14AC15A	-178.9(5)
S1AO3AC1A C		C13B C14B C15B C16B	64.7(16)
S1AN1AC10AC		C14B C15B C16B C17B	73.8(16)
S1AN1AC10AC		C13AC14AC15AC16A	-175.5(5)
S1AN1AC10AC	C12A 151.0(2)	C14AC15AC16AC17A	-173.7(6)

Table S-16. Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 10a.

Atom	x	У	z	U(eq)
H1	6430(20)	7090(30)	6565(10)	35(10)
H1B	6662.2	8180.17	7187.53	33
H1C	6228.1	8191.02	7628.24	33
H2A	5067.32	9410.35	7286.92	29
H2B	4534.81	7980.87	7329.22	29
H3	4224.03	8811.94	6695.6	26
H4A	6385.4	11062.01	7215.88	44

H4B	6866.46	12217.06	6948.39	44
H4C	7324.66	10730.04	6935.94	44
H5A	4081.77	11393.48	6396.44	45
H5B	4603.68	12586.6	6643.35	45
H5C	4223.64	11265.69	6865.86	45
H7A	7820.45	10667.69	6204.07	57
H7B	7602.05	10656.01	5737.09	57
H7C	7169.5	9476.05	6007.83	57
H8A	5965.61	13270.57	6062.31	64
H8B	6904.83	12945.64	5781.66	64
H8C	7070.41	12978.13	6251.48	64
H9A	5399.63	9943.03	5738.56	67
H9B	5869.71	11101.97	5469.56	67
H9C	4949.64	11433.2	5758.91	67
H12	5174.75	7569.33	5987.16	32
H13E	3105.97	6997.67	6179.86	39
H13F	3560.79	8474.67	6131.14	39
H14E	3828.74	8067.55	5455.41	47
H14F	3389.68	6580.59	5502.76	47
H15E	1783.67	7415.03	5641.54	62
H15F	2204.47	8915.16	5636.7	62
H16E	1976.85	7237.78	4976.97	84
H16F	2494.55	8683.02	4960.64	84
H17G	888.04	8889.99	4720.34	118
H17H	914.19	9621.49	5141.61	118
H17I	423.07	8158.24	5098.01	118
H1A	11420(20)	7160(30)	6549(10)	38(10)
H1AA	11147.67	6057.84	7630.66	34
H1AB	11620.04	6058.64	7196.27	34
H2AA	9486.04	6268.74	7311.94	30
H2AB	10021.11	4839.1	7276.74	30
H3A	9217.97	5428.92	6676.18	29
H4AA	12263.87	3577.62	6969.92	42
H4AB	11888.51	2051.59	6947.6	42
H4AC	11307.49	3101.25	7222.16	42
H5AA	9210.18	2949.04	6848.96	45
H5AB	9599.36	1652.76	6616.63	45
H5AC	9092.38	2874.86	6377.69	45
H7AA	12262.15	4745.62	6025.19	56
H7AB	12727.61	3524.21	5779.73	56
H7AC	12851.35	3558.76	6251.2	56
H8AA	12062.88	1238.12	6261.6	75

H8AB	11941.57	1298.42	5790.28	75
H8AC	10969.35	998.99	6056.24	75
H9AA	10013	2968.98	5753.8	74
H9AB	10971.47	3164.23	5472.63	74
H9AC	10569.43	4394.98	5730.82	74
H12B	10301.43	6787.82	5991.73	40
H12A	10193.33	6655.78	5968.7	40
H13A	8794.88	5556.39	6038.47	52
H13B	8155.99	6918.95	6032.06	52
H14A	8690.87	7361.51	5385	57
H14B	9368.23	6031.18	5390.57	57
H15A	7945.99	5598.31	5024.55	62
H15B	7888.69	4730.12	5418.87	62
H16A	6728.87	6373.93	5663.55	68
H16B	6308.45	5433.25	5314.29	68
H17A	7141	7939.55	5111.17	91
H17B	6000.36	7887	5271.76	91
H17C	6285.37	7098.9	4876.42	91
H13C	8139.8	7329.18	6186.5	52
H13D	8542.42	5826.27	6129.04	52
H14C	8422.34	7764.28	5503.61	57
H14D	8803.21	6251.9	5447.99	57
H15C	6789.25	7020.36	5650.27	62
H15D	7156.2	5494.65	5630.9	62
H16C	7124.97	7211.16	4960.97	68
H16D	7366.58	5641.08	4954.51	68
H17D	5737.49	6075.83	4720.07	91
H17E	5453.97	6737.85	5135.09	91
H17F	5703.55	5169.06	5110.12	91

Table S-17. Atomic Occupancy for 10a.

Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
H12B	0.296(4)	H12A	0.704(4)	C13B	0.296(4)
H13A	0.296(4)	H13B	0.296(4)	C14B	0.296(4)
H14A	0.296(4)	H14B	0.296(4)	C15B	0.296(4)
H15A	0.296(4)	H15B	0.296(4)	C16B	0.296(4)
H16A	0.296(4)	H16B	0.296(4)	C17B	0.296(4)
H17A	0.296(4)	H17B	0.296(4)	H17C	0.296(4)
C13A	0.704(4)	H13C	0.704(4)	H13D	0.704(4)
C14A	0.704(4)	H14C	0.704(4)	H14D	0.704(4)

C15A	0.704(4) H15C	0.704(4) H15D	0.704(4)
C16A	0.704(4) H16C	0.704(4) H16D	0.704(4)
C17A	0.704(4) H17D	0.704(4) H17E	0.704(4)
H17F	0.704(4)		

VIII. References for X-ray.

- 1. Bruker-AXS (2014). APEX2. Version 2014.11-0. Madison, Wisconsin, USA.
- 2. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48. 3-10.
- 3. Sheldrick, G. M. (2013b). *XPREP*. Version 2013/1. Georg-August-Universität Göttingen, Göttingen, Germany.
- 4. Sheldrick, G. M. (2013a). The SHELX homepage, http://shelx.uni-ac.gwdg.de/SHELX/.
- 5. Sheldrick, G. M. (2015a). Acta Cryst. A, 71, 3-8.
- 6. Sheldrick, G. M. (2015b). Acta Cryst. C, 71, 3-8.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Crystallogr. 42, 339-341.
- 8. Guzei, I. A. (2007-2013). Programs *Gn*. University of Wisconsin-Madison, Madison, Wisconsin, USA.