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Supplementary methods 

Equations and parameter values 

Interactions among genes in the network are described using Hill kinetics, to encompass 

saturation, as in (1). Activations are in the form: 

!! ∗ [!]!
!! + [!]! 

while inhibitions are in the form: 

!! ∗ !!
!! + [!]! 

Si terms are the maximum transcription rates of the corresponding Hill terms; ki terms are 

Michaelis-Menten constants, and represent the concentration of a substrate, corresponding to 

its Hill term, required for the transcription rate to reach half its maximum (i.e. Si/2); di are 

degradation rates (first order kinetics); n is a scaling factor; φ(0,σi) terms represent added 

noise, sampled from a zero mean Gaussian; σi represents the noise amplitude. Where present, 

αi represents basal activity. Note that for the networks in Figure 5, only continuation analysis 

of the systems without noise was performed; thus, the noise terms are not present in the 

corresponding equations. p is the strength of Fgf4/Erk signalling inhibition of Nanog, and is a 

function of both Prdm14 and PD. All simulation files are available upon request. 
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Equations of the full system (network in Figure 1)	

	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N=Nanog; OS=Oct4-Sox2; M=Mycn; PR=Prdm14; R=Rest; E=Fgf4/Erk; B=β-catenin; 

Tcf3=Tcf3. 

 

 

! = !!! ∗ !!!
!!! + [!"]

 +  !!! ∗ !!!
!!! + [!"]

	
 
![!"]
!" =  n ∗ ! !!,! ∗ [!"]!

(! + [!"])! ∗ !" ∗ !" +
!! ∗ [!]
! + [!] − !"# ∗ [!"]! + !(0, σ!") ∗ [!"] 	

 
![!]
!" = n ∗ ! !! ∗!!

!! + [!]! + ! ∗ [!] +
!! ∗ [!"]

! + [!"] + [!"#3] +
!! ∗ [!]
! + [!] − !" ∗ [!]! + !(0,σ!) ∗ [!]	

	
![!]
!" = n ∗ ! !! ∗ !! + [!]+

!! ∗ !
! + [!]+

!! ∗ !!
!! + [!] − !" ∗ [!]! + !(0, σ!) ∗ [!]	

 
![!"]
!" = n ∗ ! !!" ∗ !

! + [!"]+
!!! ∗ [!]
! + [!] +

!!" ∗ [!]
! + [!] − !"# ∗ [!"]! + !(0, σ!") ∗ [!"]  

 
![!]
!" = n ∗ !!!" ∗ [!]! + [!] +

!!" ∗ !!
!! + [!]

− !" ∗ [!]!+ !(0, σ!) ∗ [!]  
 
![!]
!" = n ∗ !!!" ∗ [!"]! + [!"] − !" ∗ [!]!	

 
![!]
!" = n ∗ !α! − !" ∗ !

!! ∗ !!
!! + [!"]

! ∗ [!]! + !(0, σ!) ∗ [!]	
 
![!"#3]
!" = n ∗ !α! − !"# ∗ !1 +

!! ∗ [!]
!! + [!]

! ∗ [!"#3]! + !(0,σ!) ∗ [!"#3] 
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Equations of the extended system (network in Figure 1, plus activation of Nanog on β-

catenin). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N=Nanog; OS=Oct4-Sox2; M=Mycn; PR=Prdm14; R=Rest; E=Fgf4/Erk; B=β-catenin; 

Tcf3=Tcf3.	

 

 

! = !!! ∗ !!!
!!! + [!"]

 +  !!! ∗ !!!
!!! + [!"]

	
 
![!"]
!" =  n ∗ ! !!,! ∗ [!"]!

(! + [!"])! ∗ !" ∗ !" +
!! ∗ [!]
! + [!] − !"# ∗ [!"]! + !(0, σ!") ∗ [!"] 	

 
![!]
!" = n ∗ ! !! ∗!!

!! + [!]! + ! ∗ [!]+
!! ∗ [!"]

! + [!"] + [!"#3]+
!! ∗ [!]
! + [!] − !" ∗ [!]!+ !(0, σ!) ∗ [!]	

	
![!]
!" = n ∗ ! !! ∗ !! + [!] +

!! ∗ !
! + [!] +

!! ∗ !!
!! + [!]− !" ∗ [!]!+ !(0, σ!) ∗ [!]	

 
![!"]
!" = n ∗ ! !!" ∗ !

! + [!"] +
!!! ∗ [!]
! + [!] +

!!" ∗ [!]
! + [!] − !"# ∗ [!"]! + !(0,σ!") ∗ [!"]  

 
![!]
!" = n ∗ !!!" ∗ [!]! + [!] +

!!" ∗ !"
!! + [!]

− !" ∗ [!]! + !(0,σ!) ∗ [!]  
 
![!]
!" = n ∗ !!!" ∗ [!"]! + [!"] − !" ∗ [!]!	

 
![!]
!" = n ∗ !α! +  !!" ∗ [!]! + [!] − !" ∗ !

!! ∗ !!
!! + [!"]

! ∗ [!]!+ !(0, σ!) ∗ [!]	
 
![!"#3]
!" = n ∗ !α! − !"# ∗ !1 +

!! ∗ [!]
!! + [!]

! ∗ [!"#3]!+ !(0, σ!) ∗ [!"#3] 
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Parameter values (network in Figure 1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(* molecules/minute; # 1/minute)	

 

 

 

 

 

 

 

sp1	 30*	 s14	 20*	 dM	 1#	

sp2	 30*	 s15	 2*	 dPR	 1#	

kp1	 5	 sb	 50*	 dR	 1#	

kp2	 15	 st	 20*	 dE	 1#	

s1,2	 75*	 α1	 1*	 dB	 1#	

s3	 1*	 α2	 40*	 dTc	 1#	

s4	 37*	 k	 10	 σOS	 0.02	

s5	 2*	 	 	 σN	 0.05(0.04 

for PD, 

Chiron=2)	

s6	 0.01*	 kr	 0.05	 σM	 0.02	

s7	 10*	 km	 0.05	 σPR	 0.02	

s8	 100*	 kt	 10	 σR	 0.02	

s9	 20*	 kb	 1	 σB	 0.02	

s10	 15*	 dO	 1#	 σT	 0.02	

s11	 30*	 dS	 1#	 snb	 10*	

s12	 10*	 dOS	 1#	 n	 0.005	

s13	 0.1*	 dN	 1#	
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Equations of simplified network 1 (Figure 5a) 

! = !! ∗ !!
!! + [!"]

 

 
! !"
!" =  n ∗ !!,! ∗ !" !

! + !" ! ∗ !" ∗ !" − !"# ∗ !"  

 
! !
!" = n ∗ !! ∗ !!

!! + ! ! + ! ∗ ! + !! ∗ !"
! + !" + !"#3 − !" ∗ !  

 
! !
!" = n ∗ !! ∗ !"

! + !" − !" ∗ !  

 
! !
!" = n ∗ α! − !" ∗

!! ∗ !!
!! + [!"]

∗ !  

 
![!"#3
!" = n ∗ α! − !"# ∗ 1+ !! ∗ !

!! + ! ∗ !"#3  

	

 

N=Nanog; OS=Oct4-Sox2; E=Fgf4/Erk; B=β-catenin; Tcf3=Tcf3.	
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Parameter values (Network in Figure 5a)	

sp	 35*	 dN	 1#	

kp	 25	 dM	 1#	

s1,2	 75*	 dPR	 1#	

s3	 2*	 dR	 1#	

s4	 37*	 dE	 1#	

s5	 2*	 dB	 1#	

sb	 50*	 dTc	 1#	

st	 20*	 n	 0.005	

α1	 1*	

α2	 40*	

k	 10	

kt	 10	

kb	 1	

dO	 1#	

dS	 1#	

dOS	 1#	

(* molecules/minute; # 1/minute) 	
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Equations of simplified network 2 (Network in Figure 5d)	

! = !! ∗ !!
!! + [!"]

 

 
! !"
!" =  n ∗ !!,! ∗ !" !

! + !" ! ∗ !" ∗ !" − !"# ∗ !"   

 
! !
!" = n ∗ !! ∗ !

! + ! + !! ∗ !"
! + !" + !"#3 ! + ! ∗ ! − !" ∗ !  

 
! !
!" = n ∗ !! ∗ !"

! + !" − !" ∗ !  

 
! !
!" = n ∗ α! +

!!" ∗ ! !

!! + ! ! − !" ∗
!! ∗ !!

!! + [!"]
∗ !  

 
![!"#3
!" = n ∗ α! − !"# ∗ 1+ !! ∗ ! !

!!! + ! ! ∗ !"#3  

	

N=Nanog; OS=Oct4-Sox2; E=Fgf4/Erk; B=β-catenin; Tcf3=Tcf3.	
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Parameter values (Network in Figure 5d)	

sp	 35*	 dN	 1#	

kp	 5	 dM	 1#	

s1,2	 75*	 dPR	 1#	

s3	 35*	 dR	 1#	

s4	 5*	 dE	 1#	

s5	 2*	 dB	 1#	

sb	 50*	 dTc	 1#	

st	 15*	 n	 0.005	

snb 10*   

α1	 1*	

α2	 40*	

k	 10	

kt	 0.15	

kb	 250	

dO	 1#	

dS	 1#	

dOS	 1#	

 

(* molecules/minute; # 1/minute) 	
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Equations of simplified network 3 (Network in Figure 5g) 

	

! = !! ∗ !!
!! + [!"]

 
 
! !"
!" =  n ∗ !!,! ∗ !" !

! + !" ! ∗ !" ∗ !" − !"# ∗ !"   
 
! !
!" = n ∗ !! ∗ !

! + ! + !! ∗ !"
! + !" + !"#3 + ! ∗ ! + !! ∗ ! !

!!! + ! ! − !" ∗ ! 	
	
! !
!" = n ∗ !! ∗ ! !

!! + ! ! − !" ∗ !  

! !
!" = n ∗ !! ∗ !"

! + !" − !" ∗ !  

! !
!" = n ∗ α! − !" ∗

!! ∗ !!
!! + [!"]

∗ !  

![!"#3
!" = n ∗ α! − !"# ∗ 1+ !! ∗ !

!! + ! ∗ !"#3  

	
	
N=Nanog; OS=Oct4-Sox2; R=Rest; E=Fgf4/Erk; B=β-catenin; Tcf3=Tcf3.	
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Parameter values (Network in Figure 5g)	

sp	 35*	 dO	 1#	

kp	 10	 dS	 1#	

s1,2	 75*	 dOS	 1#	

s3	 6*	 dN	 1#	

s4	 1*	 dM	 1#	

s5	 2*	 dPR	 1#	

s6	 48	 dR	 1#	

s7	 50	 dE	 1#	

sb	 50*	 dB	 1#	

st	 20*	 dTc	 1#	

α1	 1*	 n	 0.005	

α2	 40*	

k	 10	

kn	 45	

kt	 6	

kb	 1	

 

(* molecules/minute; # 1/minute) 	
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Equations of the full system, with no regulation of β-catenin on Mycn  (Network in 

Figure S5a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N=Nanog; OS=Oct4-Sox2; M=Mycn; PR=Prdm14; R=Rest; E=Fgf4/Erk; B=β-catenin; 

Tcf3=Tcf3. 

 

 

! = !!! ∗ !!!
!!! + [!"]

 +  !!! ∗ !!!
!!! + [!"]

	
 
![!"]
!" =  n ∗ ! !!,! ∗ [!"]!

(! + [!"])! ∗ !" ∗ !" +
!! ∗ [!]
! + [!] − !"# ∗ [!"]!+ !(0, σ!") ∗ [!"] 	

 
![!]
!" = n ∗ ! !! ∗!!

!! + [!]! + ! ∗ [!]+
!! ∗ [!"]

! + [!"] + [!"#3]+
!! ∗ [!]
! + [!] − !" ∗ [!]! + !(0, σ!) ∗ [!]	

	
![!]
!" = n ∗ ! !! ∗ !! + [!]+

!! ∗ !
! + [!]− !" ∗ [!]! + !(0, σ!) ∗ [!]	

 
![!"]
!" = n ∗ ! !!" ∗ !

! + [!"]+
!!! ∗ [!]
! + [!] +

!!" ∗ [!]
! + [!] − !"# ∗ [!"]! + !(0,σ!") ∗ [!"]  

 
![!]
!" = n ∗ !!!" ∗ [!]! + [!] +

!!" ∗ !!
!! + [!]

− !" ∗ [!]! + !(0, σ!) ∗ [!]  
 
![!]
!" = n ∗ !!!" ∗ [!"]! + [!"] − !" ∗ [!]!	

 
![!]
!" = n ∗ !α! − !" ∗ !

!! ∗ !!
!! + [!"]

! ∗ [!]! + !(0, σ!) ∗ [!]	
 
![!"#3]
!" = n ∗ !α! − !"# ∗ !1 +

!! ∗ [!]
!! + [!]

! ∗ [!"#3]! + !(0, σ!) ∗ [!"#3] 
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Parameter values (network in Figure S5a)	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(* molecules/minute; # 1/minute)	

 

 

sp1	 30*	 s14	 20*	 dM	 1#	

sp2	 30*	 s15	 2*	 dPR	 1#	

kp1	 5	 sb	 50*	 dR	 1#	

kp2	 15	 st	 20*	 dE	 1#	

s1,2	 75*	 α1	 1*	 dB	 1#	

s3	 1*	 α2	 40*	 dTc	 1#	

s4	 37*	 k	 10	 σOS	 0.02	

s5	 2*	 	 	 σN	 0.05(0.04 

for PD, 

Chiron=2)	

s6	 0.01*	 kr	 0.05	 σM	 0.02	

s7	 10*	 km	 N/A	 σPR	 0.02	

s8	 100*	 kt	 10	 σR	 0.02	

s9	 N/A	 kb	 1	 σB	 0.02	

s10	 15*	 dO	 1#	 σT	 0.02	

s11	 30*	 dS	 1#	 snb	 10*	

s12	 10*	 dOS	 1#	 n	 0.005	

s13	 0.1*	 dN	 1#	



13	
	

Equations of the full system, with β-catenin activating Mycn  (Network in Figure S6a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N=Nanog; OS=Oct4-Sox2; M=Mycn; PR=Prdm14; R=Rest; E=Fgf4/Erk; B=β-catenin; 

Tcf3=Tcf3. 

 

! = !!! ∗ !!!
!!! + [!"]

 +  !!! ∗ !!!!!! + [!"]
	

 
![!"]
!" =  n ∗ ! !!,! ∗ [!"]!

(! + [!"])! ∗ !" ∗ !" +
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!" = n ∗ !!!" ∗ [!"]! + [!"] − !" ∗ [!]!	

 
![!]
!" = n ∗ !α! − !" ∗ !
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!! + [!"]

! ∗ [!]! + !(0,σ!) ∗ [!]	
 
![!"#3]
!" = n ∗ !α! − !"# ∗ !1 +

!! ∗ [!]
!! + [!]

! ∗ [!"#3]! + !(0,σ!) ∗ [!"#3] 
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Parameter values (network in Figure S6a)	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(* molecules/minute; # 1/minute)	

 

 

sp1	 30*	 s14	 20*	 dM	 1#	

sp2	 30*	 s15	 2*	 dPR	 1#	

kp1	 5	 sb	 50*	 dR	 1#	

kp2	 15	 st	 20*	 dE	 1#	

s1,2	 75*	 α1	 1*	 dB	 1#	

s3	 1*	 α2	 40*	 dTc	 1#	

s4	 37*	 k	 10	 σOS	 0.02	

s5	 2*	 	 	 σN	 0.05(0.04 

for PD, 

Chiron=2)	

s6	 0.01*	 kr	 0.05	 σM	 0.02	

s7	 10*	 km	 0.05	 σPR	 0.02	

s8	 100*	 kt	 10	 σR	 0.02	

s9	 20*	 kb	 1	 σB	 0.02	

s10	 15*	 dO	 1#	 σT	 0.02	

s11	 30*	 dS	 1#	 snb	 10*	

s12	 10*	 dOS	 1#	 n	 0.005	

s13	 0.1*	 dN	 1#	 	 	
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Model simulations and bifurcation analysis 

All SDE model simulations were run for 1000 cells, with parameters set at values reported 

above. Simulations in Figures 2a, 3a and Supplementary Figure S2a were performed 50 

times; percentage of cells in the NH state, ± Standard Deviations, are provided in the main 

text. To compute numerical solutions of the SDEs, we used the Euler-Maruyama method. 

Stochastic simulations and density plots were implemented using the MATLAB platform 

(MathWorks). Steady state and bifurcation analysis (i.e. numerical continuation) was 

performed on the deterministic system (no noise), using the software xppaut 

(http://www.math.pitt.edu/$bard/xpp/xpp.html).  

 

Agent-based simulations 

The agent-based modelling involved creating a population of individual cells (‘agents’), each 

of which has distinct characteristics including cell-cycle (lifetimes), cell fate 

(apoptosis/division), and cell states which depend on gene expression levels arising from the 

underlying GRN model. In our model, the state of each mESC is controlled by its 

intracellular expression of Nanog or Mycn.  

Each cell’s dynamics are governed by a set of SDEs that represent the GRN in Figure 1. The 

general setup of this model can be separated into three different compartments, each with 

their fixed models (Supplementary Figure S7). The SDE model of the GRN in each cell is 

solved throughout the simulation, which in turn influences the cell-cycle model. This cell-

cycle model, governing when a cell will ultimately divide, feeds into a model that describes 

physical interactions between neighbouring cells, and also introduces new cells with 

associated GRN models into the simulation as division proceeds. The cell population is 

updated over discrete time steps, of duration Δt = 1 minute. At each time step the gene 
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expression levels are updated by integrating the SDE model. The current level of Nanog or 

Mycn in each cell defines the cell’s ‘state’ and determines cell-cycle progression. In the 

Nanog-dependent cell-cycle model, cells can take Nanog High (NH) and Nanog Low (NL) 

states, as seen in the distributions in Figure 2a. In the Mycn-dependent cell-cycle model, the 

cells are either in a Mycn High (MH) or Mycn Low (ML) state. The distributions from which 

the cell-cycle durations are drawn are shown in Supplementary Figure S8, with the Nanog-

dependent model allocated from Supplementary Figure S8a and the Mycn-dependent model 

allocated from Supplementary Figure S8b. 

In our model, as in (1), cell-cycle duration is determined at the point of cell division, given 

the expression level of Nanog or Mycn. Each cell is also subject to a fixed probability of 

apoptosis, in order to match observed populations of 10% dead cells at any given point in the 

experiments (1), with dead cells remaining for 8 hours before being removed from the 

simulation, as fitted in (1). 

The model was encoded in the Chaste modelling framework (2, 3), an extensive C++ library 

which allows for agent-based modelling of cell/tissue cultures. Within this model, we created 

an initial population of ~150 cells in a simulated culture that are initialised to their steady 

state values for each gene in serum/LIF or 2i/LIF (Figures 6a-d), or NH/NL states (Figure 

6e). The mechanical model tracks the centre of each cell as a point, with cell neighbours 

defined using a Voronoi tessellation approach, and each pair of neighbouring cells connected 

by a linearly damped spring with a constant stiffness for each cell-cell connection (2). When 

a cell undergoes cell-division, the mechanical model introduced a new ‘cell-centre’ in a 

random direction from the centre of the mother cell. The Voronoi tessellation is then repeated 

to re-establish cell neighbours. The agent-based cell population is bounded by a layer of fixed 

non-proliferating cells to maintain a rigid square domain. The initial configuration of the cell-
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population is a honeycomb mesh of equally spread cells, as shown in Supplementary Figure 

S9. Representative snapshots of agent-based model simulations are shown in Supplementary 

Figure S9, showing initial distribution of Nanog and Mycn levels within each cell 

(Supplementary Figures S9a, c) and mid-point examples during the simulation 

(Supplementary Figures S9b, d). Results in Figure 6a-d were run over 72 simulated hours, to 

compare with the experimental data-set.  
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Supplementary figure and table legends 

Figure S1. Schematic of the process for identification of transcriptional interactions not 

present in the reference model (4) 

Genes differentially expressed in serum/LIF vs 2i/LIF cultured mESCs (RNA-sequencing 

data from (5)) were analysed for Gene Ontology using the DAVID tool (6), and then filtered 

for specific Biological Processes (i.e. development and differentiation, proliferation, cell 

cycle, morphology and cell death). This is set ‘1’ in the diagram. Genes reported in the mESC 

transcription factors compendium (CODEX (7)) being regulators of one of the core 

pluripotency network genes (Oct4, Sox2 or Nanog) were manually extracted, resulting in set 

‘2’ of the diagram. Genes in the shaded intersection of the two sets were considered for 

inclusion into the GRN. Interactions with β-catenin, identified from the data-set of genes 

differentially expressed between Chiron (indirect activator of β-catenin) and XAV (indirect 

inhibitor of β-catenin) (8) were included. Non-transcriptional interactions were retrieved 

from literature, and directions of interaction using NIA mouse ES cell bank (9). The number 

of genes identified or selected in each step is reported in the Figure. All data-sets are reported 

in Supplementary Table S1. 

Figure S2. System dynamics and stability in 2i/LIF (PD=Chiron=20 AU, Nanog 

transcriptional noise not reduced) 

(a) Steady-state distribution of Nanog (simulated in 1000 cells), showing that approximately 

90% of the cells are in NH and 10% NL states. (b) Simulated time courses of Nanog and 

Oct4-Sox2 in 4 single cells over 15 hours. Oct4-Sox2 dimer concentration remains fairly 

constant compared to Nanog. The horizontal black dotted line represents the threshold 

between NH and NL. (c) Continuation of Nanog steady-state for the deterministic system (no 
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noise). Blue lines are stable steady-states, whilst the red line is unstable. Constant 

transcription rate, s4 (dotted black line), intersects only the NH steady-state. Presence of NL 

cells in (a) is therefore only due to noise. (d) Sorting simulation; dynamics of 1000 NH or NL 

cells are simulated over 4 days, and the proportion of cells in the NH state is recorded every 

12 hours (n=10, shaded areas indicate standard deviation). Cells can restore the steady-state 

distribution of approximately 90% NH and 10% NL. 

Figure S3. System dynamics in serum/LIF and 2i/LIF upon Pdrm14 deletion 

(a, b) Steady-state distribution of Nanog for the original GRN (Figure 1) and upon PRDM14 

deletion in serum/LIF (a) and 2i/LIF (b, parameters set as in Figure 3). 

Figure S4. System dynamics adding Nanog activation of β-catenin (PD=Chiron=0)  

(a-d) Steady-state distributions in serum/LIF of Nanog (a, c) and β-catenin (b, d) without (a, 

b) and with (c, d) Nanog activation of β-catenin. (e-h) Steady-state distributions in 2i/LIF 

(parameters set as in Figure 3) of Nanog (e, g) and β-catenin (f, h) without (e, f) and with (g, 

h) Nanog activation of β-catenin. 

Figure S5. System dynamics removing β-catenin regulation of Mycn 

(a) Network diagram, with no inhibition of Mycn by β-catenin. (b) Continuation of Nanog 

steady-state for the deterministic system with no interaction between β-catenin and Mycn. 

Serum/LIF parameters used (PD=0, Chiron=0). Blue lines are stable steady-states, whilst the 

red line is unstable. Constant transcription rate, s4 (dotted black line), intersects both stable 

steady-states. (c) Steady-state distribution of Nanog for serum/LIF parameters, showing 

approximately 50% of cells in NH and NL states. (d) Continuation of Nanog steady-state for 

2i/LIF parameters (PD=2, Chiron=2). Blue lines are stable steady-states, whilst the red line is 

unstable. Constant transcription rate, s4 (dotted black line), is very close to the saddle-node 
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bifurcation point. (e) Steady-state distribution of Nanog for 2i/LIF parameters, showing 

approximately 90% of cells in NH and 10% in NL states. (f) Two-parameter continuation 

(PD and Chiron). The area above the curve denotes the parameter region in which the 

deterministic system presents monostability (NH only). 

Figure S6. System dynamics with β-catenin activating Mycn rather than inhibiting it 

(a) Network diagram, with activation of Mycn by β-catenin. (b) Continuation of Nanog 

steady-state for deterministic system with β-catenin activating Mycn. Serum/LIF parameters 

used (PD=0, Chiron=0). Blue lines are stable steady-states, whilst the red line is unstable. 

Constant transcription rate, s4 (dotted black line), intersects both stable steady-states. (c) 

Steady-state distribution of Nanog for serum/LIF parameters, showing approximately 50% of 

cells in NH and NL states. (d) Continuation of Nanog steady-state for 2i/LIF parameters 

(PD=2, Chiron=2). Blue lines are stable steady-states, whilst the red line is unstable. Constant 

transcription rate, s4 (dotted black line), is very close to the saddle-node bifurcation point. (e) 

Steady-state distribution of Nanog for 2i/LIF parameters, showing approximately 90% of 

cells in NH and 10% in NL states. (f) Two-parameter continuation (PD and Chiron). The area 

above the curve denotes the parameter region in which the deterministic system presents 

monostability (NH only). 

Figure S7. Modular setup of the agent-based model and Nanog distributions in agent-

based simulations  

(a) The agent-based model can be thought of as being made up of three separate 

interconnected modules. The first (1) is the gene-regulatory network, described by SDEs. The 

role of the agent-based model is to add the effects that this module has on the cell-cycle and 

mechanics of cells in a population. The state of genes within each cell affects the lengths of 
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the cell-cycles, and thus at what point a cell divides, which is then managed by the 

mechanical model which introduces new cells into the simulation which requires the creation 

of new gene networks for each cell.  (b) Nanog distribution in the agent-based cell population 

at the end of day 4 of simulation in Serum/LIF when using a Nanog-based cell-cycle model, 

showing a ~50/50 split of NH and NL as expected from the non-agent based simulation. (c) 

Nanog distribution in the agent-based cell population at the end of day 4 of simulation in 

2i/LIF when using a Nanog-based cell-cycle model, showing the higher proportion of NH 

than in the Serum/LIF medium. (d) Nanog distribution in the agent-based cell population at 

the end of day 4 of simulation in Serum/LIF when using a Mycn-based cell-cycle model, 

showing a ~50/50 split of NH and NL. (e) Nanog distribution in the agent-based cell 

population at the end of day 4 of simulation in 2i/LIF medium when using a Mycn-based cell-

cycle model, showing the increase in proportion of NH cells, with a residual population of 

NL cells remaining. 

Figure S8. Cell-cycle model distributions for each state of gene concentration.  

(a, b) We allocate cell-cycle lengths based on whether a cell is in the NH or NL state in the 

Nanog-dependent cell-cycle model (a), or in MH or ML state in the Mycn-dependent cell-

cycle model (b). In the main text, fitted values are reported for the mean of cell-cycle length 

(normal distribution, standard deviation of 1 hour). 

Figure S9. Snapshots of agent-based simulations. 

(a, c) Initial set-up of agent-based simulations in serum/LIF; Nanog (a) and Mycn (c) 

expression is indicated; the distribution is ~50/50 NH and NL. (b, d) A ‘mid’ simulation 

snapshot, showing the growing number of cells within the population, and levels of Nanog 

(b) and Mycn (d). 
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Supplementary Table S1 

Genes differentially expressed in 2i/LIF vs serum/LIF from (5) (as in the paper, p value < 0.2, 

fold change> 2). Gene Ontology analysis (biological processes reported, analysed with 

DAVID (6). CODEX TFs (7), with existence of interaction shown with a tick. Gene 

Ontology analysis including intersection with CODEX and Biological Processes categorized. 

List of all NIA bank genes (9). Interactions of CODEX and NIA bank (p-value<0.05) 

considered for final network.  List of genes differentially expressed between Chiron (Wnt 

pathway activator through inhibition of Gsk3) and XAV (tankyrase inhibitor antagonizing 

Wnt signaling through stabilisation of the Axin2 inhibitor) treated mESCs, from (8). 
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