Supporting Information

Cooperative RNA Folding Under Cellular Conditions Arises From Both Tertiary Structure Stabilization and Secondary Structure Destabilization

Kathleen A. Leamy^{1,2}, Neela H. Yennawar³, Philip C. Bevilacqua^{*1,2,4}

¹Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, U.S.A. ²Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, 16802, U.S.A.

³Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, U.S.A

⁴Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, U.S.A.

*Corresponding Author.

104 Chemistry Building, University Park, PA 16802

Phone: 814-863-3812,

e-mail: pcb5@psu.edu

Melting Temperature (°C) in 0 mM Mg ²⁺						
	FL T7	Acceptor		Anticodon		
Additive	tRNA ^{phe}	Stem	D SL	SL	TΨC SL	Sum of SS
None	53.2	56.8	60.5	63.0	58.3	59.6
20% PEG200	52.8	52.9	58.8	61.7	53.4	55.6
40% PEG200	50.5	45.5	44.0	60.0	44.0	48.4
20% PEG4000	45.5	57.8	64.9	66.7	56.8	61.3
40% PEG4000	64.0	59.3	64.6	67.6	60.0	62.2
20% PEG8000	66.0	68.1	69.0	72.5	72.4	70.4
40% PEG8000	54.0	57.0	51.0	68.8	60.5	58.9
20% PEG20000		60.5	61.5	57.0	57.0	57.0

Table S1. Melting temperatures of T7 tRNA^{phe}, its individual HF, and the SSS in the background of 0 mM Mg²⁺ derived from optical melting.

All samples contain a background of 10 mM sodium cacodylate (pH 7.0) and 140 mM KCl.

Table S2. Melting temperatures of T7 tRNA^{phe}, its individual HF, and the SSS in the background of 0.5 mM Mg^{2+} derived from optical melting.

Melting Temperature (°C) in 0.5 mM Mg ²⁺						
	FL T7	Acceptor		Anticodon		
Additive	tRNA ^{phe}	Stem	D SL	SL	TΨC SL	Sum of SS
None	57.8	57.1	(1) 60.5 (2) 67.8	67.8	59.6	63.4
20% PEG200 40% PEG200	57.0 59.1	52.3 44.6	63.5 51.5	63.5 55.6	55.3 50.3	56.4 49.3
20% PEG4000 40% PEG4000	63.0 65.5	57.7 59.3	78.0 64.6	67.1 67.7	57.2 61.0	58.2 62.3
20% PEG8000 40% PEG8000	64.0 66.0	59.0 57.2	55.1 54.2	67.6 66.7	57.4 53.6	58.4 57.7
20% PEG20000	64.0	58.5		62.0	58.5	58.5

All samples contain a background of 10 mM sodium cacodylate (pH 7.0) and 140 mM KCl.

	Me	ting Tempera	ture (°C) in	2.0 mM Mg ²⁺		
	FL T7	Acceptor		Anticodon		
Additive	tRNA ^{phe}	Stem	D SL	SL	TΨC SL	Sum of SS
None	65.1	59.7	66.5	69.7	62.0	63.4
20% PEG200	64.8	55.8	61.6	66.1	58.2	59.3
40% PEG200	64.1	50.4	58.4	54.6	61.4	51.9
20% PEG4000	69.5	59.3	64.6	67.6	61.9	62.3
40% PEG4000	87.5	58.0	52.5	67.6	61.0	62.3
20% PEG8000	69.0	59.8	62.7	70.1	61.1	64.3
40% PEG8000	64.0	57.6	59.5	66.5	61.0	60.6
20% PEG20000	70.0	58.0		69.0	58.5	62.5

Table S3. Melting temperatures of T7 tRNA^{phe}, its individual HF, and the SSS in the background of 2.0 mM Mg²⁺ derived from optical melting.

All samples contain a background of 10 mM sodium cacodylate (pH 7.0) and 140 mM KCl.

SAXS Sample	RMSD (Å)
Buffer with 0 mM Mg ²⁺	6.56
Buffer with 0.5 mM Mg ²⁺	4.13
Buffer with 2.0 mM Mg ²⁺	3.30
20% PEG with 0.5 mM Mg ²⁺	3.55
20% PEG with 2.0 mM Mg ²⁺	2.75

Table S4. Evaluation of SAXS data fitting using FoXS and Supcomb.

The RMSD was found using the SUPCOMB alignments of the DAMAVER envelopes to the tRNA crystal structure.

Figure S1. Secondary and tertiary structures of FL tRNA^{phe} and WT tRNA^{phe}. Tertiary contacts, yellow lines, are superimposed on *(left)* FL tRNA^{phe} and *(right)* WT tRNA^{phe}, which contains modifications (black bases). Coloring as per Figure 1.

Figure S2. FL transcribed tRNA and WT tRNA behave in a similar manner in buffer and crowded conditions. In *(left)* buffer and *(right)* 20% PEG8000 FL tRNA (closed circles) and WT modified tRNA (open circles) have similar folding transitions at physiological concentrations of Mg²⁺.

0.5 mM Mg²⁺

Figure S3. Temperature-dependent in-line probing (dT-ILP) PAGE gel of FL tRNA^{phe} in buffer and 20% PEG200 with a background of 10 mM sodium cacodylate, 140 mM KCl, and 0.5 mM Mg²⁺. Guanosines on the T1 ladder are marked with a pink dot, and the regions of the gel that contain nucleotides in the 3' of the acceptor stem, the D loop, anticodon loop, variable loop, and T Ψ C loop are noted. The colors of those regions match the colors in Fig. 1. At 35.0 °C, 38.6 °C, and 42.2 °C the 36 h time point was analyzed; at 45.8 °C, 49.5 °C, and 53.2 °C the 24 h time point was analyzed; at 56.8 °C and 60.4 °C the 5 h time point was analyzed; at 64.0 °C and 67.7 °C the 3 h time point was analyzed; and at 71.4 °C and 75.0 °C the 1 h time point was analyzed.

Figure S4. Temperature-dependent in-line probing (dT-ILP) PAGE gels of FL tRNA^{phe} in buffer and 20% PEG200 with a background of 10 mM sodium cacodylate, 140 mM KCl, and 2.0 mM Mg^{2+} . Guanosines on the T1 ladder are marked with a pink dot, and the regions of the gel that contain nucleotides in the 3' of the acceptor stem, the D loop, anticodon loop, variable loop, and T Ψ C loop are noted. The colors of those regions match the colors in Fig. 1. At 35.0 °C, 38.6 °C, and 42.2 °C the 36 h time point was analyzed; at 45.8 °C, 49.5 °C, and 53.2 °C the 24 h time point was analyzed; at 56.8 °C and 60.4 °C the 5 h time point was analyzed; at 64.0 °C and 67.7 °C the 3 h time point was analyzed; and at 71.4 °C and 75.0 °C the 1 h time point was analyzed.

2.0 mM Mg²⁺

Figure S5. Helical stem fitting of temperature-dependent ILP data in buffer and 20% PEG200 2.0 mM Mg²⁺. Helical fits (globally fit for nucleotides shown with bracket) were performed on buffer and 20% PEG200 samples to obtain a T_M for unfolding of each stem in (*A*) D SL, (*B*) AC SL, and (*C*) T Ψ C SL. The fit T_M 's and the residuals of the fits are provided in each figure and in Table 1.

2.0 mM Mg²⁺

Figure S6. Global fitting of temperature-dependent ILP data in buffer and 20% PEG200 with 2.0 mM Mg²⁺. The same ILP data from Figure S5 were fit globally across each nucleotide in each stem for a single T_M of the RNA and to look for two-state behavior. The T_M values and the residuals from the fits are provided in each figure and in Table 1.

Figure S7. Uv-vis detection and scattering intensity of in-line SEC SAXS experiments of FL tRNA in buffer with 0.5 mM Mg²⁺. (*Left*) Absorbance-detection at 260 nm and (*Right*) Integrated scattering intensity of size-exclusion traces of FL tRNA in buffer with 0.5 mM Mg²⁺ at 0.2 (pink), 0.4 (blue), and 0.6 mg/mL (black). The molecular weight of both peaks as determined from the integrated intensity in BioXTAS RAW is labeled. The left peak has a higher molecular weight (~50 kDa) and is attributed to the formation of a dimer, and the right peak has a lower molecular weight (~27 kDa) very close to that expected of the monomer (estimated 25 kDa). In the 0.2 mg/mL curves, trace amounts of the dimer peak are absorbance-detected, but are not scattering detected. The curves of 0.6 mg/mL RNA (black) were offset to align with the other curves; during the 0.6 mg/mL experiment a bubble was found in the SEC line and the beam had to be turned off, therefore the time of exposure and volume eluted was offset.

Figure S8. Small angle X-ray scattering data fitting of FL tRNA in buffer and 20% PEG8000 in the background of low, physiological Mg²⁺ and crowding. *(A)* Scattering curves, *(B)* Kratky plots, and *(C)* P(r) plots of FL tRNA in buffer with 0 (blue), 0.5 (light yellow), and 2.0 mM Mg²⁺ (red), and in 20% PEG8000 with 0.5 (dark yellow) and 2.0 mM Mg²⁺ (maroon). The data without PEG8000 were collected by SEC-SAXS with the 2.0 mM Mg²⁺ data collected on a different trip than the 0 and 0.5 mM Mg²⁺ data. The data in the presence of 20% PEG8000 were collected without SEC.

Figure S9. Comparison of experimental SAXS scattering curves and the theoretical scattering curve of a tRNA^{phe} crystal structure (PDB ID: 1ehz) generated with FoXS. *(A-C)* Overlay of experimental scattering curves with the theoretical tRNA^{phe} scattering curve generated with FoXS in *(A)* 0, *(B)* 0.5, and *(C)* 2.0 mM Mg²⁺ with and without PEG8000. The χ^2 of the FoXS fits are provided on each plot. *(D)* DAMAVER bead model generated from the tRNA^{phe} theoretical scatting curve overlaid with the crystal structure.