Identification of Two Secondary Ligand Binding Sites in 14-3-3 Proteins Using Fragment Screening

Eline Sijbesma^{1,#}, Lukasz Skora^{2#}, Seppe Leysen¹, Luc Brunsveld¹, Uwe Koch³, Peter Nussbaumer³, Wolfgang Jahnke^{2,*}, Christian Ottmann^{1,4*}

1 Department of Biomedical Engineering, Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.

2 Center for Proteomic Chemistry, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland

3 Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227 Dortmund, Germany

4 Department of Chemistry, University of Duisburg-Essen, Essen, Germany

contributed equally

* corresponding authors: wolfgang.jahnke@novartis.com; c.ottmann@tue.nl

Supporting Information

	14-3-3σΔc/	14-3-3σΔc/	14-3-3σΔc/	14-3-3σΔc/
	TAZpS89	TAZpS89/NV1	TAZpS89/NV2	TAZpS89/NV3
PDB ID	5N75	5N5R	5N5T	5N5W
Data collection				
Wavelength (Å)	1.54	1.54	1.54	1.033
Resolution (Å)	45.60-1.80	45.48-1.80 (1.84-	65.96-1.80 (1.84-	65.85-1.04 (1.39-1.37)
	(1.84-1.80)	1.80)	1.80)	
Space group	C2221	C2221	C2221	C2221
Unit cell	82.18 112.27	81.96 111.97 62.63	81.51 112.27 62.59	81.29 112.29 62.51
	02.82			
Total raflactions ^a	167641 (6454)	169052 (6575)	167952 (6942)	700177 (20101)
I Unique neflections ^a	107041(0434)	108035(0373)	107833(0842)	(0217 (2022)
Unique reflections	2/105 (1500)	26488 (1393)	26972 (1563)	60317 (2923)
Redundancy	6.2 (4.3)	6.3 (4.7)	6.2 (4.4)	13.1 (13.0)
Completeness (%)"	99.6 (94.5)	98.1 (87.1)	99.8 (98.2)	100.0 (100.0)
Average $I/\sigma_{(I)}$	33.3 (9.7)	38.9 (8.8)	42.1 (11.0)	20.7 (2.1)
Wilson B-factor	8.7	6.7	8.3	13.6
CC _{1/2} ^{a,b}	0.999 (0.989)	1.0 (0.98)	1.0 (0.987)	1.0 (0.756)
R _{sym} ^{a,c}	0.039 (0.120)	0.040 (0.169)	0.034 (0.129)	0.072 (1.348)
R _{meas} ^{a,d}	0.043 (0.136)	0.043 (0.190)	0.037 (0.146)	0.075 (1.403)
Refinement				
Reflections	27083	26475	26951	60289
(refinement)				
Reflections (R-free)	1429	1308	1325	3044
Non-hydrogen atoms	2055 / 257	2025 / 274	2029 / 248	2001 / 214
(protein / solvent)				
R_{work} (%)	15.3	14.9	15.9	14.4
$R_{free}(\%)$	18.6	18.2	18.4	16.5
RMS (bonds) /	0.005 / 0.707	0.012 / 0.916	0.004 / 0.587	0.006 / 0.859
(angles)				
Average protein B-	11.93	11.68	12.35	14.22
factor				
Ramachandran:	98.3 / 0.0	97.4 / 0.45	98.7 / 0.0	98.3 / 0.0
favored / outliers (%)				
Clashscore	0.73	0.99	1.46	1.25

Table S1: Crystallographic data

^a Number in parentheses is for the highest resolution shell used in the refinement

^b $CC_{1/2}$ = Pearson's intra-dataset correlation coefficient, as described by

Karplus and Diederichs

^c $R_{sym} = \sum_h \sum_l |I_{hl} - \langle I_h \rangle| / \sum_h \sum_l \langle I_h \rangle$, where I_{hl} is the intensity of the lth observation of reflection h and $\langle I_h \rangle$

is the average intensity of reflection h

 ${}^{d}R_{meas} = \sum_{h} \left| \sqrt{(n_{h}/(n_{h}-1))\sum_{l}} \right| I_{hl} - \langle I_{h} \rangle \left| \right| / \sum_{h} \sum_{l} \langle I_{h} \rangle, \text{ where } n_{h} \text{ is the number of }$ observations of reflection h

^e Correlation of experimental intensities with intensities calculated from refined model, as described by Karplus and Diederichs

Karplus, P. A. & Diederichs, K. (2012). Linking crystallographic model and data quality. Science 336, 1030-3.

Figure S1. Overlay of YAP and TAZ peptide in complex with 14-3-3. Crystal structure of 14-3-3σ (grey, cartoon) bound to YAPpS127 (cyan sticks) and TAZpS89 (orange sticks). The only sequence difference is located at the -2 position relative to the phosphoserine (YAP: A125, TAZ: S87). (PDB IDs: 3MHR, 5N75)

Figure S2. Binding of fragments NV1 (A) and NV2 (B) to 14-3-3 in presence and absence of TAZpS89 peptide. 1D ¹H spectra of compound mixtures are shown in magenta. Binding of fragments to 14-3-3 is evidenced by wLOGSY spectra recorded in absence (red) and presence (blue) of TAZpS89 peptide. 1D ¹H spectra of identified ligands are shown in black.

Figure S3. Determination of binding affinity of fragment NV2 to the 14-3-3 / TAZpS89 complex. (A) fragment NV2 was titrated to a preformed complex of 100 mM 14-3-3 and 150 mM TAZpS89 (red) in 5 steps: 250 μ M (not shown), 500 μ M (yellow), 1 mM (green), 2 mM (blue), 4 mM (not shown). (B) Excerpt of spectrum A showing the resonance with largest chemical shift perturbations. (C) Fitting of data indicates a ~1 mM affinity.

Figure S4. Structural alignments of the NV1 binding pocket among the seven human 14-3-3 isoforms. Structures with the following PDB IDs were used for the depicted alignments: $14-3-3\beta$ (4GNT), $14-3-3\gamma$ (4J6S), $14-3-3\epsilon$ (3UBW), $14-3-3\eta$ (2C74), $14-3-3\tau$ (2BTP), $14-3-3\zeta$ (4WRQ).

Figure S5: Structural alignments of the NV2 and NV3 binding pocket among the seven human 14-3-**3** isoforms. Structures with the following PDB IDs were used for the depicted alignments: $14-3-3\beta$ (4GNT), $14-3-3\gamma$ (4J6S), $14-3-3\epsilon$ (3UBW), $14-3-3\eta$ (2C74), $14-3-3\tau$ (2BTP), $14-3-3\zeta$ (4WRQ).