

Figure S1. Relative reactivity of monophosphorylated and diphosphorylated RNA as PABLO substrates (related to Figures 3 and 4).

The splinted ligation of monophosphorylated (MonoP) and diphosphorylated (DiP) *in vitro* transcripts to a DNA oligonucleotide by T4 DNA ligase was monitored as a function of time in the presence of total *E. coli* RNA to simulate the analysis of an endogenous *E. coli* transcript by PABLO.

(A) In vitro transcribed yeiP-U2G RNA in the presence of total RNA from $\Delta yeiP$ cells.

(B) In vitro transcribed metE RNA in the presence of total RNA from \triangle metE cells.

À bent arrow leads from the RNA substrate to its ligation product. In each case, the monophosphorylated substrate underwent ligation at least 13 times faster than its diphosphorylated counterpart.

Figure S2. Detection of diphosphorylated *yeiP* mRNA in *E. coli* (related to Figure 3). The relative abundance of diphosphorylated *yeiP* mRNA was compared in wild-type (WT) and $\Delta rppH$ cells by PACO. As determined previously by PABLO (Richards et al., 2012), 43 ± 2% of the full-length *yeiP* transcript is monophosphorylated in wild-type cells, whereas almost none is monophosphorylated in $\Delta rppH$ cells. A bent arrow leads from the RNA substrate to its ligation product. A vertical line marks the location of superfluous lanes omitted from the image.

Figure S3. RppH-dependent decay of *metE* mRNA in *E. coli* (related to Figure 4). At time intervals after inhibiting transcription with rifampicin, total RNA was extracted from cultures of a pair of isogenic *E. coli* strains containing or lacking RppH, and the ratio of *metE* mRNA to 16S rRNA (a stable internal standard) in each sample was determined by quantitative RT-PCR and plotted semilogarithmically. Error bars represent standard deviations of multiple measurements. The observed half-life of *metE* mRNA increased from 1.2 ± 0.2 min in wild-type cells to 6.6 ± 0.5 min in Δ *rppH* cells.

Figure S4. Unperturbed phosphorylation state of transcripts following RNA extraction from *E. coli* (related to Figure 3).

Fully triphosphorylated (TriP), diphosphorylated (DiP), or monophosphorylated (MonoP) *yeiP*-U2G RNA that had been synthesized by *in vitro* transcription (1.15 pmol) was added to intact *E. coli* cells from which the *yeiP* gene had been deleted (10 ml of a culture harvested at $A_{650} = 0.3$, pelleted, and resuspended), and total RNA was then extracted from those cells. Alteratively, the same *in vitro* transcripts (0.046 pmol) were added to total RNA (5 μ g) following its extraction and purification from the cells. The phosphorylation state of the transcripts spiked in before or after the extraction procedure was then compared by (A) PACO and (B) PABLO. A bent arrow leads from the RNA substrate to its ligation product.

	ppApG			рррАрG		
Time (min)	DiP remaining (%)		Standard deviation	TriP remaining (%)		Standard deviation
0	100.00	±	0.00	100.00	±	0.00
1	39.69	±	0.74	89.21	±	0.98
2	2.56	±	0.28	80.04	±	1.29
3	0.19	±	0.07	71.67	±	1.69
4	0.00	±	0.00	64.46	±	2.15
6	0.00	±	0.00	52.37	±	2.28
8	0.00	±	0.00	42.02	±	2.32
10	0.00	±	0.00	34.13	±	2.28

 Table S1. Relative reactivity of diphosphorylated versus triphosphorylated dinucleotides (related to Figure 2).

	ррАрА			рррАрА		
Time (min)	DiP remaining (%)		Standard deviation	TriP remaining (%)		Standard deviation
0	100.00	±	0.00	100.00	±	0.00
1	48.98	±	0.01	93.65	±	1.08
2	9.80	±	2.06	88.13	±	1.62
3	0.60	±	0.19	83.01	±	2.16
4	0.12	±	0.00	78.19	±	2.67
6	0.00	±	0.00	69.67	±	3.49
8	0.00	±	0.00	62.11	±	4.10
10	0.00	±	0.00	55.28	±	4.58

	ppApU			pppApU		
Time (min)	DiP remaining (%)		Standard deviation	TriP remaining (%)		Standard deviation
0	100.00	±	0.00	100.00	±	0.00
1	54.69	±	0.02	96.76	±	0.83
2	24.65	±	1.85	93.95	±	0.96
3	9.27	±	1.47	91.44	±	1.22
4	3.52	±	0.81	88.97	±	1.17
6	0.00	±	0.00	84.38	±	1.50
8	0.00	±	0.00	80.05	±	1.47
10	0.00	±	0.00	75.96	±	1.61

	ррАрС			рррАрС		
Time (min)	DiP remaining (%)		Standard deviation	TriP remaining (%)		Standard deviation
0	100.00	±	0.00	100.00	±	0.00
1	63.81	±	7.86	97.49	±	0.69
2	38.69	±	10.79	95.70	±	0.97
3	22.62	±	10.35	93.98	±	1.18
4	12.71	±	8.17	92.71	±	1.17
6	4.15	±	3.81	89.58	±	1.51
8	1.40	±	1.56	86.94	±	1.70
10	0.47	±	0.59	84.28	±	1.80

Table S2. Measurements used to calculate the capping efficiencies of yeiP-U2G and metEstandards synthesized by in vitro transcription (related to Figures 3 and 4).

		Measure	5' homogeneity			
	Y _{TS}	Y _{DS}	Y _{MS}	E _{LS}	D _S	M _S
yeiP-U2G	0.244 ±	0.692 ±	0.038 ±	0.802 ±	0.930	0.978
	0.067	0.028	0.021	0.042		
metE	0.142 ±	0.674 ±	$0.027 \pm$	0.680 ±	0.974	0.975
	0.001	0.014	0.038	0.020		

 Y_{TS} , Y_{DS} , and Y_{MS} are the fractional PACO ligation yields obtained for the triphosphorylated, diphosphorylated, and monophosphorylated standards, respectively. E_{LS} is the PABLO ligation efficiency of fully monophosphorylated RNA. The Y and E values correspond to the mean and standard deviation of two independent measurements. D_S and M_S are the calculated fractions of those standards that are diphosphorylated and monophosphorylated, respectively.

		С	apping efficienci	es
		E _T	E _D	E _M
	Monte Carlo	+ 0.080 0.306 - 0.089	+ 0.064 0.900 - 0.057	+ 0.026 0.042 - 0.029
yeiP-U2G	Direct calculation	0.304	0.905	0.042
metF	Monte Carlo	+ 0.006 0.209 - 0.007	+ 0.035 1.014 - 0.040	+ 0.057 0.035 - 0.057
HICEL	Direct calculation	0.209	1.013	0.035

Table S3. Calculated capping efficiencies of *yeiP*-U2G and *metE* standards synthesized by *in vitro* transcription (related to Figures 3 and 4).

 E_T , E_D , and E_M are the fractional capping efficiencies calculated for triphosphorylated, diphosphorylated, and monophosphorylated RNA, respectively, with 0 being no capping and 1 being complete capping. Each efficiency determined by Monte Carlo simulation corresponds to the peak of an asymmetric distribution, and the error range (±) corresponds to a confidence level of 68.3%, equivalent to one standard deviation. For comparison, the capping efficiencies were also calculated directly; these values agree well with the peak values obtained by Monte Carlo simulation, but only the simulation allowed error ranges to be determined. A minor discrepancy versus the theoretical maximum (1.000) resulted from the small mathematical correction factors that were used and is within the margin of error.

	РАСО				PABLO			
	Wild	d-type	$\Delta rppH$		Wild-type		$\Delta rppH$	
	Y _D	E _{LD}	Y _D	E _{LD}	Y _M	E _{LM}	Y _M	E _{LM}
yeiP-	0.188 ±	0.570 ±	0.606 ±	$0.627 \pm$	0.479 ±	$0.655 \pm$	$0.024 \pm$	0.769 ±
U2G	0.004	0.008	0.004	0.031	0.012	0.026	0.0003	0.008
metE	$0.404 \pm$	0.700 ±	0.664 ±	0.666 ±	0.283 ±	0.899 ±	$0.026 \pm$	0.904 ±
	0.038	0.020	0.015	0.023	0.010	0.016	0.004	0.003

Table S4. Measurements used to calculate the phosphorylation state of *yeiP*-U2G and *metE* mRNA in *E. coli* (related to Figures 3 and 4).

The phosphorylation state of *yeiP*-U2G and *metE* mRNA was compared in wild-type and $\Delta rppH$ *E. coli* cells by PACO and PABLO. Y_D and Y_M are the fractional PACO and PABLO ligation yields. E_{LD} and E_{LM} are the PABLO ligation efficiencies of fully monophosphorylated RNA. The values listed correspond to the mean and standard deviation of measurements on 2-3 biological replicates.

		Diphospl	horylated	Monophosphorylated		
		Wild-type	$\Delta rppH$	Wild-type	$\Delta rppH$	
		+ 0.060	+ 0.134	+ 0.033	+ 0.008	
	Monte Carlo	0.343	1.082	0.706	-0.032	
		- 0.046	- 0.133	- 0.033	- 0.008	
yeiP-U2G	Direct calculation	0.352	1.088	0.707	- 0.032	
	Monte Carlo	+ 0.080 0.511 - 0.070	+ 0.073 0.962 - 0.062	+ 0.012 0.273 - 0.015	+ 0.006 - 0.051 - 0.008	
metE	Direct calculation	0.516	0.968	0.271	- 0.051	

Table S5. Phosphorylation state of *yeiP*-U2G and *metE* mRNA in *E. coli* (related to Figures 3 and 4).

The phosphorylation state of *yeiP*-U2G and *metE* mRNA was compared in wild-type and $\Delta rppH$ *E. coli* cells. Each fractional value determined by Monte Carlo simulation corresponds to the peak of an asymmetric distribution, and the error range (±) corresponds to a confidence level of 68.3%, equivalent to one standard deviation. For comparison, the fractional amounts of diphosphorylated and monophosphorylated *yeiP*-U2G and *metE* mRNA were also calculated directly; these values agree well with the peak values obtained by Monte Carlo simulation, but only the simulation allowed error ranges to be determined. Minor discrepancies versus the theoretical maximum (1.000) or minimum (0.000) resulted from the small mathematical correction factors that were used and are either within the margin of error or close to it. These small differences have no bearing on the conclusion that diphosphorylated mRNA is present and abundant in wild-type *E. coli*.

Nucleotide	Vendor	Catalog number	Nominal purity	Measured purity ¹
				99.33% ATP
ATP	Roche	11140965001	≥98%	0.67% ADP
			> 0507	99.50% ADP
ADP	Sigma	A-5285	293%	0.50% AMP
AMP	Sigma	A-1752	≥ 99%	100% AMP
				99.35% GTP
GTP	Roche	11140957001	≥ 98%	0.65% GDP
	MP			97.68% GDP
GDP	Biomedicals	02151213	~ 98%	2.32% GMP
GMP	Sigma	G-8377	≥ 99%	100% GMP
				99.57% CTP
СТР	Roche	11140922001	≥98%	0.43% CDP
				99.07% UTP
UTP	Roche	11140949001	≥98%	0.93% UDP

 Table S6. Nucleotides used for in vitro transcription (related to Star Methods).

¹ As determined by anion-exchange chromatography.

 Table S7. Oligonucleotides used in these studies (related to Star Methods).

Name	Sequence	Purpose
T7 metE fwd	AAAACAAATTAATACGACTCACTA	PCR primer for <i>metE in vitro</i>
	TAGTAAACATCTGGACGGC	transcription (IVT) template
metE rev	AAAAGACCGGGTGGTATTACCACC	PCR primer for <i>metE</i> IVT
	CGGTTTGGATTTTACC	template
T7 yeiP-U2G fwd	AAAAGAATTCCAAATTAATACGAC	PCR primer for <i>yeiP</i> -U2G
	TCACTATTAGATTTTTGACATTTTC	IVT template
	GACTACAGG	
yeiP rev	AAATTAAAAAAGGGACAGCCTGA	PCR primer for <i>yeiP</i> -U2G
	GC	IVT template
yeiP 80 rev	GTAATTCAGTACCATACCTT	PCR primer for truncated
		<i>yeiP</i> -U2G IVT template ¹
yeiP 128 rev	AGTGGGCGACTGAATATC	PCR primer for truncated
		<i>yeiP</i> -U2G IVT template ²
yeiP 444 rev	TTTCCAGATCAACGGTCTGCG	PCR primer for truncated
		<i>yeiP</i> -U2G IVT template ³
DZmetE214	TCAGCTCGCGAGGCTAGCTACAAC	10-23 DNAzyme for cleaving
	GAGCAGGCCAAC	metE ⁴

DZyeiP69	GTAATTCAGTAGGCTAGCTACAAC	10-23 DNAzyme for cleaving
	GACATACCTTTT	<i>yeiP</i> and <i>yeiP</i> -U2G ⁵
DZyeiP444	GGTTTCAACGAGGCTAGCTACAAC	10-23 DNAzyme for cleaving
	GATTCCAGATCA	<i>yeiP</i> -U2G prior to TLC ⁶
DZEcIVTa54	ACCGAACGCAAGGCTAGCTACAAC	10-23 DNAzyme for cleaving
	GAGCCGACCGCA	EcIVTa ⁷
X22	GAACAATATGAATGATAACTTG	X oligo for PACO/PABLO
		analysis of <i>yeiP</i> , <i>yeiP</i> -U2G,
		and EcIVTa
X32	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	X oligo for PACO/PABLO
	GATAACTTG	analysis of <i>metE</i>
Y-metE	TAGCCGTCCAGATGTTTACCAAGT	Y oligo for PACO/PABLO
	TATCATTCATATTGTTC	analysis of <i>metE</i>
Y-yeiP	AGTCGAAAATGTCAAAAATATCAA	Y oligo for PACO/PABLO
	GTTATCATTCATATTGTTC	analysis of <i>yeiP</i>
Y-yeiP-U2G	AGTCGAAAATGTCAAAAATCTCAA	Y oligo for PACO/PABLO
	GTTATCATTCATATTGTTC	analysis of <i>yeiP</i> -U2G
Y-EcIVTa	AGAAGAACAACAGAGAAAGATCA	Y oligo for PACO analysis of
	AGTTATCATTCATATTGTTC	EcIVTa
metE probe	CAGGCCAACGCGAGGGAAACCGA	Northern blot probe for <i>metE</i>
yeiP probe	TTCGTTCGCTCTTGGCATCG	Northern blot probe for <i>yeiP</i>
		and <i>yeiP</i> -U2G
EcIVTa probe	GCCGACCGCACAGGGCAGGG	Northern blot probe for
		EcIVTa
qPCR metE fwd	ATGGTGCGTTGGCTGCGT	qPCR primer for <i>metE</i>
aPCR metE rev	CGAGGGAAACCGAGGGTGTG	aPCR primer for <i>metE</i>
1		
qPCR 16S fwd	CTCTTGCCATCGGATGTGCCCA	qPCR primer for 16S rRNA
qPCR 16S rev	CCAGTGTGGCTGGTCATCCTCTCA	qPCR primer for 16S rRNA

¹ For synthesis of the first 80 nucleotides of *yeiP*-U2G RNA by *in vitro* transcription.

² For synthesis of the first 128 nucleotides of *yeiP*-U2G RNA by *in vitro* transcription.

⁶Cuts 444 nucleotides from the 5' end of *yeiP*-U2G.

⁷ Cuts 54 nucleotides from the 5' end of EcIVTa.

³ For synthesis of the first 444 nucleotides of *yeiP*-U2G RNA by *in vitro* transcription.

⁴ Cuts 214 from the 5' end of *metE*.

⁵ Cuts 69 nucleotides from the 5' end of yeiP and yeiP-U2G.