Supplemental Material for Manuscript:

Identification of Common Neural Circuit Disruptions in Cognitive Control Across Psychiatric Disorders

Lisa M. McTeague, Ph.D.¹, Julia Huemer, M.D.^{2,3,4,5}., David M. Carreon, M.D.^{2,3,4}, Ying Jiang, M.D.^{2,3,4}, Simon B. Eickhoff, DrMed^{6,7,8*}, & Amit Etkin, M.D., Ph.D.^{2,3,4*}

Affiliations: ¹ Medical University of South Carolina, Charleston, SC, USA

 ² Department of Psychiatry and Behavioral Sciences and
³ Stanford Neurosciences Institute Stanford University, Stanford, CA USA

⁴ Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, USA

⁵ Medical University of Vienna, Vienna, Austria

⁶ Institute for Neuroscience and Medicine (INM-1); Research Center Jülich, Jülich, Germany

⁷ Institute for Clinical Neuroscience and Medical Psychology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany

⁸ Institute for Systems Neuroscience, School of Medicine, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany

^{*} Denotes shared senior authorship

Corresponding author: Amit Etkin Stanford University Department of Psychiatry and Behavioral Sciences 401 Quarry Road, MC: 5797 Stanford, CA 94305-5797 Email: amitetkin@stanford.edu Phone: +1 650.725.5736

Section	Figure/Table Title	Page Number
Methods		5
Results		6-12
Figures		
	SF1. A conjunction of transdiagnostic aberrant activation (i.e., pooled across patient hyper- and hypo-activation) with the multiple demand network observed by Müller et al. (25).	13
	SF2. Correspondence of regions of transdiagnostic aberrant activation (i.e., pooled across patient hyper- and hypo-	14-15
	SF3. Transdiagnostic patient hyper- and hypoactivation with the single SPECT and single ASL experiments excluded.	16
	SF4. Transdiagnostic patient hyper- and hypoactivation excluding the 18 diverse experiments that did not cohere into any specific domain	17
	SF5. Transdiagnostic patient hyper- and hypoactivation	18
	SF6. Patterns of "aberrant activation" (pooled across patient hyper- and hypoactivation) separately for	19
	childhood/adolescence and adulthood experiments. SF7. Transdiagnostic patient hyper- and hypoactivation separately for experiments of medicated and unmedicated patients.	20
	SF8. Transdiagnostic patient hyper- and hypoactivation separately for experiments of patients who performed no differently or worse than control participants	21
	SF9. Contrasts between pooled aberrant activation in	22
	SF10. Contrasts between hypoactivation in psychotic and non- psychotic disorder experiments	23
	SF11. Transdiagnostic patient hyper- and hypoactivation separately by disorder class	24
	SF12. Transdiagnostic patient hyper- and hypoactivation separately for domains	25
	SF13. Transdiagnostic patient hyper- and hypoactivation separately by disorder class and domain	26
Tables	ST1. Experiments included in meta-analysis by diagnostic grouping, modality, domain and task.	27-55
	ST2. Proportion of studies within each diagnostic group corresponding to each task domain	56

Supplementary Materials Table of Contents

Section	Figure/Table Title	Page
<u> </u>		Number
lables	ST3. Peak coordinates of clusters for transdiagnostic pooled	57
	patient hyper- and hypoactivation (i.e., aberrant activation).	
	ST4. Percent contribution to clusters of convergence pooled	58-59
	aberrant activation meta-analytic contrasts by experiment sample	
	and design characteristics.	
	S15. Coordinates of clusters from a conjunction of the	60
	transdiagnostic pooled patient hyper- and hypoactivation (i.e.,	
	from meta-analyses of healthy participants (25)	
	ST6 Supplementary Table 6 Peak coordinates of clusters for	61
	transdiagnostic patient hyper- and hypoactivation	01
	ST7. Peak coordinates of clusters for transdiagnostic patient	62
	hyper- and hypoactivation excluding the experiments of arterial	
	spin labeling and single-photon emission computerized	
	tomography	
	ST8. Peak coordinates of clusters for transdiagnostic patient	63
	hyper- and hypoactivation excluding tasks that did not cohere in	
	a domain	
	S19. Peak coordinates of clusters from transdiagnostic patient	64
	nyper- and hypoactivation excluding studies of children and older	
	ST10 Percent contribution to clusters of convergence for natient	65-67
	hypo- and hyper-activation contrasts by experiment sample and	00 07
	design characteristics.	
	ST11. Peak coordinates of clusters for transdiagnostic pooled	68
	patient hyper- and hypoactivation (i.e., aberrant activation)	
	separately for studies of children and adults.	
	ST12. Peak coordinates of clusters for transdiagnostic patient	69
	hyper- and hypoactivation separately for medicated and	
	unmedicated patients ST13 Poak coordinates of clusters for transdiagnostic nationt	70
	hyper- and hypoactivation senarately for natient samples who	70
	performed no differently or worse than control groups.	
	ST14.Peak coordinates of clusters derived from pooled patient	71
	hyper- and hypoactivation (i.e., aberrant activation) separately for	
	psychotic and non-psychotic samples.	
	ST15. Percent contribution to clusters of convergence non-	72-73
	psychotic and psychotic pooled aberrant activation contrasts by	
	experiment sample and design characteristics.	74
	SI ID. Peak coordinates of clusters from patient hypoactivation	(4
	ST17 Percent contribution to clusters of convergence for non	75_76
	nsychotic and psychotic patient hypo- and hyper-activation	10-10
	activation contrasts by sample and design characteristics.	

Supplement 4

Section	Figure/Table Title	Page Number
Tables	ST18. Peak coordinates of clusters from patient hyper- and hypoactivation separately by disorder classes	77
	ST19. Peak coordinates of clusters from patient hyper- and hypoactivation separately by domain	78
	ST20. Peak coordinates of clusters from patient hyper- and hypoactivation separately by domain and disorder class	79

Supplementary Methods

Peak Coordinate Extraction. Peak coordinates and participant descriptive information were extracted from each paper separately by a minimum of two doctoral-level researchers (LM, JH, DC, AE, YJ) with expertise in psychiatric neuroimaging. In the case of discrepancies one to three additional doctoral-level coders re-entered those articles. Each discrepancy resulting from more than straightforward entry error was reviewed to establish consensus.

Activation Likelihood Estimation (ALE) Meta-analysis. The revised ALE algorithm, implemented in MATLAB, was used to identify areas of convergence of reported coordinates for patient/control differences in activation during cognitive control tasks higher than expected under a random spatial association (28-29). ALE models activation as 3-dimensional Gaussian probability distributions centered on the reported peak coordinate, capturing the spatial uncertainty associated with each focus. The probability distributions for all foci of a given experiment were aggregated as a "modeled activation map" (30). The union of all modeled activation maps then resulted in voxelwise ALE scores, which were tested against an analytically derived null-distribution that reflects a random spatial association between experiments with a fixed withinexperiment distribution of foci (30). Hereby, random-effects inference was applied, which assesses above-chance convergence between experiments. The observed ALE scores were tested against the expectation on the ALE scores under the null distribution of random spatial association across experiments. The resulting nonparametric p values were then thresholded at a cluster-level familywise-error-corrected threshold of p < .05(cluster-forming threshold at voxel-level P < .005) and transformed into z scores for

display. To avoid results dominated by one or two individual experiments and to have sufficient power to detect moderately sized effects, ALE analyses were limited to those contrasts with at least 20 experiments (31).

Supplementary Results

Final Selected Experiment Set. The final set of experiments submitted to metaanalysis consisted of 283 experiments from 251 articles (Figure 1; Table S1) for a total of 11,299 participants (5,492 patient and 5,751 control participants). The vast majority of experiments (n=260) utilized functional magnetic resonance imaging (fMRI) followed by 21 positron emission tomography experiments and one each using arterial spin labeling and single-photon emission computerized tomography. See Figure S3 for analyses limited to fMRI and PET. Experiments were published between 1996 and May 2015 with less than 5% published in the first five years, 23% in the next five years, 40% in the subsequent five years and finally 32% between 2011 and spring 2015.

For the small subset of articles that included multiple patient groups completing the same experimental paradigm (seven papers included more than one patient group) each patient versus control comparison was included as a separate experiment. Articles with results of multiple tasks probing cognitive control in the same participants were included as separate experiments in the meta-analysis (i.e., eight articles included two tasks; four articles included three tasks).

Experiments were selected to capture lifespan patterns and thus included participants ranging from childhood (youngest experiment group mean age=11.2 years) through older adulthood (oldest experiment group mean age=73.3 years). The majority of experiments represented adulthood (n=248; 18-50 years; participant mean

age=34.12 years), followed by childhood/adolescence (n=27; <18 years; mean age=15.41 years) and very few with older adults (n=8; >50 years; mean age=58.03 years). See Figure S5 for analyses limited to adults and SF6 for adults and children/adolescents separately. Furthermore, most experiments included medicated (n=193) versus unmedicated (n=60) patients while the information was lacking for 30 experiments. See Figure S7 for analyses by current medication status. Poorer behavioral performance on the scanner task by patients relative to control participants was reported in 135 experiments, no differences in 146 experiments, and not reported or assessed for 2 experiments. See Figure S8 for analyses by performance status. Baseline experiments of interventional studies (e.g., drug administration, treatment) otherwise meeting criteria were included.

The psychotic disorders category comprised 139 experiments almost exclusively of schizophrenia (n=135) in addition to mixed schizophrenia/schizoaffective (n=2), schizoaffective (n=1) and delusional disorders (n=1). The more heterogeneous non-psychotic disorders category comprised 144 experiments of unipolar depressive disorders (major depression n=24; dysthymia n=2; mixed depression/dysthymia n=1), anxiety disorders (obsessive compulsive disorder (OCD) n=25; posttraumatic stress disorder (PTSD) n=6; social anxiety disorder n=1); bipolar disorders n=49; and substance use disorders (mixed substance abuse and/or dependence disorders n=35: stimulant n=11; alcohol n=9; cannabis n=6; polysubstance n=4; opiate n=3; cocaine n=2). Across disorders, patient participants included those with first episode and chronic disorder manifestations, as well as interepisode expressions in the case of chronic bipolar and psychotic disorders (8/139 and 24/50 psychotic and bipolar disorder

experiments respectively included interepisode patient samples). Reports of comorbidity were inconsistent across studies precluding quantification. Exclusion criteria also provided incomplete information about comorbidity as exclusion was often limited to substance abuse (in the case of non-substance use disorder studies) or psychotic symptoms or disorders (in the case of non-psychotic disorder studies) with no information pertaining to other disorders. In summary, the meta-analysis included a highly diverse sample of diagnostic presentations from across the major categories of Axis I psychopathology.

In the following paragraphs, we report on a series of chi-square tests of the distributions of experiments by 1) task domain (across diagnosis), 2) diagnostic grouping (across domain), and 3) task domain by diagnostic grouping.

In addition to the diversity in diagnoses, included experiments represented an array of cognitive control tasks corresponding to an array of performance domains (cf. Table S1). The representation of experiments (across diagnoses) varied by domain, $X^2(8)=200.3$, *p*<.001.This was due to greater representation of experiments of working memory (n=100), response inhibition (n=42), recognition memory (n=37), and conflict monitoring (n=31), relative to experiments of verbal fluency (n=17), set shifting (n=15), response selection (n=12), performance monitoring (n=11) and a ninth set of 18 diverse experiments that did not cohere into any of these specific domains. Notably, the predominance of working memory experiments in relation to other domains (38%) is striking and could suggest a bias among investigators to hypothesize its critical role in psychiatric dysfunction. However, whole-brain meta-analyses of cognitive control in healthy samples have revealed a similar over-representation of working memory

experiments (26) suggesting broader supposition in cognitive neuroscience of its foundational role in adaptive as well as maladaptive cognitive function. While these findings suggest that a broader sampling of tasks is warranted in future psychiatric neuroimaging studies, the parallel distribution of tasks in the current meta-analysis of patients to meta-analysis of healthy samples, underscores the relevance of these findings to the broader literature on intact cognitive functioning.

Experiments investigating psychotic (n=139) and non-psychotic disorder samples (n=144) were equally represented across domains, $X^{2}(2)=0.09$, ns. However, the distribution of experiments (across domains) varied dramatically by more refined diagnostic category, $X^{2}(4)$ = 155.15, p<.001. This was largely due to schizophrenia spectrum disorders (51%) far exceeding all other groups in representation, pairwise X^2 comparisons of schizophrenia to each group, ps<.05. Unfortunately, it was not possible to determine the sample correspondence between this dataset and that of found by Goodkind and colleagues (9) in their sample of whole brain VBM experiments, given the lack of indications to that end in the papers. Nevertheless, the breakdown by diagnosis is very similar, $X^{2}(4) = 5.89$, ns. The relative proportion of the respective samples is as follows (% of cognitive control experiments; % of VBM experiments): psychotic disorders (51%; 43%), bipolar disorders (18%; 14%), anxiety disorders (11%; 23%), depressive disorders (10%; 13%), substance use disorders (12%; 10%). While not an exhaustive representation of the extant literature, these findings do suggest that additional structural neuroimaging as well as functional neuroimaging of cognitive task activation is warranted in non-psychotic disorders.

Finally, the distribution of tasks across the nine task domains varied by diagnosis, $X^2(32)$ = 78.25, p<.001, due to the greater representation of schizophrenia spectrum samples relative to each of the other disorders specific to experiments of performance monitoring, verbal fluency, recognition, and working memory, *ps*<.05. The non-psychotic disorder groups showed no differences in distributions of experiments by domain, with the exception of verbal fluency, which had a higher proportion of bipolar disorder experiments than the other non-psychotic disorders. The wide distribution across cognitive domains by disorder is evident in Table S2, which shows the proportion of experiments within each diagnostic group corresponding to each task domain.

While the meta-analytic approach may impose limitations by the breadth of published literature, it also productively highlights a number of implied conceptual and methodological biases in psychiatric and cognitive neuroscience research. This was especially pronounced in examining lifespan effects. In the case of older adults, even with the very lenient threshold of categorizing all participants over 50 years as elderly, we could only identify eight eligible experiments, i.e., less than 3% of the included set. With a global average life expectancy of 71 years and 79 years in the United States (WHO; http://www.who.int/gho/mortality_burden_disease/life_tables/en/), there is a dearth of neuroimaging data to guide understanding of cognitive control and psychopathology in aging samples. In the case of children and young adults less than 18 years, we identified 27 eligible experiments, less than 10% of the experiment set. In turn, 53% of the total experiments were samples with mean ages between 30 and 40 years. Relatedly, schizophrenia spectrum disorders far exceeded other disorder classes. Anxiety and to some extent unipolar depression have shown more modest

neuropsychological deficits than other disorders while more significant deficits have characterized bipolar and substance use disorders, yet the parallel functional imaging corpus is nonetheless limited. Finally, working memory was by far the best-represented task domain, a bias also represented in work with healthy samples (26).

Voxelwise Analyses by Cognitive Domain and Disorder Class. The primary questions of interest were focused on multiple demand or general cognitive processing, and naturally, performance of most tasks involves a synergy of cognitive processes that spans domains. Nonetheless, to assess the contribution of different domains to the overall convergence, domain-specific analyses were performed for domains with contrasts from more than 20 experiments and thus adequate power to detect convergence (i.e., working memory (n=100), response inhibition (n=42), recognition memory (n=37), conflict monitoring (n=31). Patient hypoactivation was observed during working memory in right anterior insula/ventrolateral prefrontal cortex and vermis of the cerebellum, and during response inhibition in the right anterior insula/ventrolateral prefrontal cortex and right claustrum, Patient hyperactivation was evident during working memory in ventromedial prefrontal cortex. Other domains did not show significant regions of hyper- or hypoactivation (Figure S12). Overall, these data suggest that the broad array of cognitive demands evoked by a heterogeneous array of tasks contributed to the transdiagnostic convergence evident in the multiple demand network abnormalities observed here. Again, ALE analyses were also run for each disorder by domain for the two contrasts with more than 20 experiments and thus adequate power to detect convergence (i.e., working memory experiments on schizophrenia (n=54) and recognition memory experiments on schizophrenia (n=27)). Schizophrenia spectrum

disorders showed patient hypoactivation in right insula/ventrolateral prefrontal cortex during working memory (Figure S13) and no whole-brain activations converged for recognition memory tasks. All other comparisons included only one to 16 experiments.

Supplementary Figure 1. A conjunction with the multiple demand network observed by Müller et al. (25), highlighting the overlap with multiple nodes in the distributed network of regions showing transdiagnostic aberrant activation (i.e., pooled across patient hyper-and hypo-activation (red)) during cognitive processing.

Supplementary Figure 2. A) Regions of transdiagnostic aberrant activation (i.e., pooled across patient hyper- and hypo-activation (red), showing nodes very near and partially overlapping with the dorsal anterior cingulate and anterior insula regions of gray matter

loss (yellow) observed by Goodkind and colleagues (9). B) A conjunction highlights anatomical and functional correspondence in dorsal anterior cingulate (orange).

Supplementary Figure 3. ALE analyses with the single SPECT and single ASL studies excluded did not affect the pattern of significant activations. For example, patient hyper-(blue) and hypoactivation (orange) across disorders are displayed for the remaining studies (n=260 functional magnetic resonance imaging; n=21 positron emission tomography).

Supplementary Figure 4. ALE analyses excluding the 18 diverse studies that did not cohere into any specific domain resulted in little change to the overall patterns, with the exception of no significant anterior mid-cingulate cortex/pre-supplementary motor area activation. For example, patient hypo- (orange) and hyperactivation (blue) across disorders are displayed for the remaining 265 studies.

Supplementary Figure 5. Results from separate ALE analyses for studies of children, adults and older adults showed that the overall pattern was primarily determined by the adult sample, the largest proportion of studies (n=248; 18-50 years). The child (n=27; <18 years) and older adult (n=8; >50 years) samples did not show any significant whole-brain activations. Displayed are the patient hypo- (orange) and hyperactivation (blue) across disorders for the subset of adult studies.

Supplementary Figure 6. Patterns of "aberrant activation" (orange) when pooling across patient hyper- and hypoactivation foci across the whole brain separately for childhood/adolescence (<18 years; blue) and adulthood (18-50 years; orange) experiments. The older adult (>50 years) experiments did not show any significant whole-brain activations. Given the strong right anterior insula/ventrolateral prefrontal cortex aberrant activation overlapping in the childhood/adolescence and the adulthood samples, this node may have a prominent role in cognitive dyscontrol from childhood through adulthood.

Supplementary Figure 7. Results from separate ALE analyses of patient hypo- and hyper-activation for studies of medicated and unmedicated patients. Unmedicated (blue) and medicated (yellow) patients showed similar patterns of hypoactivation. Medicated patients showed hyperactivation (magenta) specific to the anterior mid-cingulate cortex/pre-supplementary motor cortex. Unmedicated patient experiments as a whole did not show any significant whole-brain hyperactivations.

Supplementary Figure 8. Accounting for behavioral performance on the scanner task demonstrated that patient hyperactivation in the anterior mid-cingulate/ presupplementary motor cortex cluster was primarily driven by patient groups that performed on par with as opposed to worse than control participants. This was confirmed in a test of the extracted per voxel probabilities for this region of interest (Mann-Whitney U Test, U=9,270, p<.05). By contrast, patient hypoactivation in multiple demand network nodes were largely similar regardless of whether behavioral performance was impaired.

Supplementary Figure 9. A contrast between pooled aberrant activation in psychotic and non-psychotic disorders revealed greater aberrant activation in psychotic versus non-psychotic disorders in a more posterior portion of the left prefrontal cluster and a portion of the mid-cingulate/pre-supplementary motor area. Additionally non-psychotic disorders showed reliably more aberrant activation in right intraparietal sulcus and a more anterior portion of the right anterior insula/ ventrolateral prefrontal cortex cluster.

Supplementary Figure 10. A contrast between hypoactivation in psychotic and nonpsychotic disorders showed that the right anterior insula/ ventrolateral prefrontal cortex extended more anteriorly in non-psychotic disorders, whereas psychotic disorders showed stronger hypoactivation in the posterior portion of the left prefrontal cluster.

Supplementary Figure 11. Refining to diagnostic classes revealed few activations that survived whole-brain correction. A) Schizophrenia spectrum disorders showed a reliable hypoactivation of left prefrontal cortex and right anterior insula/ventrolateral prefrontal cortex consistent with the overall pattern (orange). B) Substance use disorders showed patient hyperactivation in right posterior parietal cortex (more posterior than the overall pattern; blue). Contrasts specific to anxiety as well as bipolar and unipolar depressive disorders did not show any significant whole-brain activations.

Supplementary Figure 12. Domain-specific analyses were performed on domains with contrasts from more than 20 experiments and thus adequate power to detect convergence (i.e., working memory (n=100), response inhibition (n=42), recognition memory (n=37), conflict monitoring (n=31). A) During working memory tasks patient hyperactivation (blue) was observed in in ventromedial prefrontal cortex and hypoactivation (orange) in left anterior insula/ventrolateral prefrontal cortex. B) During response inhibition hyperactivation was evident in the right anterior insula/ ventrolateral prefrontal cortex. B) During contrasts showed no significant whole-brain activations.

Supplementary Figure 13. ALE by Disorder and Domain. Schizophrenia spectrum disorders showed patient hypoactivation in right insula/ ventrolateral prefrontal cortex during working memory (yellow). Other contrasts by disorder and domain showed no significant whole-brain activations. though this included too few studies for valid for ALE inference (31).

Supplementary Table 1. Experiments included in meta-analysis by diagnostic grouping, modality, domain and task

Ref #	Experiment #	PUBMEDID	Diagnostic Group	Imaging Modality	Domain	Task
1	1	17768265	Schizophrenia	MRI	Recognition Memory	Recognition
2	2	15541070	Bipolar	MRI	Working Memory	N-back
3	3	20146832	Bipolar	MRI	Verbal Fluency	Verbal Fluencv
4	4	8790444	Schizophrenia	PET	Other	Recall
5	5	21914644	Schizophrenia	MRI	Working Memory	Delayed Match-to- sample
6	6	16199012	Schizophrenia	MRI	Other	Recall
7	7	16640486	Anxiety	MRI	Working Memory	Virtual Morris Water task
8	8	24022592	Bipolar	MRI	Recognition	Transitive
q	Q	21782395	Schizonhrenia	MRI	Working	Delaved
5	3	21702333	Schizophrenia	WIX	Memory	Match-to- sample
10	10	24381810	Schizophrenia	MRI	Response Selection	Delay Discounting
11	11	22805228	Substance Use	MRI	Working Memory	Spatial Working Memory
12	12	24557502	Unipolar	MRI	Verbal Fluency	Verbal Fluency
13	13	24296894	Substance Use	MRI	Other	Semantic Decision Making
14	14	17499456	Substance Use	MRI	Conflict Monitoring	Stroop
15	15	12150424	Schizophrenia	MRI	Working Memory	N-back
16	16	12614990	Unipolar	MRI	Working Memory	N-back
17	17	16952445	Schizophrenia	MRI	Working Memory	N-back
18	18	24675869	Schizophrenia	MRI	Working Memory	Delayed Match-to- sample
19	19	12796223	Bipolar	MRI	Conflict Monitorina	Stroop
20	20	21997605	Unipolar	MRI	Response	Stop Signal

					Inhibition	Task
21	21	12880834	Substance	PET	Response	Modified
			Use		Selection	Iowa
						Gambling
						Task
22	22	21067898	Schizophrenia	MRI	Working	N-back
					Memory	
23	23	25752642	Bipolar	MRI	Working	N-back
					Memory	
24	24	19118321	Schizophrenia	MRI	Verbal	Verbal
					Fluency	Fluency
24	25	19118321	Schizophrenia	MRI	Working	N-back
			_		Memory	
25	26	22272986	Bipolar	MRI	Working	N-back
<u></u>	07	44050000	O shi sahasais		Memory	N1 11
26	27	11053229	Schizophrenia	MRI	VVorking	N-DACK
07	00	44000000	Cabinanhrania		Nemory	Nhaak
27	28	14638592	Schizophrenia	MRI	Working	N-Dack
20	20	0206044	Cobizophropio	рст	Conflict	Ctroop
28	29	9396944	Schizophrenia	PEI	Connici Monitoring	Stroop
20	30	22640382	Ripolar	MDI	Rosponso	Continuous
29	50	22040302	ырыа	IVITAL	Inhibition	Derformanc
						o Task
30	31	21376542	Binolar	MRI	Verhal	Havling
50	51	21070042	ырыа		Fluency	Sentence
					ridency	Completion
						Test
31	32	15289277	Bipolar	MRI	Working	N-back
01	02	10200211	Dipola		Memory	
32	33	19538748	Anxiety	MRI	Recognition	Recognition
					Memory	<u> </u>
33	34	20046409	Schizophrenia	MRI	Conflict	Stroop
	-				Monitoring	
34	35	10080553	Schizophrenia	PET	Other	Recall
34	36	10080553	Schizophrenia	PET	Other	Recall
35	37	11241873	Schizophrenia	PET	Recognition	Recognition
					Memory	-
36	38	22539776	Schizophrenia	MRI	Other	Recall
37	39	9699694	Schizophrenia	MRI	Verbal	Verbal
					Fluency	Fluency
38	40	10227106	Schizophrenia	MRI	Other	Semantic
						Decision
						Making
39	41	11578663	Bipolar	MRI	Verbal	Verbal
					Fluency	Fluency
39	42	11578663	Bipolar	MRI	Verbal	Semantic
					Fluency	Decision
						Making

40	43	17547582	Bipolar	MRI	Verbal	Verbal
					Fluency	Fluency
41	44	23949205	Substance Use	MRI	Recognition Memory	Recognition
42	45	14561934	Substance Use	MRI	Working Memory	N-back
43	46	14597698	Schizophrenia	MRI	Conflict	Stroop
44	47	12948707	Substance Use	MRI	Working Memory	Sternberg Working Memory Task
45	48	24639328	Unipolar	MRI	Recognition Memory	Recognition
46	49	23607410	Bipolar	MRI	Response	Go/No-Go
47	50	18571627	Bipolar	MRI	Working	N-back
48	51	25458072	Unipolar	MRI	Working	N-back
49	52	24239131	Schizophrenia	MRI	Working	Recognition
50	53	15528091	Substance	PET	Conflict	Stroop
51	54	17018171	Anxiety	MRI	Working	N-back
52	55	21331519	Schizophrenia	MRI	Working	N-back
53	56	18787658	Anxiety	MRI	Response	Go/No-Go
53	57	18787658	Anxiety	MRI	Response	Go/No-Go
54	58	24615691	Schizophrenia	MRI	Conflict	Stroop
55	59	22854099	Bipolar	MRI	Working	N-back
56	60	15691530	Anxiety	MRI	Memory Conflict	Flanker
57	61	17525987	Unipolar	MRI	Response	Tower of
57	62	17525987	Unipolar	MRI	Selection Working	London N-back
58	63	21546091	Bipolar	MRI	Memory Response	Go/No-Go
59	64	25749917	Schizophrenia	MRI	Inhibition Recognition	Recognition
60	65	22363273	Bipolar	MRI	Memory Conflict	Stroop
61	66	18485592	Substance	MRI	Monitoring Response	Go/No-Go

			Use		Inhibition	
62	67	8988793	Schizophrenia	PET	Other	Recall
63	68	25037555	Schizophrenia	MRI	Other	Finger
						Tapping
63	69	25037555	Unipolar	MRI	Other	Finger
						Tapping
64	70	20063304	Bipolar	MRI	Recognition Memory	Recognition
65	71	18065438	Anxiety	MRI	Set Shifting	Set Shifting
66	72	21733286	Schizophrenia	MRI	Working Memory	N-back
67	73	19175815	Unipolar	MRI	Response Inhibition	Simon Task
67	74	19175815	Unipolar	MRI	Response Inhibition	Stop Signal Task
67	75	19175815	Unipolar	MRI	Set Shifting	Switch Task
68	76	19732478	Schizophrenia	MRI	Recognition	Recognition
60	77	10110220	Cabizanbrania	МОГ	Memory	Deleved
69	11	19449330	Schizophrenia	INIKI	Momory	Delayed Motob to
					Memory	
60	78	10//0330	Binolar	MRI	Working	Delayed
03	70	19449000	ырыа		Memory	Match-to-
					Memory	sample
70	79	24672002	Substance	MRI	Response	Stop Signal
. •			Use		Inhibition	Task
71	80	17307337	Schizophrenia	MRI	Working	Multi-Source
					Memory	Interference Task
72	81	17803757	Schizophrenia	MRI	Working	Multi-Source
					Memory	Interference
						Task
73	82	15955496	Unipolar	MRI	Working Memory	N-back
74	83	25610794	Schizophrenia	MRI	Recognition	Source
					Memory	Memory
75	84	10195166	Schizophrenia	PET	Other	Recall
76	85	16497485	Schizophrenia	MRI	Other	Recall
77	86	18592040	Anxiety	MRI	Working	Delayed
					Memory	Match-to-
77	07	40500040	A			sample
//	87	18592040	Anxiety	MRI	vvorking Momory	Delayed
					Memory	Malch-lo-
77	00	19502040	Apviotv	MDI	Marking	Sample
11	OÕ	10092040	Anxiety	IVITAL	Memory	Match to
					INCTION Y	sample
78	89	19686473	Schizonhrenia	MRI	Working	Delaved
.0	00	10000+70	Comzoprironia		Memory	Match-to-
					including a	

78	90	19686473	Schizophrenia	MRI	Working Memory	sample Delayed Match-to- sample
79	91	15590917	Substance	MRI	Response	Go/No-Go
80	92	12727695	Schizophrenia	MRI	Recognition	Recognition
81	93	14514494	Schizophrenia	MRI	Recognition	Recognition
82	94	12946085	Schizophrenia	MRI	Working Memory	N-back
83	95	14754778	Unipolar	MRI	Working Memory	Mental Arithmetic
83	96	14754778	Schizophrenia	MRI	Working Memory	Mental Arithmetic
84	97	20036266	Schizophrenia	MRI	Set Shifting	Wisconsin Card Sorting Task
85	98	22985694	Schizophrenia	MRI	Recognition Memory	Recognition
85	99	22985694	Bipolar	MRI	Recognition Memory	Recognition
86	100	16054343	Schizophrenia	MRI	Conflict Monitoring	Stroop
87	101	21812622	Bipolar	MRI	Response Selection	Modified Iowa Gambling Task
87	102	21812622	Bipolar	MRI	Working Memory	N-back
88	103	21357880	Schizophrenia	MRI	Verbal Fluency	Verbal Fluency
89	104	16503328	Schizophrenia	MRI	Recognition	Recognition
90	105	15601603	Schizophrenia	MRI	Verbal	Verbal Fluency
91	106	17291724	Schizophrenia	MRI	Response	Go/No-Go
91	107	17291724	Schizophrenia	MRI	Response	Go/No-Go
92	108	17855057	Schizophrenia	MRI	Response	Go/No-Go
93	109	19624392	Bipolar	MRI	Response	Go/No-Go
94	110	19442494	Bipolar	MRI	Response Inhibition	Go/No-Go
95	111	15205869	Substance Use	MRI	Working Memory	Delayed Match-to-

						sample
96	112	21703287	Schizophrenia	MRI	Working	Delayed
					Memory	Match-to-
					_	sample
97	113	23146681	Anxiety	MRI	Response	Go/No-Go
00	111	10426002	Sobizonbronia	MDI	Working	N book
90	114	19420995	Schizophienia		Memory	IN-DACK
00	115	16100820	Schizonhrenia	MDI	Conflict	Stroop
33	115	10199029	ochizophrenia		Monitoring	Споор
100	116	22024484	Bipolar	MRI	Response	Go/No-Go
100	110	22021101	Bipolai		Inhibition	
101	117	11839367	Unipolar	PET	Performance	Continuous
					Monitoring	Performanc
					5	e Task
102	118	11378312	Schizophrenia	MRI	Verbal	Verbal
					Fluency	Fluency
103	119	18356025	Schizophrenia	MRI	Verbal	Verbal
					Fluency	Fluency
104	120	24705568	Substance	MRI	Conflict	Stroop
			Use		Monitoring	
105	121	18359576	Schizophrenia	MRI	Working	Sternberg
					Memory	Working
						Memory
	100		• • •			Task
106	122	22349440	Anxiety	MRI	Working	N-back
407	400	40444070	Disalar		Memory	Otros e re
107	123	16411978	Bipolar	MRI	Conflict	Stroop
108	124	24325076	Schizonhrenia	MDI	Response	Reads in the
100	127	24323370	ochizophrenia		Selection	Bottle Task
109	125	22917204	Schizophrenia	MRI	Working	N-back
			Comzophionia		Memory	
110	126	14683698	Schizophrenia	MRI	Recognition	Recognition
			•		Memory	0
111	127	18504037	Schizophrenia	MRI	Conflict	Semantic
					Monitoring	Decision
						Making
112	128	17476364	Bipolar	MRI	Working	Sternberg
					Memory	Working
						Memory
						Task
113	129	25331916	Schizophrenia	MRI	Working	N-back
	400	47505000	11.2.5.1.5.		Memory	
114	130	17585888	Unipolar	MKI	Response	G0/IN0-G0
115	121	12566202	Schizophropic	MDI	Bospopso	
110	131	12000202	Schizophienia	IVITAL	Inhihition	G0/100-G0
116	132	20488673	Schizonhrenia	MRI	Recognition	Recognition
· · ·			2			

					Memory	
117	133	24179809	Schizophrenia	MRI	Performance Monitoring	Continuous Performanc
118	134	25588194	Schizophrenia	MRI	Performance Monitoring	Continuous Performanc
119	135	14511805	Schizophrenia	MRI	Recognition Memory	Recognition
120	136	17895916	Substance Use	MRI	Response Inhibition	Stop Signal Task
121	137	19170662	Substance Use	MRI	Response Inhibition	Stop Signal Task
122	138	25497221	Schizophrenia	ASL	Response Selection	Tower of London
123	139	19693783	Schizophrenia	MRI	Working Memory	Delayed Match-to- sample
124	140	22583916	Schizophrenia	MRI	Working Memory	N-back
125	141	25242360	Schizophrenia	MRI	Working Memory	N-back
126	142	15627591	Anxiety	MRI	Response	Go/No-Go
127	143	23489416	Anxiety	MRI	Conflict Monitoring	Simon Task
128	144	16983390	Unipolar	MRI	Working Memory	N-back
129	145	24262681	Schizophrenia	MRI	Working Memory	Sternberg Working Memory Task
130	146	19239982	Unipolar	MRI	Response Inhibition	Stop Signal Task
131	147	18586275	Bipolar	MRI	Response Inhibition	Go/No-Go
132	148	11839364	Schizophrenia	MRI	Response Inhibition	Antisaccade
133	149	18198268	Bipolar	MRI	Verbal Fluency	Hayling Sentence Completion Test
133	150	18198268	Schizophrenia	MRI	Verbal Fluency	Hayling Sentence Completion Test
134	151	24119150	Bipolar	MRI	Working Memory	Delayed Match-to- sample

135	152	17151834	Schizophrenia	MRI	Working Memory	N-back
136	153	15841676	Schizophrenia	MRI	Working	N-back
137	154	11691686	Schizophrenia	PET	Working	N-back
138	155	15221201	Substance Use	MRI	Working Memory	Delayed Match-to- sample
139	156	20153142	Substance Use	MRI	Working Memory	Delayed Match-to- sample
140	157	24258223	Substance Use	MRI	Conflict Monitoring	Stroop
141	158	15541071	Bipolar	MRI	Working Memory	N-back
142	159	23609131	Substance Use	MRI	Response Inhibition	Stop Signal Task
143	160	18667293	Anxiety	MRI	Conflict	Stroop
144	161	20219248	Unipolar	MRI	Other	Serial Reaction Time Task
145	162	15970434	Anxiety	MRI	Conflict Monitoring	Stroop
146	163	19081580	Anxiety	MRI	Working	N-back
147	164	19105218	Anxiety	MRI	Conflict	Stroop
148 149	165 166	18076530 22047731	Bipolar Substance Use	MRI MRI	Set Shifting Conflict Monitoring	Switch Task Stroop
150	167	24120302	Schizophrenia	MRI	Response Inhibition	Continuous Performanc e Task
151	168	23764381	Bipolar	MRI	Recognition Memory	Recognition
152	169	25164120	Bipolar	MRI	Recognition Memory	Recognition
153	170	24841112	Schizophrenia	MRI	Working Memory	N-back
154	171	12353245	Schizophrenia	PET	Working Memory	Match Stimuli
155	172	16585464	Schizophrenia	MRI	Recognition Memory	Recognition
156	173	21727234	Schizophrenia	MRI	Working	N-back
157	174	18072830	Substance Use	MRI	Working Memory	N-back

158	175	18788030	Schizophrenia	MRI	Working Memory	N-back
159	176	19906516	Anxiety	MRI	Conflict	Stroop
159	177	19906516	Anxiety	MRI	Response	Go/No-Go
159 160	178 179	19906516 19926457	Anxiety Bipolar	MRI MRI	Set Shifting Response Inhibition	Switch Task Go/No-Go
161	180	12062884	Schizophrenia	MRI	Response Selection	Two-choice prediction task
162	181	11751032	Substance Use	MRI	Response Selection	Two-choice prediction task
163	182	20816040	Bipolar	MRI	Response Inhibition	Stop Signal Task
164	183	22554566	Schizophrenia	MRI	Set Shifting	Wisconsin Card Sorting Task
164	184	22554566	Schizophrenia	MRI	Set Shifting	Wisconsin Card Sorting Task
164	185	22554566	Schizophrenia	MRI	Set Shifting	Wisconsin Card Sorting Task
165	186	25555505	Bipolar	MRI	Response Inhibition	Go/No-Go
166	187	11431233	Schizophrenia	MRI	Working Memory	N-back
167	188	11525339	Substance	MRI	Working	N-back
168	189	25497222	Schizophrenia	MRI	Recognition	Recognition
169	190	22585315	Substance	MRI	Recognition	Recognition
170	191	18507885	Schizophrenia	MRI	Working	N-back
171	192	21604958	Bipolar	MRI	Working	N-back
172	193	25497296	Bipolar	MRI	Working	N-back
172	194	25497296	Bipolar	MRI	Working	N-back
172	195	25497296	Bipolar	MRI	Wemory Working Memory	N-back
173	196	11823264	Schizophrenia	PET	Performance Monitoring	Continuous Performanc e Task

173	197	11823264	Schizophrenia	PET	Performance Monitoring	Continuous Performanc
174	198	24016726	Schizophrenia	MRI	Working Memory	N-back
175	199	9673996	Schizophrenia	PET	Set Shifting	Wisconsin Card Sorting Task
175	200	9673996	Schizophrenia	PET	Recognition Memory	Recognition
176	201	11431234	Schizophrenia	PET	Recognition Memory	Recognition
177	202	15169688	Schizophrenia	MRI	Recognition Memory	Recognition
178	203	16199830	Schizophrenia	MRI	Recognition Memory	Recognition
179	204	18155880	Schizophrenia	MRI	Verbal Fluency	Verbal Fluency
180	205	21907293	Schizophrenia	MRI	Recognition Memory	Recognition
181	206	19224116	Schizophrenia	MRI	Recognition	Recognition
181	207	19224116	Schizophrenia	MRI	Recognition Memory	Recognition
182	208	24382711	Schizophrenia	MRI	Recognition Memory	Recognition
183	209	23637737	Anxiety	MRI	Set Shifting	Switch Task
183	210	23637737	Unipolar	MRI	Set Shifting	Switch Task
18/	210	20/17713	Substance	MRI	Response	Go/No-Go
104	211	20417113			Indibition	G0/N0-G0
185	212	19500088	Bipolar	MRI	Working Memory	Delayed Match-to- sample
186	213	25066663	Unipolar	MRI	Working	N-back
187	214	17511967	Anxiety	MRI	Response	Go/No-Go
188	215	16837832	Bipolar	MRI	Conflict	Stroop
189	216	20418447	Schizophrenia	MRI	Recognition	Recognition
190	217	19643585	Schizophrenia	MRI	Response Inhibition	Hayling Sentence Completion Test
190	218	19643585	Schizophrenia	MRI	Working Memory	N-back
191	219	11595391	Schizophrenia	MRI	Response	Go/No-Go
192	220	12732667	Schizophrenia	PET	Working Memory	N-back
------------	------------	----------------------	--------------------------	------------	------------------------------------	---
193	221	15006650	Schizophrenia	MRI	Performance Monitoring	Continuous Performanc e Task
194	222	24332795	Schizophrenia	MRI	Working Memory	N-back
194	223	24332795	Schizophrenia	MRI	Working Memory	N-back
195	224	17097072	Anxiety	MRI	Other	Serial Reaction Time Task
196	225	17559877	Schizophrenia	MRI	Working Memory	N-back
197	226	17707869	Schizophrenia	MRI	Working Memory	Sternberg Working Memory Task
198	227	22137506	Substance Use	MRI	Conflict Monitoring	Stroop
199	228	16002029	Substance Use	MRI	Working Memory	Delayed Match-to- sample
200	229	10855761	Anxiety	PET	Performance Monitoring	Continuous Performanc e Task
201	230	23036083	Bipolar	MRI	Performance Monitoring	Continuous Performanc e Task
202	231	16224612	Schizophrenia	MRI	Verbal Fluencv	Verbal Fluency
203	232	20166792	Bipolar	MRI	Response Inhibition	Go/No-Go
204	233	20401748	Substance Use	MRI	Working Memory	N-back
205 206	234 235	17136217 15173843	Schizophrenia Bipolar	PET MRI	Other Performance Monitoring	Reading Continuous Performanc e Task
207	236	16135630	Bipolar	MRI	Conflict Monitoring	Stroop
208	237	19190727	Bipolar	MRI	Response	Go/No-Go
209	238	22475381	Schizophrenia	MRI	Working Memory	N-back
210	239	18004121	Schizophrenia	MRI	Working Memory	N-back
211	240	16199831	Schizophrenia	MRI	Working Memory	N-back

212	241	17074949	Schizophrenia	MRI	Working Memory	N-back
213	242	17274020	Substance Use	MRI	Response Selection	Modified Iowa Gambling
	0.40	44000000				Task
214	243	11236838	Substance Use	MRI	Working Memory	N-back
215	244	15597092	Substance Use	MRI	Working Memory	Recognition
216	245	17558500	Substance Use	MRI	Response Inhibition	Go/No-Go
217	246	18586109	Unipolar	MRI	Set Shifting	Probabilitisti c Reversal Learning
218	247	15380297	Schizophrenia	MRI	Other	Semantic Decision Making
219	248	17765877	Substance Use	MRI	Working Memory	N-back
220	249	22631623	Bipolar	MRI	Response	Go/No-Go
221	250	14754781	Schizophrenia	MRI	Performance	Smooth Pursuit
222	251	19963356	Schizophrenia	MRI	Conflict	Stroop
223	252	15753243	Anxiety	MRI	Response	Tower of
224	253	16045067	Anxiety	MRI	Conflict	Stroop
225	254	24709020	Unipolar	MRI	Working Memory	Spatial Working Memory
225	255	24709020	Unipolar	MRI	Working Memory	Delayed Match-to- sample
226	256	18321870	Schizophrenia	MRI	Recognition Memory	Recognition
227	257	12729869	Schizophrenia	MRI	Working	N-back
228	258	17197035	Unipolar	MRI	Working Memory	Delayed Match-to- sample
229	259	17363277	Schizophrenia	MRI	Working Memory	Delayed Match-to- sample
230 231	260 261	24948034 12738340	Unipolar Schizophrenia	MRI MRI	Other Conflict Monitoring	Recall Stroop

232	262	17188464	Schizophrenia	MRI	Conflict Monitoring	Stroop
233	263	24405183	Anxiety	SPECT	Set Shifting	Wisconsin Card Sorting Task
234	264	19346000	Unipolar	MRI	Recognition Memory	Recognition
235	265	21211946	Schizophrenia	MRI	Working Memory	Sternberg Working Memory Task
236	266	20731964	Schizophrenia	MRI	Set Shifting	Wisconsin Card Sorting Task
237	267	9665622	Schizophrenia	PET	Recognition Memory	Recognition
238	268	24478729	Schizophrenia	MRI	Working Memory	N-back
239	269	22355285	Schizophrenia	MRI	Recognition Memory	Recognition
240	270	19179050	Schizophrenia	MRI	Response Selection	Choice Reaction Time Task
241	271	18174505	Anxiety	MRI	Conflict Monitoring	Stroop
241	272	18174505	Anxiety	MRI	Set Shifting	Switch Task
241	273	18174505	Anxiety	MRI	Response Inhibition	Go/No-Go
242	274	12151286	Schizophrenia	MRI	Working Memory	N-back
243	275	24491458	Substance Use	MRI	Response Selection	Modified Iowa Gambling Task
244	276	19218875	Unipolar	MRI	Response Inhibition	Stop Signal Task
245	277	15804721	Schizophrenia	MRI	Working Memory	N-back
246	278	18519527	Schizophrenia	MRI	Performance Monitoring	Continuous Performanc e Task
247	279	24895735	Bipolar	MRI	Verbal Fluencv	Verbal Fluencv
248	280	17679639	Anxiety	MRI	Conflict Monitoring	Multi-Source Interference Task
249	281	17245325	Substance Use	MRI	Conflict Monitoring	Multi-Source Interference Task

250	282	16945506	Schizophrenia	MRI	Other	Serial Reaction Time Task
251	283	20702070	Schizophrenia	MRI	Recognition Memory	Recognition

Ref=Reference number; Schizophrenia=schizophrenia, schizoaffective, schizophreniform, and delusional disorders; Bipolar=bipolar disorders; Unipolar= major depression, dysthymia; Anxiety=obsessive compulsive disorder, posttraumatic stress disorder, social anxiety disorder, Substance Use=mixed substance abuse and/or dependence).

Studies Included In Meta-analysis

1. Achim AM, Bertrand MC, Sutton H, Montoya A, Czechowska Y, Malla AK, et al. Selective abnormal modulation of hippocampal activity during memory formation in first-episode psychosis. Arch Gen Psychiatry. 2007;64(9):999-1014.

2. Adler CM, Holland SK, Schmithorst V, Tuchfarber MJ, Strakowski SM. Changes in neuronal activation in patients with bipolar disorder during performance of a working memory task. Bipolar Disord. 2004;6(6):540-9.

3. Allin MP, Marshall N, Schulze K, Walshe M, Hall MH, Picchioni M, et al. A functional MRI study of verbal fluency in adults with bipolar disorder and their unaffected relatives. Psychol Med. 2010;40(12):2025-35.

4. Andreasen NC, O'Leary DS, Cizadlo T, Arndt S, Rezai K, Ponto LL, et al. Schizophrenia and cognitive dysmetria: a positron-emission tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry. Proc Natl Acad Sci U S A. 1996;93(18):9985-90.

5. Anticevic A, Repovs G, Barch DM. Working memory encoding and maintenance deficits in schizophrenia: neural evidence for activation and deactivation abnormalities. Schizophr Bull. 2013;39(1):168-78.

6. Assaf M, Rivkin PR, Kuzu CH, Calhoun VD, Kraut MA, Groth KM, et al. Abnormal object recall and anterior cingulate overactivation correlate with formal thought disorder in schizophrenia. Biol Psychiatry. 2006;59(5):452-9.

7. Astur RS, St Germain SA, Tolin D, Ford J, Russell D, Stevens M. Hippocampus function predicts severity of post-traumatic stress disorder. Cyberpsychol Behav. 2006;9(2):234-40.

8. Avery SN, Williams LE, Woolard AA, Heckers S. Relational memory and hippocampal function in psychotic bipolar disorder. Eur Arch Psychiatry Clin Neurosci. 2013.

9. Avsar KB, Stoeckel LE, Bolding MS, White DM, Tagamets MA, Holcomb HH, et al. Aberrant visual circuitry associated with normal spatial match-to-sample accuracy in schizophrenia. Psychiatry Res. 2011;193(3):138-43.

10. Avsar KB, Weller RE, Cox JE, Reid MA, White DM, Lahti AC. An fMRI investigation of delay discounting in patients with schizophrenia. Brain Behav. 2013;3(4):384-401.

11. Callicott JH, Mattay VS, Verchinski BA, Marenco S, Egan MF, Weinberger DR. Complexity of prefrontal cortical dysfunction in schizophrenia: more than up or down. Am J Psychiatry. 2003;160(12):2209-15.

12. Bach P, Vollstadt-Klein S, Frischknecht U, Hoerst M, Kiefer F, Mann K, et al. Diminished brain functional magnetic resonance imaging activation in patients on opiate maintenance despite normal spatial working memory task performance. Clin Neuropharmacol. 2012;35(4):153-60.

13. Backes H, Dietsche B, Nagels A, Stratmann M, Konrad C, Kircher T, et al. Increased neural activity during overt and continuous semantic verbal fluency in major depression: mainly a failure to deactivate. Eur Arch Psychiatry Clin Neurosci. 2014;264(7):631-45.

14. Bagga D, Singh N, Modi S, Kumar P, Bhattacharya D, Garg ML, et al. Assessment of lexical semantic judgment abilities in alcohol-dependent subjects: an fMRI study. J Biosci. 2013;38(5):905-15.

15. Banich MT, Crowley TJ, Thompson LL, Jacobson BL, Liu X, Raymond KM, et al. Brain activation during the Stroop task in adolescents with severe substance and conduct problems: A pilot study. Drug Alcohol Depend. 2007;90(2-3):175-82.

16. Barch DM, Csernansky JG, Conturo T, Snyder AZ. Working and long-term memory deficits in schizophrenia: is there a common prefrontal mechanism? J Abnorm Psychol. 2002;111(3):478-94.

17. Barch DM, Sheline YI, Csernansky JG, Snyder AZ. Working memory and prefrontal cortex dysfunction: specificity to schizophrenia compared with major depression. Biol Psychiatry. 2003;53(5):376-84.

18. Bertolino A, Caforio G, Petruzzella V, Latorre V, Rubino V, Dimalta S, et al. Prefrontal dysfunction in schizophrenia controlling for COMT Val158Met genotype and working memory performance. Psychiatry Res. 2006;147(2-3):221-6.

19. Bittner RA, Linden DE, Roebroeck A, Hartling F, Rotarska-Jagiela A, Maurer K, et al. The When and Where of Working Memory Dysfunction in Early-Onset Schizophrenia-A Functional Magnetic Resonance Imaging Study. Cereb Cortex. 2015;25(9):2494-506.

20. Blumberg HP, Leung HC, Skudlarski P, Lacadie CM, Fredericks CA, Harris BC, et al. A functional magnetic resonance imaging study of bipolar disorder: state- and trait-related dysfunction in ventral prefrontal cortices. Arch Gen Psychiatry. 2003;60(6):601-9.

21. Bobb DS, Jr., Adinoff B, Laken SJ, McClintock SM, Rubia K, Huang HW, et al. Neural correlates of successful response inhibition in unmedicated patients with late-life depression. Am J Geriatr Psychiatry. 2012;20(12):1057-69.

22. Bolla KI, Eldreth DA, London ED, Kiehl KA, Mouratidis M, Contoreggi C, et al. Orbitofrontal cortex dysfunction in abstinent cocaine abusers performing a decision-making task. Neuroimage. 2003;19(3):1085-94.

23. Bor J, Brunelin J, Sappey-Marinier D, Ibarrola D, d'Amato T, Suaud-Chagny MF, et al. Thalamus abnormalities during working memory in schizophrenia. An fMRI study. Schizophr Res. 2011;125(1):49-53.

24. Brooks JO, 3rd, Vizueta N, Penfold C, Townsend JD, Bookheimer SY, Altshuler LL. Prefrontal hypoactivation during working memory in bipolar II depression. Psychol Med. 2015;45(8):1731-40.

25. Broome MR, Matthiasson P, Fusar-Poli P, Woolley JB, Johns LC, Tabraham P, et al. Neural correlates of executive function and working memory in the 'at-risk mental state'. Br J Psychiatry. 2009;194(1):25-33.

26. Brown A, Biederman J, Valera E, Lomedico A, Aleardi M, Makris N, et al. Working memory network alterations and associated symptoms in adults with ADHD and Bipolar Disorder. J Psychiatr Res. 2012;46(4):476-83.

27. Callicott JH, Bertolino A, Mattay VS, Langheim FJ, Duyn J, Coppola R, et al. Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cereb Cortex. 2000;10(11):1078-92.

28. Carter CS, Mintun M, Nichols T, Cohen JD. Anterior cingulate gyrus dysfunction and selective attention deficits in schizophrenia: [150]H20 PET study during single-trial Stroop task performance. Am J Psychiatry. 1997;154(12):1670-5.

29. Cerullo MA, Adler CM, Lamy M, Eliassen JC, Fleck DE, Strakowski SM, et al. Differential brain activation during response inhibition in bipolar and attention-deficit hyperactivity disorders. Early Interv Psychiatry. 2009;3(3):189-97.

30. Chakirova G, Whalley HC, Thomson PA, Hennah W, Moorhead TW, Welch KA, et al. The effects of DISC1 risk variants on brain activation in controls, patients with bipolar disorder and patients with schizophrenia. Psychiatry Res. 2011;192(1):20-8.

31. Chen S, Li L, Xu B, Liu J. Insular cortex involvement in declarative memory deficits in patients with post-traumatic stress disorder. BMC Psychiatry. 2009;9:39.

32. Chang K, Adleman NE, Dienes K, Simeonova DI, Menon V, Reiss A. Anomalous prefrontal-subcortical activation in familial pediatric bipolar disorder: a functional magnetic resonance imaging investigation. Arch Gen Psychiatry. 2004;61(8):781-92.

33. Choi JW, Jeong BS, Kim JW. Dysfunction of the Left Dorsolateral Prefrontal Cortex is Primarily Responsible for Impaired Attentional Processing in Schizophrenia. Psychiatry Investig. 2008;5(1):52-9.

34. Crespo-Facorro B, Paradiso S, Andreasen NC, O'Leary DS, Watkins GL, Boles Ponto LL, et al. Recalling word lists reveals "cognitive dysmetria" in schizophrenia: a positron emission tomography study. Am J Psychiatry. 1999;156(3):386-92.

35. Crespo-Facorro B, Wiser AK, Andreasen NC, O'Leary DS, Watkins GL, Boles Ponto LL, et al. Neural basis of novel and well-learned recognition memory in schizophrenia: a positron emission tomography study. Hum Brain Mapp. 2001;12(4):219-31.

36. Cuervo-Lombard C, Lemogne C, Gierski F, Bera-Potelle C, Tran E, Portefaix C, et al. Neural basis of autobiographical memory retrieval in schizophrenia. Br J Psychiatry. 2012;201(6):473-80.

37. Curtis VA, Bullmore ET, Brammer MJ, Wright IC, Williams SC, Morris RG, et al. Attenuated frontal activation during a verbal fluency task in patients with schizophrenia. Am J Psychiatry. 1998;155(8):1056-63.

38. Curtis VA, Bullmore ET, Morris RG, Brammer MJ, Williams SC, Simmons A, et al. Attenuated frontal activation in schizophrenia may be task dependent. Schizophr Res. 1999;37(1):35-44.

39. Curtis VA, Dixon TA, Morris RG, Bullmore ET, Brammer MJ, Williams SC, et al. Differential frontal activation in schizophrenia and bipolar illness during verbal fluency. J Affect Disord. 2001;66(2-3):111-21.

40. Curtis VA, Thompson JM, Seal ML, Monks PJ, Lloyd AJ, Harrison L, et al. The nature of abnormal language processing in euthymic bipolar I disorder: evidence for a relationship between task demand and prefrontal function. Bipolar Disord. 2007;9(4):358-69.

41. Dager AD, Jamadar S, Stevens MC, Rosen R, Jiantonio-Kelly RE, Sisante JF, et al. fMRI response during figural memory task performance in college drinkers. Psychopharmacology (Berl). 2014;231(1):167-79.

42. Daumann J, Schnitker R, Weidemann J, Schnell K, Thron A, Gouzoulis-Mayfrank E. Neural correlates of working memory in pure and polyvalent ecstasy (MDMA) users. Neuroreport. 2003;14(15):1983-7.

43. Dehaene S, Artiges E, Naccache L, Martelli C, Viard A, Schurhoff F, et al. Conscious and subliminal conflicts in normal subjects and patients with schizophrenia: the role of the anterior cingulate. Proc Natl Acad Sci U S A. 2003;100(23):13722-7.

44. Desmond JE, Chen SH, DeRosa E, Pryor MR, Pfefferbaum A, Sullivan EV. Increased frontocerebellar activation in alcoholics during verbal working memory: an fMRI study. Neuroimage. 2003;19(4):1510-20.

45. Dietsche B, Backes H, Stratmann M, Konrad C, Kircher T, Krug A. Altered neural function during episodic memory encoding and retrieval in major depression. Hum Brain Mapp. 2014;35(9):4293-302.

46. Diler RS, Segreti AM, Ladouceur CD, Almeida JR, Birmaher B, Axelson DA, et al. Neural correlates of treatment in adolescents with bipolar depression during response inhibition. J Child Adolesc Psychopharmacol. 2013;23(3):214-21.

47. Drapier D, Surguladze S, Marshall N, Schulze K, Fern A, Hall MH, et al. Genetic liability for bipolar disorder is characterized by excess frontal activation in response to a working memory task. Biol Psychiatry. 2008;64(6):513-20.

48. Dumas JA, Newhouse PA. Impaired working memory in geriatric depression: an FMRI study. Am J Geriatr Psychiatry. 2015;23(4):433-6.

49. Eich TS, Nee DE, Insel C, Malapani C, Smith EE. Neural correlates of impaired cognitive control over working memory in schizophrenia. Biol Psychiatry. 2014;76(2):146-53.

50. Eldreth DA, Matochik JA, Cadet JL, Bolla KI. Abnormal brain activity in prefrontal brain regions in abstinent marijuana users. Neuroimage. 2004;23(3):914-20.

51. Elzinga BM, Ardon AM, Heijnis MK, De Ruiter MB, Van Dyck R, Veltman DJ. Neural correlates of enhanced working-memory performance in dissociative disorder: a functional MRI study. Psychol Med. 2007;37(2):235-45.

52. Ettinger U, Williams SC, Fannon D, Premkumar P, Kuipers E, Moller HJ, et al. Functional magnetic resonance imaging of a parametric working memory task in schizophrenia: relationship with performance and effects of antipsychotic treatment. Psychopharmacology (Berl). 2011;216(1):17-27.

53. Falconer E, Bryant R, Felmingham KL, Kemp AH, Gordon E, Peduto A, et al. The neural networks of inhibitory control in posttraumatic stress disorder. J Psychiatry Neurosci. 2008;33(5):413-22.

54. Fassbender C, Scangos K, Lesh TA, Carter CS. RT distributional analysis of cognitive-control-related brain activity in first-episode schizophrenia. Cogn Affect Behav Neurosci. 2014;14(1):175-88.

55. Fernandez-Corcuera P, Salvador R, Monte GC, Salvador Sarro S, Goikolea JM, Amann B, et al. Bipolar depressed patients show both failure to activate and failure to deactivate during performance of a working memory task. J Affect Disord. 2013;148(2-3):170-8.

56. Fitzgerald KD, Welsh RC, Gehring WJ, Abelson JL, Himle JA, Liberzon I, et al. Errorrelated hyperactivity of the anterior cingulate cortex in obsessive-compulsive disorder. Biol Psychiatry. 2005;57(3):287-94.

57. Fitzgerald PB, Srithiran A, Benitez J, Daskalakis ZZ, Oxley TJ, Kulkarni J, et al. An fMRI study of prefrontal brain activation during multiple tasks in patients with major depressive disorder. Hum Brain Mapp. 2008;29(4):490-501.

58. Fleck DE, Kotwal R, Eliassen JC, Lamy M, Delbello MP, Adler CM, et al. Preliminary evidence for increased frontosubcortical activation on a motor impulsivity task in mixed episode bipolar disorder. J Affect Disord. 2011;133(1-2):333-9.

59. Francis MM, Hummer TA, Vohs JL, Yung MG, Liffick E, Mehdiyoun NF, et al. Functional neuroanatomical correlates of episodic memory impairment in early phase psychosis. Brain Imaging Behav. 2016;10(1):1-11.

60. Frangou S. Brain structural and functional correlates of resilience to Bipolar Disorder. Front Hum Neurosci. 2011;5:184.

61. Fu LP, Bi GH, Zou ZT, Wang Y, Ye EM, Ma L, et al. Impaired response inhibition function in abstinent heroin dependents: an fMRI study. Neurosci Lett. 2008;438(3):322-6.
62. Ganguli R, Carter C, Mintun M, Brar J, Becker J, Sarma R, et al. PET brain mapping study of auditory verbal supraspan memory versus visual fixation in schizophrenia. Biol Psychiatry. 1997;41(1):33-42.

63. Genzel L, Dresler M, Cornu M, Jager E, Konrad B, Adamczyk M, et al. Medial prefrontal-hippocampal connectivity and motor memory consolidation in depression and schizophrenia. Biol Psychiatry. 2015;77(2):177-86.

64. Glahn DC, Robinson JL, Tordesillas-Gutierrez D, Monkul ES, Holmes MK, Green MJ, et al. Fronto-temporal dysregulation in asymptomatic bipolar I patients: a paired associate functional MRI study. Hum Brain Mapp. 2010;31(7):1041-51.

65. Gu BM, Park JY, Kang DH, Lee SJ, Yoo SY, Jo HJ, et al. Neural correlates of cognitive inflexibility during task-switching in obsessive-compulsive disorder. Brain. 2008;131(Pt 1):155-64.

66. Guerrero-Pedraza A, McKenna PJ, Gomar JJ, Sarro S, Salvador R, Amann B, et al. First-episode psychosis is characterized by failure of deactivation but not by hypo- or hyperfrontality. Psychol Med. 2012;42(1):73-84.

67. Halari R, Simic M, Pariante CM, Papadopoulos A, Cleare A, Brammer M, et al. Reduced activation in lateral prefrontal cortex and anterior cingulate during attention and cognitive control functions in medication-naive adolescents with depression compared to controls. J Child Psychol Psychiatry. 2009;50(3):307-16.

68. Hall J, Whalley HC, Marwick K, McKirdy J, Sussmann J, Romaniuk L, et al. Hippocampal function in schizophrenia and bipolar disorder. Psychol Med. 2010;40(5):761-70.

69. Hamilton LS, Altshuler LL, Townsend J, Bookheimer SY, Phillips OR, Fischer J, et al. Alterations in functional activation in euthymic bipolar disorder and schizophrenia during a working memory task. Hum Brain Mapp. 2009;30(12):3958-69.

70. Harle KM, Shenoy P, Stewart JL, Tapert SF, Yu AJ, Paulus MP. Altered neural processing of the need to stop in young adults at risk for stimulant dependence. J Neurosci. 2014;34(13):4567-80.

71. Harrison BJ, Yucel M, Pujol J, Pantelis C. Task-induced deactivation of midline cortical regions in schizophrenia assessed with fMRI. Schizophr Res. 2007;91(1-3):82-6.

72. Harrison BJ, Yucel M, Fornito A, Wood SJ, Seal ML, Clarke K, et al. Characterizing anterior cingulate activation in chronic schizophrenia: a group and single-subject fMRI study. Acta Psychiatr Scand. 2007;116(4):271-9.

73. Harvey PO, Fossati P, Pochon JB, Levy R, Lebastard G, Lehericy S, et al. Cognitive control and brain resources in major depression: an fMRI study using the n-back task. Neuroimage. 2005;26(3):860-9.

74. Hawco C, Buchy L, Bodnar M, Izadi S, Dell'Elce J, Messina K, et al. Source retrieval is not properly differentiated from object retrieval in early schizophrenia: an fMRI study using virtual reality. Neuroimage Clin. 2015;7:336-46.

75. Heckers S, Rauch SL, Goff D, Savage CR, Schacter DL, Fischman AJ, et al. Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nat Neurosci. 1998;1(4):318-23.

76. Heinze S, Sartory G, Muller BW, de Greiff A, Forsting M, Juptner M. Neural activation during successful and unsuccessful verbal learning in schizophrenia. Schizophr Res. 2006;83(2-3):121-30.

77. Henseler I, Gruber O, Kraft S, Krick C, Reith W, Falkai P. Compensatory hyperactivations as markers of latent working memory dysfunctions in patients with obsessive-compulsive disorder: an fMRI study. J Psychiatry Neurosci. 2008;33(3):209-15.

78. Henseler I, Falkai P, Gruber O. A systematic fMRI investigation of the brain systems subserving different working memory components in schizophrenia. Eur J Neurosci. 2009;30(4):693-702.

79. Hester R, Garavan H. Executive dysfunction in cocaine addiction: evidence for discordant frontal, cingulate, and cerebellar activity. J Neurosci. 2004;24(49):11017-22.

80. Hofer A, Weiss EM, Golaszewski SM, Siedentopf CM, Brinkhoff C, Kremser C, et al. An FMRI study of episodic encoding and recognition of words in patients with schizophrenia in remission. Am J Psychiatry. 2003;160(5):911-8.

81. Hofer A, Weiss EM, Golaszewski SM, Siedentopf CM, Brinkhoff C, Kremser C, et al. Neural correlates of episodic encoding and recognition of words in unmedicated patients during an acute episode of schizophrenia: a functional MRI study. Am J Psychiatry. 2003;160(10):1802-8.

82. Honey GD, Sharma T, Suckling J, Giampietro V, Soni W, Williams SC, et al. The functional neuroanatomy of schizophrenic subsyndromes. Psychol Med. 2003;33(6):1007-18.

83. Hugdahl K, Rund BR, Lund A, Asbjornsen A, Egeland J, Ersland L, et al. Brain activation measured with fMRI during a mental arithmetic task in schizophrenia and major depression. Am J Psychiatry. 2004;161(2):286-93.

84. Jamadar S, Michie P, Karayanidis F. Compensatory mechanisms underlie intact task-switching performance in schizophrenia. Neuropsychologia. 2010;48(5):1305-23.

85. Jamadar S, O'Neil KM, Pearlson GD, Ansari M, Gill A, Jagannathan K, et al. Impairment in semantic retrieval is associated with symptoms in schizophrenia but not bipolar disorder. Biol Psychiatry. 2013;73(6):555-64.

86. Seok Jeong B, Kwon JS, Yoon Kim S, Lee C, Youn T, Moon CH, et al. Functional imaging evidence of the relationship between recurrent psychotic episodes and neurodegenerative course in schizophrenia. Psychiatry Res. 2005;139(3):219-28.

87. Jogia J, Dima D, Kumari V, Frangou S. Frontopolar cortical inefficiency may underpin reward and working memory dysfunction in bipolar disorder. World J Biol Psychiatry. 2012;13(8):605-15.

88. John JP, Halahalli HN, Vasudev MK, Jayakumar PN, Jain S. Regional brain activation/deactivation during word generation in schizophrenia: fMRI study. Br J Psychiatry. 2011;198(3):213-22.

89. Johnson MR, Morris NA, Astur RS, Calhoun VD, Mathalon DH, Kiehl KA, et al. A functional magnetic resonance imaging study of working memory abnormalities in schizophrenia. Biol Psychiatry. 2006;60(1):11-21.

90. Jones HM, Brammer MJ, O'Toole M, Taylor T, Ohlsen RI, Brown RG, et al. Cortical effects of quetiapine in first-episode schizophrenia: a preliminary functional magnetic resonance imaging study. Biol Psychiatry. 2004;56(12):938-42.

91. Joyal CC, Putkonen A, Mancini-Marie A, Hodgins S, Kononen M, Boulay L, et al. Violent persons with schizophrenia and comorbid disorders: a functional magnetic resonance imaging study. Schizophr Res. 2007;91(1-3):97-102.

92. Kaladjian A, Jeanningros R, Azorin JM, Grimault S, Anton JL, Mazzola-Pomietto P. Blunted activation in right ventrolateral prefrontal cortex during motor response inhibition in schizophrenia. Schizophr Res. 2007;97(1-3):184-93.

93. Kaladjian A, Jeanningros R, Azorin JM, Nazarian B, Roth M, Anton JL, et al. Remission from mania is associated with a decrease in amygdala activation during motor response inhibition. Bipolar Disord. 2009;11(5):530-8.

94. Kaladjian A, Jeanningros R, Azorin JM, Nazarian B, Roth M, Mazzola-Pomietto P. Reduced brain activation in euthymic bipolar patients during response inhibition: an event-related fMRI study. Psychiatry Res. 2009;173(1):45-51.

95. Kanayama G, Rogowska J, Pope HG, Gruber SA, Yurgelun-Todd DA. Spatial working memory in heavy cannabis users: a functional magnetic resonance imaging study. Psychopharmacology (Berl). 2004;176(3-4):239-47.

96. Kang SS, Sponheim SR, Chafee MV, MacDonald AW, 3rd. Disrupted functional connectivity for controlled visual processing as a basis for impaired spatial working memory in schizophrenia. Neuropsychologia. 2011;49(10):2836-47.

97. Kang DH, Jang JH, Han JY, Kim JH, Jung WH, Choi JS, et al. Neural correlates of altered response inhibition and dysfunctional connectivity at rest in obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2013;40:340-6.

98. Karch S, Leicht G, Giegling I, Lutz J, Kunz J, Buselmeier M, et al. Inefficient neural activity in patients with schizophrenia and nonpsychotic relatives of schizophrenic patients: evidence from a working memory task. J Psychiatr Res. 2009;43(15):1185-94.

99. Kerns JG, Cohen JD, MacDonald AW, 3rd, Johnson MK, Stenger VA, Aizenstein H, et al. Decreased conflict- and error-related activity in the anterior cingulate cortex in subjects with schizophrenia. Am J Psychiatry. 2005;162(10):1833-9.

100. Kim P, Jenkins SE, Connolly ME, Deveney CM, Fromm SJ, Brotman MA, et al. Neural correlates of cognitive flexibility in children at risk for bipolar disorder. J Psychiatr Res. 2012;46(1):22-30.

101. Kimbrell TA, Ketter TA, George MS, Little JT, Benson BE, Willis MW, et al. Regional cerebral glucose utilization in patients with a range of severities of unipolar depression. Biol Psychiatry. 2002;51(3):237-52.

102. Kircher TT, Bulimore ET, Brammer MJ, Williams SC, Broome MR, Murray RM, et al. Differential activation of temporal cortex during sentence completion in schizophrenic patients with and without formal thought disorder. Schizophr Res. 2001;50(1-2):27-40.

103. Kircher T, Whitney C, Krings T, Huber W, Weis S. Hippocampal dysfunction during free word association in male patients with schizophrenia. Schizophr Res. 2008;101(1-3):242-55.

104. Kober H, DeVito EE, DeLeone CM, Carroll KM, Potenza MN. Cannabis abstinence during treatment and one-year follow-up: relationship to neural activity in men. Neuropsychopharmacology. 2014;39(10):2288-98.

105. Koch K, Wagner G, Nenadic I, Schachtzabel C, Schultz C, Roebel M, et al. Frontostriatal hypoactivation during correct information retrieval in patients with schizophrenia: an fMRI study. Neuroscience. 2008;153(1):54-62.

106. Koch K, Wagner G, Schachtzabel C, Peikert G, Schultz CC, Sauer H, et al. Aberrant anterior cingulate activation in obsessive-compulsive disorder is related to task complexity. Neuropsychologia. 2012;50(5):958-64.

107. Kronhaus DM, Lawrence NS, Williams AM, Frangou S, Brammer MJ, Williams SC, et al. Stroop performance in bipolar disorder: further evidence for abnormalities in the ventral prefrontal cortex. Bipolar Disord. 2006;8(1):28-39.

108. Krug A, Cabanis M, Pyka M, Pauly K, Kellermann T, Walter H, et al. Attenuated prefrontal activation during decision-making under uncertainty in schizophrenia: a multi-center fMRI study. Schizophr Res. 2014;152(1):176-83.

109. Kyriakopoulos M, Dima D, Roiser JP, Corrigall R, Barker GJ, Frangou S. Abnormal functional activation and connectivity in the working memory network in early-onset schizophrenia. J Am Acad Child Adolesc Psychiatry. 2012;51(9):911-20 e2.

110. Kubicki M, McCarley RW, Nestor PG, Huh T, Kikinis R, Shenton ME, et al. An fMRI study of semantic processing in men with schizophrenia. Neuroimage. 2003;20(4):1923-33. 111. Kuperberg GR, West WC, Lakshmanan BM, Goff D. Functional magnetic resonance imaging reveals neuroanatomical dissociations during semantic integration in schizophrenia. Biol Psychiatry. 2008;64(5):407-18.

112. Lagopoulos J, Ivanovski B, Malhi GS. An event-related functional MRI study of working memory in euthymic bipolar disorder. J Psychiatry Neurosci. 2007;32(3):174-84.
113. Landin-Romero R, McKenna PJ, Salgado-Pineda P, Sarro S, Aguirre C, Sarri C, et al. Failure of deactivation in the default mode network: a trait marker for schizophrenia?

Psychol Med. 2015;45(6):1315-25.

114. Langenecker SA, Kennedy SE, Guidotti LM, Briceno EM, Own LS, Hooven T, et al. Frontal and limbic activation during inhibitory control predicts treatment response in major depressive disorder. Biol Psychiatry. 2007;62(11):1272-80.

115. Laurens KR, Ngan ET, Bates AT, Kiehl KA, Liddle PF. Rostral anterior cingulate cortex dysfunction during error processing in schizophrenia. Brain. 2003;126(Pt 3):610-22. 116. Lepage M, Pelletier M, Achim A, Montoya A, Menear M, Lal S. Parietal cortex and episodic memory retrieval in schizophrenia. Psychiatry Res. 2010;182(3):191-9.

117. Lesh TA, Westphal AJ, Niendam TA, Yoon JH, Minzenberg MJ, Ragland JD, et al. Proactive and reactive cognitive control and dorsolateral prefrontal cortex dysfunction in first episode schizophrenia. Neuroimage Clin. 2013;2:590-9.

118. Lesh TA, Tanase C, Geib BR, Niendam TA, Yoon JH, Minzenberg MJ, et al. A multimodal analysis of antipsychotic effects on brain structure and function in first-episode schizophrenia. JAMA Psychiatry. 2015;72(3):226-34.

119. Leube DT, Rapp A, Buchkremer G, Bartels M, Kircher TT, Erb M, et al. Hippocampal dysfunction during episodic memory encoding in patients with schizophrenia-an fMRI study. Schizophr Res. 2003;64(1):83-5.

120. Li CS, Huang C, Yan P, Bhagwagar Z, Milivojevic V, Sinha R. Neural correlates of impulse control during stop signal inhibition in cocaine-dependent men. Neuropsychopharmacology. 2008;33(8):1798-806.

121. Li CS, Luo X, Yan P, Bergquist K, Sinha R. Altered impulse control in alcohol dependence: neural measures of stop signal performance. Alcohol Clin Exp Res. 2009;33(4):740-50.

122. Liemburg EJ, Dlabac-De Lange JJ, Bais L, Knegtering H, van Osch MJ, Renken RJ, et al. Neural correlates of planning performance in patients with schizophrenia--relationship with apathy. Schizophr Res. 2015;161(2-3):367-75.

123. Luck D, Danion JM, Marrer C, Pham BT, Gounot D, Foucher J. Abnormal medial temporal activity for bound information during working memory maintenance in patients with schizophrenia. Hippocampus. 2010;20(8):936-48.

124. Madre M, Pomarol-Clotet E, McKenna P, Radua J, Ortiz-Gil J, Panicali F, et al. Brain functional abnormality in schizo-affective disorder: an fMRI study. Psychol Med. 2013;43(1):143-53.

125. Madre M, Radua J, Landin-Romero R, Alonso-Lana S, Salvador R, Panicali F, et al. Trait or state? A longitudinal neuropsychological evaluation and fMRI study in schizoaffective disorder. Schizophr Res. 2014;159(2-3):458-64.

126. Maltby N, Tolin DF, Worhunsky P, O'Keefe TM, Kiehl KA. Dysfunctional action monitoring hyperactivates frontal-striatal circuits in obsessive-compulsive disorder: an event-related fMRI study. Neuroimage. 2005;24(2):495-503.

127. Marsh R, Horga G, Parashar N, Wang Z, Peterson BS, Simpson HB. Altered activation in fronto-striatal circuits during sequential processing of conflict in unmedicated adults with obsessive-compulsive disorder. Biol Psychiatry. 2014;75(8):615-22.

128. Matsuo K, Glahn DC, Peluso MA, Hatch JP, Monkul ES, Najt P, et al. Prefrontal hyperactivation during working memory task in untreated individuals with major depressive disorder. Mol Psychiatry. 2007;12(2):158-66.

129. Matsuo K, Chen SH, Liu CM, Liu CC, Hwang TJ, Hsieh MH, et al. Stable signatures of schizophrenia in the cortical-subcortical-cerebellar network using fMRI of verbal working memory. Schizophr Res. 2013;151(1-3):133-40.

130. Matthews S, Simmons A, Strigo I, Gianaros P, Yang T, Paulus M. Inhibition-related activity in subgenual cingulate is associated with symptom severity in major depression. Psychiatry Res. 2009;172(1):1-6.

131. Mazzola-Pomietto P, Kaladjian A, Azorin JM, Anton JL, Jeanningros R. Bilateral decrease in ventrolateral prefrontal cortex activation during motor response inhibition in mania. J Psychiatr Res. 2009;43(4):432-41.

132. McDowell JE, Brown GG, Paulus M, Martinez A, Stewart SE, Dubowitz DJ, et al. Neural correlates of refixation saccades and antisaccades in normal and schizophrenia subjects. Biol Psychiatry. 2002;51(3):216-23.

133. McIntosh AM, Whalley HC, McKirdy J, Hall J, Sussmann JE, Shankar P, et al. Prefrontal function and activation in bipolar disorder and schizophrenia. Am J Psychiatry. 2008;165(3):378-84.

134. McKenna BS, Sutherland AN, Legenkaya AP, Eyler LT. Abnormalities of brain response during encoding into verbal working memory among euthymic patients with bipolar disorder. Bipolar Disord. 2014;16(3):289-99.

135. Meisenzahl EM, Scheuerecker J, Zipse M, Ufer S, Wiesmann M, Frodl T, et al. Effects of treatment with the atypical neuroleptic quetiapine on working memory function: a functional MRI follow-up investigation. Eur Arch Psychiatry Clin Neurosci. 2006;256(8):522-31.

136. Mendrek A, Kiehl KA, Smith AM, Irwin D, Forster BB, Liddle PF. Dysfunction of a distributed neural circuitry in schizophrenia patients during a working-memory performance. Psychol Med. 2005;35(2):187-96.

137. Meyer-Lindenberg A, Poline JB, Kohn PD, Holt JL, Egan MF, Weinberger DR, et al. Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. Am J Psychiatry. 2001;158(11):1809-17.

138. Moeller FG, Steinberg JL, Dougherty DM, Narayana PA, Kramer LA, Renshaw PF. Functional MRI study of working memory in MDMA users. Psychopharmacology (Berl). 2004;177(1-2):185-94.

139. Moeller FG, Steinberg JL, Schmitz JM, Ma L, Liu S, Kjome KL, et al. Working memory fMRI activation in cocaine-dependent subjects: association with treatment response. Psychiatry Res. 2010;181(3):174-82.

140. Moeller SJ, Konova AB, Parvaz MA, Tomasi D, Lane RD, Fort C, et al. Functional, structural, and emotional correlates of impaired insight in cocaine addiction. JAMA Psychiatry. 2014;71(1):61-70.

141. Monks PJ, Thompson JM, Bullmore ET, Suckling J, Brammer MJ, Williams SC, et al. A functional MRI study of working memory task in euthymic bipolar disorder: evidence for task-specific dysfunction. Bipolar Disord. 2004;6(6):550-64.

142. Morein-Zamir S, Simon Jones P, Bullmore ET, Robbins TW, Ersche KD. Prefrontal hypoactivity associated with impaired inhibition in stimulant-dependent individuals but evidence for hyperactivation in their unaffected siblings. Neuropsychopharmacology. 2013;38(10):1945-53.

143. Nabeyama M, Nakagawa A, Yoshiura T, Nakao T, Nakatani E, Togao O, et al. Functional MRI study of brain activation alterations in patients with obsessive-compulsive disorder after symptom improvement. Psychiatry Res. 2008;163(3):236-47.

144. Naismith SL, Lagopoulos J, Ward PB, Davey CG, Little C, Hickie IB. Fronto-striatal correlates of impaired implicit sequence learning in major depression: an fMRI study. J Affect Disord. 2010;125(1-3):256-61.

145. Nakao T, Nakagawa A, Yoshiura T, Nakatani E, Nabeyama M, Yoshizato C, et al. A functional MRI comparison of patients with obsessive-compulsive disorder and normal controls during a Chinese character Stroop task. Psychiatry Res. 2005;139(2):101-14.

146. Nakao T, Nakagawa A, Nakatani E, Nabeyama M, Sanematsu H, Yoshiura T, et al. Working memory dysfunction in obsessive-compulsive disorder: a neuropsychological and functional MRI study. J Psychiatr Res. 2009;43(8):784-91.

147. Nakao T, Nakagawa A, Yoshiura T, Nakatani E, Nabeyama M, Sanematsu H, et al. Duration effect of obsessive-compulsive disorder on cognitive function: a functional MRI study. Depress Anxiety. 2009;26(9):814-23.

148. Nelson EE, Vinton DT, Berghorst L, Towbin KE, Hommer RE, Dickstein DP, et al. Brain systems underlying response flexibility in healthy and bipolar adolescents: an event-related fMRI study. Bipolar Disord. 2007;9(8):810-9.

149. Nestor LJ, Ghahremani DG, Monterosso J, London ED. Prefrontal hypoactivation during cognitive control in early abstinent methamphetamine-dependent subjects. Psychiatry Res. 2011;194(3):287-95.

150. Niendam TA, Lesh TA, Yoon J, Westphal AJ, Hutchison N, Daniel Ragland J, et al. Impaired context processing as a potential marker of psychosis risk state. Psychiatry Res. 2014;221(1):13-20.

151. Oertel-Knochel V, Reinke B, Feddern R, Knake A, Knochel C, Prvulovic D, et al. Verbal episodic memory deficits in remitted bipolar patients: a combined behavioural and fMRI study. J Affect Disord. 2013;150(2):430-40.

152. Oertel-Knochel V, Reinke B, Feddern R, Knake A, Knochel C, Prvulovic D, et al. Episodic memory impairments in bipolar disorder are associated with functional and structural brain changes. Bipolar Disord. 2014;16(8):830-45.

153. Oflaz S, Akyuz F, Hamamci A, Firat Z, Keskinkilic C, Kilickesmez O, et al. Working memory dysfunction in delusional disorders: an fMRI investigation. J Psychiatr Res. 2014;56:43-9.

154. Ojeda N, Ortuno F, Arbizu J, Lopez P, Marti-Climent JM, Penuelas I, et al. Functional neuroanatomy of sustained attention in schizophrenia: contribution of parietal cortices. Hum Brain Mapp. 2002;17(2):116-30.

155. Ongur D, Cullen TJ, Wolf DH, Rohan M, Barreira P, Zalesak M, et al. The neural basis of relational memory deficits in schizophrenia. Arch Gen Psychiatry. 2006;63(4):356-65.

156. Ortiz-Gil J, Pomarol-Clotet E, Salvador R, Canales-Rodriguez EJ, Sarro S, Gomar JJ, et al. Neural correlates of cognitive impairment in schizophrenia. Br J Psychiatry. 2011;199(3):202-10.

157. Padula CB, Schweinsburg AD, Tapert SF. Spatial working memory performance and fMRI activation interaction in abstinent adolescent marijuana users. Psychol Addict Behav. 2007;21(4):478-87.

158. Pae CU, Juh R, Yoo SS, Choi BG, Lim HK, Lee C, et al. Verbal working memory dysfunction in schizophrenia: an FMRI investigation. Int J Neurosci. 2008;118(10):1467-87.
159. Page LA, Rubia K, Deeley Q, Daly E, Toal F, Mataix-Cols D, et al. A functional magnetic resonance imaging study of inhibitory control in obsessive-compulsive disorder. Psychiatry Res. 2009;174(3):202-9.

160. Paulus MP, Hozack NE, Zauscher BE, Frank L, Brown GG, McDowell J, et al. Parietal dysfunction is associated with increased outcome-related decision-making in schizophrenia patients. Biol Psychiatry. 2002;51(12):995-1004.

161. Passarotti AM, Sweeney JA, Pavuluri MN. Neural correlates of response inhibition in pediatric bipolar disorder and attention deficit hyperactivity disorder. Psychiatry Res. 2010;181(1):36-43.

162. Paulus MP, Hozack NE, Zauscher BE, Frank L, Brown GG, Braff DL, et al. Behavioral and functional neuroimaging evidence for prefrontal dysfunction in methamphetamine-dependent subjects. Neuropsychopharmacology. 2002;26(1):53-63.

163. Pavuluri MN, Passarotti AM, Harral EM, Sweeney JA. Enhanced prefrontal function with pharmacotherapy on a response inhibition task in adolescent bipolar disorder. J Clin Psychiatry. 2010;71(11):1526-34.

164. Pedersen A, Wilmsmeier A, Wiedl KH, Bauer J, Kueppers K, Koelkebeck K, et al. Anterior cingulate cortex activation is related to learning potential on the WCST in schizophrenia patients. Brain Cogn. 2012;79(3):245-51.

165. Penfold C, Vizueta N, Townsend JD, Bookheimer SY, Altshuler LL. Frontal lobe hypoactivation in medication-free adults with bipolar II depression during response inhibition. Psychiatry Res. 2015;231(3):202-9.

166. Perlstein WM, Carter CS, Noll DC, Cohen JD. Relation of prefrontal cortex dysfunction to working memory and symptoms in schizophrenia. Am J Psychiatry. 2001;158(7):1105-13.

167. Pfefferbaum A, Desmond JE, Galloway C, Menon V, Glover GH, Sullivan EV. Reorganization of frontal systems used by alcoholics for spatial working memory: an fMRI study. Neuroimage. 2001;14(1 Pt 1):7-20.

168. Pirnia T, Woods RP, Hamilton LS, Lyden H, Joshi SH, Asarnow RF, et al. Hippocampal dysfunction during declarative memory encoding in schizophrenia and effects of genetic liability. Schizophr Res. 2015;161(2-3):357-66.

169. Pitel AL, Chanraud S, Muller-Oehring EM, Pfefferbaum A, Sullivan EV. Modulation of limbic-cerebellar functional connectivity enables alcoholics to recognize who is who. Brain Struct Funct. 2013;218(3):683-95.

170. Pomarol-Clotet E, Salvador R, Sarro S, Gomar J, Vila F, Martinez A, et al. Failure to deactivate in the prefrontal cortex in schizophrenia: dysfunction of the default mode network? Psychol Med. 2008;38(8):1185-93.

171. Pomarol-Clotet E, Moro N, Sarro S, Goikolea JM, Vieta E, Amann B, et al. Failure of de-activation in the medial frontal cortex in mania: evidence for default mode network dysfunction in the disorder. World J Biol Psychiatry. 2012;13(8):616-26.

172. Pomarol-Clotet E, Alonso-Lana S, Moro N, Sarro S, Bonnin MC, Goikolea JM, et al. Brain functional changes across the different phases of bipolar disorder. Br J Psychiatry. 2015;206(2):136-44.

173. Potkin SG, Alva G, Fleming K, Anand R, Keator D, Carreon D, et al. A PET study of the pathophysiology of negative symptoms in schizophrenia. Positron emission tomography. Am J Psychiatry. 2002;159(2):227-37.

174. Quide Y, Morris RW, Shepherd AM, Rowland JE, Green MJ. Task-related frontostriatal functional connectivity during working memory performance in schizophrenia. Schizophr Res. 2013;150(2-3):468-75.

175. Ragland JD, Gur RC, Glahn DC, Censits DM, Smith RJ, Lazarev MG, et al. Frontotemporal cerebral blood flow change during executive and declarative memory tasks in schizophrenia: a positron emission tomography study. Neuropsychology. 1998;12(3):399-413.

176. Ragland JD, Gur RC, Raz J, Schroeder L, Kohler CG, Smith RJ, et al. Effect of schizophrenia on frontotemporal activity during word encoding and recognition: a PET cerebral blood flow study. Am J Psychiatry. 2001;158(7):1114-25.

177. Ragland JD, Gur RC, Valdez J, Turetsky BI, Elliott M, Kohler C, et al. Event-related fMRI of frontotemporal activity during word encoding and recognition in schizophrenia. Am J Psychiatry. 2004;161(6):1004-15.

178. Ragland JD, Gur RC, Valdez JN, Loughead J, Elliott M, Kohler C, et al. Levels-ofprocessing effect on frontotemporal function in schizophrenia during word encoding and recognition. Am J Psychiatry. 2005;162(10):1840-8.

179. Ragland JD, Moelter ST, Bhati MT, Valdez JN, Kohler CG, Siegel SJ, et al. Effect of retrieval effort and switching demand on fMRI activation during semantic word generation in schizophrenia. Schizophr Res. 2008;99(1-3):312-23.

180. Ragland JD, Blumenfeld RS, Ramsay IS, Yonelinas A, Yoon J, Solomon M, et al. Neural correlates of relational and item-specific encoding during working and long-term memory in schizophrenia. Neuroimage. 2012;59(2):1719-26.

181. Rametti G, Junque C, Vendrell P, Catalan R, Penades R, Bargallo N, et al. Hippocampal underactivation in an fMRI study of word and face memory recognition in schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2009;259(4):203-11.

182. Rasetti R, Mattay VS, White MG, Sambataro F, Podell JE, Zoltick B, et al. Altered hippocampal-parahippocampal function during stimulus encoding: a potential indicator of genetic liability for schizophrenia. JAMA Psychiatry. 2014;71(3):236-47.

183. Remijnse PL, van den Heuvel OA, Nielen MM, Vriend C, Hendriks GJ, Hoogendijk WJ, et al. Cognitive inflexibility in obsessive-compulsive disorder and major depression is associated with distinct neural correlates. PLoS One. 2013;8(4):e59600.

184. Roberts GM, Garavan H. Evidence of increased activation underlying cognitive control in ecstasy and cannabis users. Neuroimage. 2010;52(2):429-35.

185. Robinson JL, Bearden CE, Monkul ES, Tordesillas-Gutierrez D, Velligan DI, Frangou S, et al. Fronto-temporal dysregulation in remitted bipolar patients: an fMRI delayed-non-match-to-sample (DNMS) study. Bipolar Disord. 2009;11(4):351-60.

186. Rodriguez-Cano E, Sarro S, Monte GC, Maristany T, Salvador R, McKenna PJ, et al. Evidence for structural and functional abnormality in the subgenual anterior cingulate cortex in major depressive disorder. Psychol Med. 2014;44(15):3263-73.

187. Roth RM, Saykin AJ, Flashman LA, Pixley HS, West JD, Mamourian AC. Eventrelated functional magnetic resonance imaging of response inhibition in obsessivecompulsive disorder. Biol Psychiatry. 2007;62(8):901-9.

188. Roth RM, Koven NS, Randolph JJ, Flashman LA, Pixley HS, Ricketts SM, et al. Functional magnetic resonance imaging of executive control in bipolar disorder. Neuroreport. 2006;17(11):1085-9.

189. Rowland LM, Griego JA, Spieker EA, Cortes CR, Holcomb HH. Neural changes associated with relational learning in schizophrenia. Schizophr Bull. 2010;36(3):496-503.
190. Royer A, Schneider FC, Grosselin A, Pellet J, Barral FG, Laurent B, et al. Brain activation during executive processes in schizophrenia. Psychiatry Res. 2009;173(3):170-6.

191. Rubia K, Russell T, Bullmore ET, Soni W, Brammer MJ, Simmons A, et al. An fMRI study of reduced left prefrontal activation in schizophrenia during normal inhibitory function. Schizophr Res. 2001;52(1-2):47-55.

192. Sabri O, Owega A, Schreckenberger M, Sturz L, Fimm B, Kunert P, et al. A truly simultaneous combination of functional transcranial Doppler sonography and H(2)(15)O PET adds fundamental new information on differences in cognitive activation between schizophrenics and healthy control subjects. J Nucl Med. 2003;44(5):671-81.

193. Salgado-Pineda P, Junque C, Vendrell P, Baeza I, Bargallo N, Falcon C, et al. Decreased cerebral activation during CPT performance: structural and functional deficits in schizophrenic patients. Neuroimage. 2004;21(3):840-7.

194. Sapara A, Ffytche DH, Birchwood M, Cooke MA, Fannon D, Williams SC, et al. Preservation and compensation: the functional neuroanatomy of insight and working memory in schizophrenia. Schizophr Res. 2014;152(1):201-9.

195. Sareen J, Campbell DW, Leslie WD, Malisza KL, Stein MB, Paulus MP, et al. Striatal function in generalized social phobia: a functional magnetic resonance imaging study. Biol Psychiatry. 2007;61(3):396-404.

196. Scheuerecker J, Ufer S, Zipse M, Frodl T, Koutsouleris N, Zetzsche T, et al. Cerebral changes and cognitive dysfunctions in medication-free schizophrenia - an fMRI study. J Psychiatr Res. 2008;42(6):469-76.

197. Schlosser RG, Koch K, Wagner G, Nenadic I, Roebel M, Schachtzabel C, et al. Inefficient executive cognitive control in schizophrenia is preceded by altered functional activation during information encoding: an fMRI study. Neuropsychologia. 2008;46(1):336-47.

198. Schulte T, Muller-Oehring EM, Sullivan EV, Pfefferbaum A. Synchrony of corticostriatal-midbrain activation enables normal inhibitory control and conflict processing in recovering alcoholic men. Biol Psychiatry. 2012;71(3):269-78.

199. Schweinsburg AD, Schweinsburg BC, Cheung EH, Brown GG, Brown SA, Tapert SF. fMRI response to spatial working memory in adolescents with comorbid marijuana and alcohol use disorders. Drug Alcohol Depend. 2005;79(2):201-10.

200. Semple WE, Goyer PF, McCormick R, Donovan B, Muzic RF, Jr., Rugle L, et al. Higher brain blood flow at amygdala and lower frontal cortex blood flow in PTSD patients with comorbid cocaine and alcohol abuse compared with normals. Psychiatry. 2000;63(1):65-74.

201. Sepede G, De Berardis D, Campanella D, Perrucci MG, Ferretti A, Serroni N, et al. Impaired sustained attention in euthymic bipolar disorder patients and non-affected relatives: an fMRI study. Bipolar Disord. 2012;14(7):764-79.

202. Schaufelberger M, Senhorini MC, Barreiros MA, Amaro E, Jr., Menezes PR, Scazufca M, et al. Frontal and anterior cingulate activation during overt verbal fluency in patients with first episode psychosis. Rev Bras Psiquiatr. 2005;27(3):228-32.

203. Singh MK, Chang KD, Mazaika P, Garrett A, Adleman N, Kelley R, et al. Neural correlates of response inhibition in pediatric bipolar disorder. J Child Adolesc Psychopharmacol. 2010;20(1):15-24.

204. Smith AM, Longo CA, Fried PA, Hogan MJ, Cameron I. Effects of marijuana on visuospatial working memory: an fMRI study in young adults. Psychopharmacology (Berl). 2010;210(3):429-38.

205. Stephane M, Hagen MC, Lee JT, Uecker J, Pardo PJ, Kuskowski MA, et al. About the mechanisms of auditory verbal hallucinations: a positron emission tomographic study. J Psychiatry Neurosci. 2006;31(6):396-405.

206. Strakowski SM, Adler CM, Holland SK, Mills N, DelBello MP. A preliminary FMRI study of sustained attention in euthymic, unmedicated bipolar disorder. Neuropsychopharmacology. 2004;29(9):1734-40.

207. Strakowski SM, Adler CM, Holland SK, Mills NP, DelBello MP, Eliassen JC. Abnormal FMRI brain activation in euthymic bipolar disorder patients during a counting Stroop interference task. Am J Psychiatry. 2005;162(9):1697-705.

208. Strakowski SM, Adler CM, Cerullo M, Eliassen JC, Lamy M, Fleck DE, et al. Magnetic resonance imaging brain activation in first-episode bipolar mania during a response inhibition task. Early Interv Psychiatry. 2008;2(4):225-33.

209. Sugranyes G, Kyriakopoulos M, Dima D, O'Muircheartaigh J, Corrigall R, Pendelbury G, et al. Multimodal analyses identify linked functional and white matter abnormalities within the working memory network in schizophrenia. Schizophr Res. 2012;138(2-3):136-42.

210. Surguladze SA, Chu EM, Evans A, Anilkumar AP, Patel MX, Timehin C, et al. The effect of long-acting risperidone on working memory in schizophrenia: a functional magnetic resonance imaging study. J Clin Psychopharmacol. 2007;27(6):560-70.

211. Tan HY, Choo WC, Fones CS, Chee MW. fMRI study of maintenance and manipulation processes within working memory in first-episode schizophrenia. Am J Psychiatry. 2005;162(10):1849-58.

212. Tan HY, Sust S, Buckholtz JW, Mattay VS, Meyer-Lindenberg A, Egan MF, et al. Dysfunctional prefrontal regional specialization and compensation in schizophrenia. Am J Psychiatry. 2006;163(11):1969-77.

213. Tanabe J, Thompson L, Claus E, Dalwani M, Hutchison K, Banich MT. Prefrontal cortex activity is reduced in gambling and nongambling substance users during decision-making. Hum Brain Mapp. 2007;28(12):1276-86.

214. Tapert SF, Brown GG, Kindermann SS, Cheung EH, Frank LR, Brown SA. fMRI measurement of brain dysfunction in alcohol-dependent young women. Alcohol Clin Exp Res. 2001;25(2):236-45.

215. Tapert SF, Schweinsburg AD, Barlett VC, Brown SA, Frank LR, Brown GG, et al. Blood oxygen level dependent response and spatial working memory in adolescents with alcohol use disorders. Alcohol Clin Exp Res. 2004;28(10):1577-86.

216. Tapert SF, Schweinsburg AD, Drummond SP, Paulus MP, Brown SA, Yang TT, et al. Functional MRI of inhibitory processing in abstinent adolescent marijuana users. Psychopharmacology (Berl). 2007;194(2):173-83.

217. Taylor Tavares JV, Clark L, Furey ML, Williams GB, Sahakian BJ, Drevets WC. Neural basis of abnormal response to negative feedback in unmedicated mood disorders. Neuroimage. 2008;42(3):1118-26.

218. Tendolkar I, Weis S, Guddat O, Fernandez G, Brockhaus-Dumke A, Specht K, et al. Evidence for a dysfunctional retrosplenial cortex in patients with schizophrenia: a functional magnetic resonance imaging study with a semantic-perceptual contrast. Neurosci Lett. 2004;369(1):4-8.

219. Tomasi D, Goldstein RZ, Telang F, Maloney T, Alia-Klein N, Caparelli EC, et al. Widespread disruption in brain activation patterns to a working memory task during cocaine abstinence. Brain Res. 2007;1171:83-92.

220. Townsend JD, Bookheimer SY, Foland-Ross LC, Moody TD, Eisenberger NI, Fischer JS, et al. Deficits in inferior frontal cortex activation in euthymic bipolar disorder patients during a response inhibition task. Bipolar Disord. 2012;14(4):442-50.

221. Tregellas JR, Tanabe JL, Miller DE, Ross RG, Olincy A, Freedman R. Neurobiology of smooth pursuit eye movement deficits in schizophrenia: an fMRI study. Am J Psychiatry. 2004;161(2):315-21.

222. Ungar L, Nestor PG, Niznikiewicz MA, Wible CG, Kubicki M. Color Stroop and negative priming in schizophrenia: an fMRI study. Psychiatry Res. 2010;181(1):24-9.
223. van den Heuvel OA, Veltman DJ, Groenewegen HJ, Cath DC, van Balkom AJ, van Hartskamp J, et al. Frontal-striatal dysfunction during planning in obsessive-compulsive disorder. Arch Gen Psychiatry. 2005;62(3):301-9.

224. Viard A, Flament MF, Artiges E, Dehaene S, Naccache L, Cohen D, et al. Cognitive control in childhood-onset obsessive-compulsive disorder: a functional MRI study. Psychol Med. 2005;35(7):1007-17.

225. Vilgis V, Chen J, Silk TJ, Cunnington R, Vance A. Frontoparietal function in young people with dysthymic disorder (DSM-5: Persistent depressive disorder) during spatial working memory. J Affect Disord. 2014;160:34-42.

226. Vinogradov S, Luks TL, Schulman BJ, Simpson GV. Deficit in a neural correlate of reality monitoring in schizophrenia patients. Cereb Cortex. 2008;18(11):2532-9.

227. Walter H, Wunderlich AP, Blankenhorn M, Schafer S, Tomczak R, Spitzer M, et al. No hypofrontality, but absence of prefrontal lateralization comparing verbal and spatial working memory in schizophrenia. Schizophr Res. 2003;61(2-3):175-84.

228. Walter H, Wolf RC, Spitzer M, Vasic N. Increased left prefrontal activation in patients with unipolar depression: an event-related, parametric, performance-controlled fMRI study. J Affect Disord. 2007;101(1-3):175-85.

229. Walter H, Vasic N, Hose A, Spitzer M, Wolf RC. Working memory dysfunction in schizophrenia compared to healthy controls and patients with depression: evidence from event-related fMRI. Neuroimage. 2007;35(4):1551-61.

230. Weisenbach SL, Kassel MT, Rao J, Weldon AL, Avery ET, Briceno EM, et al. Differential prefrontal and subcortical circuitry engagement during encoding of semantically related words in patients with late-life depression. Int J Geriatr Psychiatry. 2014;29(11):1104-15.

231. Weiss EM, Siedentopf C, Golaszewski S, Mottaghy FM, Hofer A, Kremser C, et al. Brain activation patterns during a selective attention test--a functional MRI study in healthy volunteers and unmedicated patients during an acute episode of schizophrenia. Psychiatry Res. 2007;154(1):31-40.

232. Weiss EM, Golaszewski S, Mottaghy FM, Hofer A, Hausmann A, Kemmler G, et al. Brain activation patterns during a selective attention test-a functional MRI study in healthy volunteers and patients with schizophrenia. Psychiatry Res. 2003;123(1):1-15.

233. Wen SL, Cheng MF, Cheng MH, Yue JH, Li JF, Xie LJ. Neurocognitive dysfunction and regional cerebral blood flow in medically naive patients with obsessive-compulsive disorder. Dev Neuropsychol. 2014;39(1):37-50.

234. Werner NS, Meindl T, Materne J, Engel RR, Huber D, Riedel M, et al. Functional MRI study of memory-related brain regions in patients with depressive disorder. J Affect Disord. 2009;119(1-3):124-31.

235. White T, Hongwanishkul D, Schmidt M. Increased anterior cingulate and temporal lobe activity during visuospatial working memory in children and adolescents with schizophrenia. Schizophr Res. 2011;125(2-3):118-28.

236. Wilmsmeier A, Ohrmann P, Suslow T, Siegmund A, Koelkebeck K, Rothermundt M, et al. Neural correlates of set-shifting: decomposing executive functions in schizophrenia. J Psychiatry Neurosci. 2010;35(5):321-9.

237. Wiser AK, Andreasen NC, O'Leary DS, Watkins GL, Boles Ponto LL, Hichwa RD. Dysfunctional cortico-cerebellar circuits cause 'cognitive dysmetria' in schizophrenia. Neuroreport. 1998;9(8):1895-9.

238. Wojtalik JA, Barch DM. An FMRI study of the influence of a history of substance abuse on working memory-related brain activation in schizophrenia. Front Psychiatry. 2014;5:1.

239. Wolf DH, Gerraty R, Satterthwaite TD, Loughead J, Campellone T, Elliott MA, et al. Striatal intrinsic reinforcement signals during recognition memory: relationship to response bias and dysregulation in schizophrenia. Front Behav Neurosci. 2011;5:81.

240. Woodward ND, Waldie B, Rogers B, Tibbo P, Seres P, Purdon SE. Abnormal prefrontal cortical activity and connectivity during response selection in first episode psychosis, chronic schizophrenia, and unaffected siblings of individuals with schizophrenia. Schizophr Res. 2009;109(1-3):182-90.

241. Woolley J, Heyman I, Brammer M, Frampton I, McGuire PK, Rubia K. Brain activation in paediatric obsessive compulsive disorder during tasks of inhibitory control. Br J Psychiatry. 2008;192(1):25-31.

242. Wykes T, Brammer M, Mellers J, Bray P, Reeder C, Williams C, et al. Effects on the brain of a psychological treatment: cognitive remediation therapy: functional magnetic resonance imaging in schizophrenia. Br J Psychiatry. 2002;181:144-52.

243. Yamamoto DJ, Reynolds J, Krmpotich T, Banich MT, Thompson L, Tanabe J. Temporal profile of fronto-striatal-limbic activity during implicit decisions in drug dependence. Drug Alcohol Depend. 2014;136:108-14.

244. Yang TT, Simmons AN, Matthews SC, Tapert SF, Frank GK, Bischoff-Grethe A, et al. Depressed adolescents demonstrate greater subgenual anterior cingulate activity. Neuroreport. 2009;20(4):440-4.

245. Yoo SS, Choi BG, Juh RH, Park JM, Pae CU, Kim JJ, et al. Working memory processing of facial images in schizophrenia: fMRI investigation. Int J Neurosci. 2005;115(3):351-66.

246. Yoon JH, Minzenberg MJ, Ursu S, Ryan Walter BS, Wendelken C, Ragland JD, et al. Association of dorsolateral prefrontal cortex dysfunction with disrupted coordinated brain activity in schizophrenia: relationship with impaired cognition, behavioral disorganization, and global function. Am J Psychiatry. 2008;165(8):1006-14.

247. Yoshimura Y, Okamoto Y, Onoda K, Okada G, Toki S, Yoshino A, et al. Psychosocial functioning is correlated with activation in the anterior cingulate cortex and left lateral prefrontal cortex during a verbal fluency task in euthymic bipolar disorder: a preliminary fMRI study. Psychiatry Clin Neurosci. 2014;68(3):188-96.

248. Yucel M, Harrison BJ, Wood SJ, Fornito A, Wellard RM, Pujol J, et al. Functional and biochemical alterations of the medial frontal cortex in obsessive-compulsive disorder. Arch Gen Psychiatry. 2007;64(8):946-55.

249. Yucel M, Lubman DI, Harrison BJ, Fornito A, Allen NB, Wellard RM, et al. A combined spectroscopic and functional MRI investigation of the dorsal anterior cingulate region in opiate addiction. Mol Psychiatry. 2007;12(7):611, 91-702.

250. Zedkova L, Woodward ND, Harding I, Tibbo PG, Purdon SE. Procedural learning in schizophrenia investigated with functional magnetic resonance imaging. Schizophr Res. 2006;88(1-3):198-207.

251. Zierhut K, Bogerts B, Schott B, Fenker D, Walter M, Albrecht D, et al. The role of hippocampus dysfunction in deficient memory encoding and positive symptoms in schizophrenia. Psychiatry Res. 2010;183(3):187-94.

Diagnostic Group (# of Studies by Diagnosis)	Total # of Studies (N=283)	Schizophrenia Spectrum Disorders (N=139)	Bipolar Disorders (N=50)	Unipolar Depressive Disorders (N=27)	Anxiety Disorders (N=32)	Substance Use Disorders (N=35)
Domain						
Performance Monitoring	11	0.05	0.04	0.04	0.03	0
Response Selection	12	0.04	0.02	0.04	0.03	0.11
Set Shifting	15	0.04	0.02	0.11	0.16	0
Verbal Fluency	17	0.06	0.14	0.04	0	0
Other	18	0.09	0	0	0.03	0.03
Conflict Monitoring	31	0.07	0.10	0	0.28	0.20
Recognition Memory	37	0.19	0.10	0.07	0.03	0.06
Response Inhibition	42	0.06	0.26	0.22	0.22	0.23
Working Memory	100	0.39	0.32	0.37	0.22	0.37

Supplementary Table 2. Proportion of studies within each diagnostic group corresponding to each task domain

The Other domain consisted of a diverse set of low frequency studies that did not cohere into a particular cognitive control domain (i.e., recall memory n=9; implicit learning n=5; decision making n=3; reading n=1).

	9	Je se			
				MNI Coordinate	es
Region	Cluster	Peak	Х	Y	Z
5	Size	Intensity			
	((7)			
	(voxeis)	(Z)			
dorsal anterior cingulate	354	4.39	-2	36	14
anterior mid-cingulate	355	4.30	4	22	32
cortex/pre-supplementary					
motor area					
right insula (extending to	679	5.42	34	28	-10
ventrolateral prefrontal					
cortex)					
right intraparietal sulcus	531	4.67	38	-44	46
left prefrontal cortex	1040	1 10	10	22	26
	1049	4.40	-40	22	20
extending from mid-					
dorsolateral prefrontal to					
promotor cortox					

Supplementary Table 3. Peak coordinates of clusters derived from Activation Likelihood Estimation (ALE) meta-analysis of transdiagnostic pooled patient hyper- and hypoactivation (i.e., aberrant activation) during functional neuroimaging of cognitive control tasks.

Supplementary Table 4. Percent contribution to clusters of convergence for whole-brain pooled aberrant activation meta-analytic contrasts by experiment sample and design characteristics.

		Clu	ster of conve	ergence	
Experiment sample/ design characteristics	Right anterior insula/ ventrolateral prefrontal cortex	Left frontal cortex	Dorsal anterior cingulate	Anterior mid- cingulate/ pre-SMA	Right Intra- parietal sulcus/ parietal cortex
Contrast Direction					
Control > Patient	79.47	61.54	76.98	56.08	60.35
Patient > Control	20.53	38.46	23.02	43.92	39.65
Disorder Class					
Non-psychotic	52.07	37.18	48.69	34.52	59.61
Psychotic	47.93	62.82	51.31	65.48	40.39
Diagnosis					
Schizophrenia	47.93	62.82	51.31	65.48	40.39
Substance Use	16.88	9.54	14.84	8.76	22.06
Anxiety	16.06	10.38	16.53	10.02	7.33
Bipolar Disorder	15.06	6.26	2.82	10.87	17.86
Major Depression	4.07	11.0	14.5	4.87	12.36
Domain					
Working Memory	34.69	45.08	26.98	27.64	36.77
Recognition	16.09	13.99	13.85	18.92	11.24
Response Inhibition	15.84	6.98	17.69	2.75	18.69
Set Shifting	9.74	4.65	14.15	7.51	7.62
Conflict Monitoring	7.22	7.82	15.88	12.01	11.56
Response Selection	4.97	5.75	3.33	4.5	10.44
Performance Monitoring	3.65	0	0.22	5.03	3.6
Verbal Fluency	3.35	7.76	7.9	15.08	0.03
Other	4.46	7.96	0	6.57	0.06
Age Group					
Child/adolescent	12.99	6.72	18.48	1.2	10.36
Adult	86.09	92.89	77.0	98.79	85.05
Older adult	0.91	0.39	4.51	0.01	4.59
Current Psychotropic					
Medication					
Yes	69.82	66.18	57.72	73.45	57.81
No	14.63	25.78	35.54	12.09	28.98
Not reported	15.55	8.04	6.74	14.47	13.21
Behavioral Performance					
Worse than Control Group	47.52	42.65	28.97	32.08	44.63
Equivalent to Control Group	52.37	57.35	71.03	67.67	55.91
Not reported	0.11	0	0	0.25	0.05
Imaging Modality					

Functional MRI	95.77	84.69	92.15	93.55	9142
PET	4.23	14.86	7.85	6.22	8.57
ASL	0	0.46	0	0.22	0.01
SPECT	0	0	0	0	0
Tasks	-	-	-	-	-
Antisaccade	0	0	0	0	0
Beads in the bottle	0 11	0	0	0.15	2.36
Choice reaction time	0	3 23	0	4 04	0
Continuous performance	3 65	0.07	0 22	5.03	36
Delay discounting	0	2.07	0.22	0.00	1.05
Delay discounting		2.07	0	0.02	1.95
Delayed match-to-sample	7.15	13.66	5.21	0.09	9.55
Finger tapping	0	0.57	0	0	0
	0	0	0	1.52	U 14 72
Go/110-go	14.2	4.55	8. <i>1</i>	2.75	14.73
Match stimuli	0.00	0	0	0	0
Mental arithmetic	0	0	0	0 4 15	0
Modified Iowa gambling task	4 66	0	3 21	0.05	6.05
Multi-source interference	0.31	0 92	8.68	0.00	5.38
N-back	23.5	21.04	9.23	23 29	19 82
Probabilitistic reversal	0	0.08	0	0	0
learning	•		•	•	•
Reading	0	0.05	0	1.31	0
Recall	0.12	2.47	0	5.12	0.06
Recognition	16.13	12.32	13.85	14.77	11.24
Semantic decision making	1.69	2.92	0.05	0.78	0.03
Serial reaction time	2.65	1.95	0	0.07	0
Set shifting	2.65	0	2.4	0.02	0.01
Simon task	0	0	0	0	0
Smooth pursuit	0	0	0	0	0
Source memory	0.02	1.67	0	0	0
Spatial working memory	0	4.95	6.33	0	0
Sternberg working memory	3.98	5.44	1.2	0.01	6
Stop signal task	1.64	2.36	8.98	0	3.96
Stroop Switch took	6.91	6.9	12.16	9.78	6.45 2.05
Switch lask	0.00	0.04	0 12	3.02	3.95
Transitive inference	0.19	0.40	0.13	0.23	0.00
Two-choice prediction task	0	0	0	4.14 0	0
Verbal fluency	3 28	7 76	79	15.08	0 03
Virtual Morris water task	0	0	0	0	0.00
Wisconsin card sorting	1 02	4 53	11 75	3 86	3 66
		1.00		5.00	5.55

Supplementary Table 5. Coordinates of clusters derived from a conjunction of the transdiagnostic pooled patient hyper- and hypoactivation (i.e., aberrant activation) and the multiple demand network identified from meta-analyses of healthy participants (25).

			MN	II Coordinate	es	
Region	Cluster Size (voxels)	Peak Intensity (Z)	Х	Y	Z	
left inferior frontal gyrus/junction	76	2.02	-44	12	28	
pre- supplementary motor area	170	2.16	4	22	40	
right anterior insula/ventrolateral prefrontal cortex	79	2.16	36	26	-8	
right intraparietal sulcus	48	2.05	40	-42	46	

Supplementary Table 6. Peak coordinates of clusters derived from Activation Likelihood Estimation (ALE) meta-analysis of transdiagnostic patient hyper- and hypoactivation during functional neuroimaging of cognitive control tasks

			Ν	INI Coordinates	6
Contrast/ Region	Cluster Size (voxels)	Peak Intensity (Z)	Х	Y	Z
Control > Patient					
dorsal anterior cingulate	380	4.98	-2	38	14
right insula (extending to ventrolateral prefrontal cortex)	586	6.09	42	28	-12
left insula (extending to ventrolateral prefrontal cortex)	307	4.37	-32	20	-10
right intraparietal sulcus	336	4.98	38	-56	48
left prefrontal cortex extending from mid- dorsolateral prefrontal to premotor cortex	608	4.17	-48	24	26
Patient > Control					
anterior mid-cingulate cortex/pre-supplementary motor area	216	3.91	0	10	50

Supplementary Table 7. Peak coordinates of clusters derived from Activation Likelihood Estimation (ALE) meta-analysis of transdiagnostic patient hyper- and hypoactivation during functional neuroimaging of cognitive control tasks excluding the experiments of arterial spin labeling and single-photon emission computerized tomography

			MNI C	oordinates	
Contrast/ Region	Cluster Size	Peak Intensity	Х	Y	Z
	(voxeis)	(Z)			
Control > Patient					
dorsal anterior cingulate	565	5.0	-2	38	14
right insula (extending to ventrolateral prefrontal cortex)	592	6.10	42	28	-12
left insula (extending to ventrolateral prefrontal cortex)	310	4.38	-32	20	-10
right intraparietal sulcus	343	5.0	38	-56	48
left prefrontal cortex extending from mid- dorsolateral prefrontal to premotor cortex	622	4.17	-48	24	26
Patient > Control					
anterior mid-cingulate cortex/pre-supplementary motor area	219	3.92	0	10	50
right intraparietal sulcus	216	4.12	24	-60	56

Supplementary Table 8. Peak coordinates of clusters derived from Activation Likelihood Estimation (ALE) meta-analysis of transdiagnostic patient hyper- and hypoactivation during functional neuroimaging of cognitive control tasks excluding tasks that did not cohere in a domain

				MNI Coordinat	es
Contrast/ Region	Cluster Size (voxels)	Peak Intensity (Z)	Х	Y	Z
Control > Patient					
dorsal anterior cingulate right insula (extending to ventrolateral prefrontal	444 597	5.08 6.05	-2 42	38 28	14 -12
cortex) left insula (extending to ventrolateral prefrontal cortex)	263	4.46	-32	20	-10
right intraparietal sulcus	367	5.08	38	-56	48
left prefrontal cortex extending from mid- dorsolateral prefrontal to premotor cortex	573	3.93	-44	18	38
Patient > Control					
right intraparietal sulcus	236	4.17	24	-60	56

Supplementary Table 9. Peak coordinates of clusters derived from Activation Likelihood Estimation (ALE) meta-analysis of transdiagnostic patient hyper- and hypoactivation during functional neuroimaging of cognitive control tasks excluding studies of children and older adults

	MNI Coordinates					
Contrast/ Region	Cluster Size (voxels)	Peak Intensity (Z)	Х	Y	Z	
Control > Patient						
dorsal anterior cingulate	302	4.32	-4	38	14	
right insula (extending to ventrolateral prefrontal cortex)	554	5.56	44	28	-12	
right intraparietal sulcus	255	5.11	38	-56	48	
left prefrontal cortex	585	4.22	-48	24	26	
Patient > Control						
anterior mid-cingulate cortex/pre-supplementary motor area	211	3.67	-2	12	36	

Supplementary Table 10. Percent contribution to clusters of convergence for whole-brain patient hypo- and hyper-activation contrasts by experiment sample and design characteristics.

	Cluster of convergence						
Experiment sample/ design characteristics	Right anterior insula/ ventrolateral prefrontal cortex	Left anterior insula/ ventro- lateral prefrontal cortex	Left frontal cortex	Dorsal anterior cingulate	Right intraparietal sulcus/parietal cortex	Anterior mid- cingulate/ pre-SMA	
Contrast Direction							
Control > Patient	100	100	100	100	100	0	
Patient > Control	0	0	0	0	0	100	
Disorder Class							
Non-psychotic	49.34	51.25	29.31	47.06	47.87	55.02	
Psychotic	50.66	48.75	70.69	52.94	52.13	44.98	
Diagnosis							
Schizophrenia	50.66	48.75	70.69	52.94	52.13	44.98	
Substance Use	5.74	7.86	13.05	12.26	8.95	8.32	
Anxiety	20.41	4.77	3.56	16.81	9.5	13.41	
Bipolar Disorder	18	20.87	5.68	4.54	20.62	10.63	
Major Depression	5.19	17.75	7.01	13.45	8.8	22.65	
Domain							
Working Memory	30.45	56.4	36.84	26.14	26.59	33	
Recognition	15.54	14.45	17.73	18.7	19.39	13.69	
Response Inhibition	24.74	10.47	8.18	15.68	15.6	8.33	
Set Shifting	11.28	0.3	4.62	9.28	12.89	1.21	
Conflict Monitoring	8.04	5.14	11.94	16.9	11.94	12.31	
Response Selection	0	4.3	3.44	0.13	9.26	0.46	
Performance Monitoring	1.64	0	0	0.53	4.2	0	
Verbal Fluency	4.04	2.07	10.06	12.64	0	28.8	
Other	4.28	6.86	7.19	0	0.13	2.21	
Age Group							
Child/adolescent	12.9	19.65	7.49	15.64	4.26	8.32	

Adult	87.1	80.32	92.1	84.36	92.4	91.68
Older adult	0	0.03	0.41	0	3.35	0
Current Psychotropic						
Medication						
Yes	84.36	52.26	52.2	61.57	70	82.87
No	5.19	29.23	36.61	31.61	21.05	9.52
Not reported	10.44	18.51	11.19	6.82	8.95	7.61
Behavioral Performance						
Worse than Control Group	50.49	39.81	41.08	16.37	47.89	21.19
Equivalent to Control Group	49.51	60.19	58.92	83.63	51.98	77.97
Not reported	0	0	0	0	0.13	0.84
Imaging Modality						
	94.86	93.15	83.76	88.22	86.79	99.89
PEI	5.14	6.85	15.82	11.78	13.2	0.11
ASL	0	0	0.42	0	0	0
SPECT	0	0	0	0	0	0
Tasks						
Antisaccade	0	0	0	0	0	0
Beads in the bottle	0	0	0	0	6.38	0
Choice reaction time	0	0	0	0	0	0.46
Continuous performance	1.64	0	0	0.53	4.2	0
Delay discounting	0	0	3.02	0	2.83	0
Delayed match-to-sample	5 77	24 05	8 26	0 27	0.53	0
Finger tapping	0	0	0	0	0	0
Flanker	0	0	0	0	0	12.31
Go/no-go	21.96	10.47	4.84	10.07	7.84	8.33
Hayling sentence completion	0	0	0	0	0	0
Match stimuli	0	0	0	0	0	0
Mental arithmetic	0	0	0	0	0	0.2
Modified Iowa gambling task	0	0	0	0.07	0.05	0
Multi-source interference	0	0	0	11.96	0	0.21
N-back	19.86	14.6	17.06	7.69	26.05	32.59
Probabilitistic reversal learning	0	0	0.03	0	0	0

66

Reading	0	0	0.07	0	0	0
Recall	0.01	6.79	3.78	0	0.13	0.84
Recognition	15.54	8.77	14.82	18.7	19.39	13.69
Semantic decision making	0	0	0	0.04	0	1.37
Serial reaction time	4.27	0.08	3.34	0	0	0
Set shifting	2.98	0.3	0	2.53	0	0
Simon task	0	0	0	0	0	0
Smooth pursuit	0	0	0	0	0	0
Source memory	0	5.68	2.91	0	0	0
Spatial working memory	0	17.75	6.99	8.99	0	0
Sternberg working memory	4.81	0	4.53	2.44	0	0
Stop signal task	2.78	0	3.33	5.62	7.76	0
Stroop	8.04	5.14	11.94	11.64	11.94	0
Switch task	8.3	0	0.2	0	6.22	1.1
Tower of London	0	4.3	0.42	0.06	0	0
Transitive inference	0	0	0	0	0	0
Two-choice prediction task	0	0	0	0	0	0
Verbal fluency	4.04	2.07	10.06	12.64	0	28.8
Virtual Morris water task	0	0	0	0	0	0
Wisconsin card sorting	0	0	4.39	6.76	6.67	0.11

Supplementary Table 11. Peak coordinates of clusters derived from Activation Likelihood Estimation (ALE) meta-analysis of transdiagnostic pooled patient hyper- and hypoactivation (i.e., aberrant activation) during functional neuroimaging of cognitive control tasks separately for studies of children and adults.

	MNI Coordinates					
Region	Cluster Size (voxels)	Peak Intensity (Z)	Х	Y	Z	
Adult Studies						
anterior mid-cingulate /pre-supplementary motor area	403	4.46	4	22	32	
right insula (extending to ventrolateral prefrontal cortex)	599	4.85	44	28	-12	
right intraparietal sulcus	272	4.42	38	-56	48	
left prefrontal cortex extending from mid- dorsolateral prefrontal to premotor cortex Child Studies	1028	4.63	-48	22	26	
right ventrolateral prefrontal cortex	180	4.49	32	30	-10	

Supplementary Table 12. Peak coordinates of clusters derived from Activation Likelihood Estimation (ALE) meta-analysis of transdiagnostic patient hyper- and hypoactivation during functional neuroimaging of cognitive control tasks separately for medicated and unmedicated patients.

				MNI Coordinates	
Contrast/ Region	Cluster Size (voxels)	Peak Intensity (Z)	Х	Y	Z
Control > Patient No Medication					
dorsal anterior cingulate	380	4.98	-2	38	14
right insula (extending to ventrolateral prefrontal cortex)	586	6.08	42	28	-12
left insula (extending to ventrolateral prefrontal cortex)	307	4.37	-32	20	-10
right intraparietal sulcus	336	4.98	38	-56	48
left prefrontal cortex	608	4.17	-48	24	26
Control > Patient Medication					
dorsal anterior cingulate	213	4.14	-4	38	12
right insula (extending to ventrolateral prefrontal cortex)	593	6.0	42	28	-12
left prefrontal cortex	232	3.57	-44	18	36
left intraparietal sulcus Patient > Control Medication	212	5.6	-48	-42	46
anterior mid-cingulate cortex/pre-supplementary motor area	286	3.94	0	10	48

Unmedicated patient experiments did not show any convergent whole-brain significant hyperactivations.

Supplementary Table 13. Peak coordinates of clusters derived from Activation Likelihood Estimation (ALE) meta-analysis of transdiagnostic patient hyper- and hypoactivation during functional neuroimaging of cognitive control tasks separately for patients samples who performed no differently or worse than control groups.

			1	MNI Coordinate	S
Contrast/ Region	Cluster Size (voxels)	Peak Intensity (Z)	Х	Y	Z
Control > Patient					
No performance difference					
dorsal anterior cingulate	653	4.96	-4	38	12
right insula (extending to ventrolateral prefrontal cortex)	231	5.30	36	28	-10
left prefrontal cortex	661	4.62	-48	24	24
Control > Patient					
Worse Performance					
anterior mid-cingulate cortex/pre-supplementary motor area	228	3.83	6	30	50
right insula (extending to ventrolateral prefrontal cortex)	342	5.39	44	28	-12
left prefrontal cortex	261	4.10	-42	30	30
Patient > Control					
ventromedial prefrontal cortex	224	4.74	-2	40	-8
Patient > Control Medication					
Worse Performance					
anterior mid-cingulate	247	3.78	0	10	52
cortex/pre-supplementary motor area					

cognitive control tasks separately			MNI C	oordinates	
Contrast/ Region	Cluster Size (voxels)	Peak Intensity (Z)	X	Y	Z
Psychotic Pooled Activation					
left prefrontal cortex	836	4.90	-48	22	26
anterior mid-cingulate cortex/pre-supplementary motor area	364	4.32	4	24	32
Non-Psychotic Pooled Activation					
right insula (extending to ventrolateral prefrontal cortex)	355	4.75	34	32	-12
right intraparietal sulcus	415	4.90	26	-58	54
Psychotic Pooled Activation > Non-Psychotic Pooled Activation					
left insula	29	2.79	-36	12	12
left anterior middle frontal gyrus	123	2.92	-40	46	24
left posterior middle frontal gyrus	312	3.18	-50	8	46
anterior mid-cingulate cortex	75	2.55	4	28	32
mid-cingulate cortex/pre-supplementary motor area	20	2.25	-8	12	40
Non-Psychotic Pooled Activation					
> Psychotic Pooled Activation					
right insula (extending to ventrolateral prefrontal cortex)	136	2.69	32	36	-14
right intraparietal sulcus	114	3.11	30	-58	58

Supplementary Table 14. Peak coordinates of clusters derived from Activation Likelihood Estimation (ALE) meta-analysis of pooled activation during functional neuroimaging of cognitive control tasks separately for psychotic and non-psychotic samples.

Supplementary Table 15. Percent contribution to clusters of convergence for whole-brain non-psychotic and psychotic pooled aberrant activation contrasts by experiment sample and design characteristics.

	Cluster of convergence						
Experiment sample/ design characteristics	Right anterior insula/ ventrolateral prefrontal cortex	Right intraparietal sulcus/ parietal cortex	Left frontal cortex	Anterior mid- cingulate/ pre-SMA			
Contrast Direction							
Control > Patient	69.72	49.17	68.16	58.49			
Patient > Control	30.28	50.83	31.84	41.51			
Disorder Class							
Non-psychotic	100	100	0	0			
Psychotic	0	0	100	100			
Diagnosis							
Schizophrenia	0	0	100	100			
Substance Use	30.6	43.46	0	0			
Anxiety	34.27	10	0	0			
Bipolar Disorder	26.68	24.36	0	0			
Major Depression	8.45	22.18	0	0			
Domain							
Working Memory	15.27	35.83	39	40.28			
Recognition	8.91	3.33	21.02	9.03			
Response Inhibition	23.25	21.35	0	0.32			
Set Shifting	23.54	5.27	6.99	6.11			
Conflict Monitoring	10.8	17.57	6.34	11.85			
Response Selection	10.17	12.31	9.51	8.98			
Performance Monitoring	7.74	4.33	0	6.33			
Verbal Fluency	0.31	0	7.98	9.53			
Other	0	0	9.16	7.56			
Age Group							
Child/adolescent	29.93	17.64	0.66	0.57			
Adult	70.07	72.47	99.34	99.43			
Older adult	0	9.9	0	0			
Current Psychotropic							
Medication							
Yes	54.58	36.46	81.96	84.46			
No	22.18	42.92	15.77	9.04			
Not reported	23.23	20.62	2.27	6.5			
Behavioral Performance							
Worse than Control Group	27.35	21.18	59.44	38.92			
Equivalent to Control Group	72.65	78.82	40.56	61.05			
Not reported	0	0	0	0.02			
Imaging Modality							
Functional MRI	94.51	95.74	74.61	91.07			
PET	5.39	4.26	24.85	7.59			
-----------------------------------	-------	-------------------------	-------	-------			
ASL	0	0	0.54	1.35			
SPECT	0.1	0	0	0			
Tasks							
Antisaccade	0	0	0	0			
Beads in the bottle	0	0	0	2.4			
Choice reaction time	0	0	5.93	5.23			
	7 74	4 33	0	6 33			
Delay discounting	0	0	3 04	0			
Delayed match to sample	1 88	1/ 10	8 02	0 72			
Finder tapping	4.00	1 4 .19 0	0.92	0.72			
Flanker	0	0	0.00	0			
	20.46	14 74	0	0 32			
Havling sentence completion	0.31	0	0	0.52			
Match stimuli	0	0	0	0			
Mental arithmetic	0	0	0	6 27			
Modified Iowa gambling task	9 97	12 25	0	0			
Multi-source interference	2 71	9 12	0	0 65			
N-back	9.82	13.89	20.9	32.64			
Probabilitistic reversal learning	0	0	0	0			
Reading	0	0	0.86	2.63			
Recall	0	0	3.75	4.8			
Recognition	8.91	3.33	18.75	9.03			
Semantic decision making	0	0	3.68	0.41			
Serial reaction time	0	0	0	0.13			
Set shifting	8.75	0	0	0			
Simon task	0	0	0	0			
Smooth pursuit	0	0	0	0			
Source memory	0	0	2.27	0			
Spatial working memory	0	0	0	0			
Sternberg working memory	0.57	7.75	9.18	0			
Stop signal task	2.79	6.62	0	0			
Stroop	8.09	8.45	6.34	11.44			
Switch task	14.68	5.27	0	0			
Tower of London	0.2	0.06	0.54	1.35			
Transitive inference	0	0	0	0			
I wo-choice prediction task	0	0	0	0			
Verbal fluency	0	0	7.98	9.53			
Virtual Morris water task	0	0	0	0			
Wisconsin card sorting	0.1	0	6.99	6.11			

			MNI C	Coordinates	
Contrast/ Region	Cluster	Peak	Х	Y	Z
	Size	Intensity			
	(voxels)	(Z)			
Psychotic Control > Patient					
right insula (extending to ventrolateral prefrontal	309	5.20	44	28	-12
cortex)					
left prefrontal cortex	686	4.42	-48	24	26
Non-psychotic Patient > Control					
right insula (extending to	363	4.87	38	30	-12
ventrolateral prefrontal					
Conjunction Non-psychotic					
Control > Patient &					
Psychotic Control > Patient					
right insula (extending to	56	4.23	40	28	-12
ventrolateral prefrontal					
cortex)					
Psychotic Control > Patient >					
Non-Psychotic Control > Patient					
anterior middle frontal gyrus	57	3.0	-40	42	26
posterior middle frontal gyrus	353	3.22	-38	10	14
Non-psychotic Control > Patient					
> Psychotic Control > Patient					
right ventrolateral prefrontal	56	2.46	34	34	-16
cortex					

Supplementary Table 16. Peak coordinates of clusters derived from Activation Likelihood Estimation (ALE) meta-analysis of patient hypoactivation during functional neuroimaging of cognitive control tasks separately for psychotic and non-psychotic samples.

Patient hyperactivation experiments did not show any convergent whole-brain significant hyperactivations separately for psychotic and non-psychotic disorder samples.

Supplementary Table 17. Percent contribution to clusters of convergence for whole-brain non-psychotic and psychotic patient hypo- and hyper-activation activation contrasts by experiment sample and design characteristics.

	Cluster of convergence				
Experiment sample/ design characteristics	Right anterior insula/ ventrolateral prefrontal cortex	Right anterior insula/ ventrolateral prefrontal cortex	Left frontal cortex		
Contrast Direction					
Control > Patient	100	100	100		
Patient > Control	0	0	0		
Disorder Class					
Non-psychotic	100	0	0		
Psychotic	0	100	100		
Diagnosis					
Schizophrenia	0	100	100		
Substance Use	11.61	0	0		
Anxiety	43.74	0	0		
Bipolar Disorder	32.76	0	0		
Major Depression	11.89	0	0		
Domain					
Working Memory	10.49	49.34	40.12		
Recognition	9.84	23.66	20.38		
Response Inhibition	39.95	6.03	0		
Set Shifting	25.33	0	7.79		
Conflict Monitoring	12.19	0.41	8.85		
Response Selection	0	0	5.46		
Performance Monitoring	2.19	1.3	0		
Verbal Fluency	0	8.31	10.93		
Other	0	10.95	6.48		
Age Group					
Child/adolescent	28.42	0	0.3		
Adult	71.58	100	99.7		
Older adult	0	0	0		
Current Psychotropic					
Medication					
Yes	76.3	97.92	73.87		
No	9.9	0.16	21.7		
Not reported	13.8	1.92	4.43		
Behavioral Performance					
Worse than Control Group	35.11	59.78	53.71		
Equivalent to Control Group	64.89	40.22	46.29		
Not reported	0	0	0		
Imaging Modality					

Functional MRI	97.81	90.63	74.38
PET	2.19	9.37	24.36
ASL	0	0	1.26
SPECT	0	0	0
Tasks			
Antisaccade	0	0	0
Beads in the bottle	0	0	0
Choice reaction time	0	0	0
Continuous performance	2 19	1.3	0
	0	0	ر ار ا
Delay discounting	2 4 2	11.05	44 7
Einger tapping	0.4Z	0	0
Finger tapping Flanker	0	0	0
Go/no-go	36.99	6.03	0
Havling sentence completion	0	0.00	0
Match stimuli	0	0	0
Mental arithmetic	0	0	0
Modified Iowa gambling task	0	0	0
Multi-source interference	0	0	0
N-back	1.68	38.3	21.59
Probabilitistic reversal	0	0	0
learning			
Reading	0	0	2.37
Recall	0	0.01	4.11
Recognition	9.85	23.66	16
Semantic decision making	0	0	0
Serial reaction time	0	10.94	0
Set shifting	7.99	0	0
Simon task	0	0	0
Smooth pursuit	0	0	0
Source memory	0	0	4.38
Spatial working memory	U 5 29	0	0
Stemberg working memory	0.00 2.06	0	0.82
Stroop	2.90	0 / 1	0 8 85
Switch task	17 34	0.41	0.00
Tower of London	0	0	1 26
Transitive inference	0	0	0
Two-choice prediction task	0	0	0
Verbal fluency	0	8.31	10.93
Virtual Morris water task	0	0	0
Wisconsin card sorting	0	0	7.79

No significant clusters were observed in the contrasts of patient > control for either psychotic or non-psychotic disorder experiments.

neuroimaging of cognitive control tasks separately by disorder classes						
			MNI Co	oordinates		
Contrast/ Region	Cluster Size (voxels)	Peak Intensity (Z)	Х	Y	Z	
Control > Schizophrenia Patient right insula (extending to ventrolateral prefrontal cortex)	309	5.20	44	28	-12	
left prefrontal cortex Control > Substance Use Disorder Patient	686	4.42	-48	24	26	
right insula (extending to ventrolateral prefrontal cortex)	177	4.26	30	-70	48	

Supplementary Table 18. Peak coordinates of clusters derived from Activation Likelihood Estimation (ALE) meta-analysis of patient hyper- and hypoactivation during functional neuroimaging of cognitive control tasks separately by disorder classes

Patient hyperactivation experiments did not show any convergent whole-brain significant hyperactivations separately for disorder classes. Anxiety, unipolar and bipolar depressive disorder classes showed no convergent whole-brain significant hypoactivations.

Supplementary Table 19. Peak coordinates of clusters derived from Activation Likelihood Estimation (ALE) meta-analysis of patient hyper- and hypoactivation during functional neuroimaging of cognitive control tasks separately by domain

				MNI Coordinates	
Contrast/ Region	Cluster Size (voxels)	Peak Intensity (Z)	Х	Y	Z
Control > Patient: Inhibition					
right insula (extending to ventrolateral prefrontal cortex)	500	4.9	52	30	-10
Control > Patient: Working					
Memory					
right cerebellum	250	4.0	4	-46	-20
right insula (extending to ventrolateral prefrontal cortex)	252	4.52	-34	20	-10
Patient > Control: Working					
Memory					
ventromedial prefrontal cortex	287	4.89	-2	40	-8
Datient hyperactivation experime	nte did no	t chow any	conve	argent whole brain	

Patient hyperactivation experiments did not show any convergent whole-brain significant hyperactivations separately for disorder classes. Anxiety, unipolar and bipolar depressive disorder classes showed no convergent whole-brain significant hypoactivations.

Supplementary Table 20. Peak coordinates of clusters derived from Activation Likelihood Estimation (ALE) meta-analysis of patient hyper- and hypoactivation during functional neuroimaging of cognitive control tasks separately by domain and disorder class

	•		Ν	INI Coordinates	
Contrast/ Region	Cluster Size (voxels)	Peak Intensity (Z)	Х	Y	Z
Control > Schizophrenia Patient: Working Memory right insula (extending to ventrolateral prefrontal cortex)	217	4.15	34	26	-12