

Genome-wide interaction study of dust mite allergen on lung function in children with asthma

Online Supplementary Data

Erick Forno, MD MPH^{1,2}, Joanne Sordillo, MD MPH³, John Brehm, MD MPH^{1,2}, Wei Chen, PhD^{1,2}, Takis Benos, PhD², Qi Yan, PhD^{1,2}, Lydiana Avila, MD⁴, Manuel Soto-Quirós, MD⁴, Michelle M Cloutier, MD⁵, Angel Colón-Semidey, MD⁶, Maria Alvarez, MD⁶, Edna Acosta-Pérez, PhD⁷, Scott T Weiss, MD MS³, Augusto A Litonjua, MD MPH³, Glorisa Canino, PhD⁷, Juan C Celedón, MD DrPH^{1,2}

¹Division of Pediatric Pulmonary Medicine, Allergy, and Immunology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA; ²University of Pittsburgh School of Medicine, Pittsburgh, PA; ³Channing Division of Network Medicine, Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA; ⁴Department of Pediatric Pulmonology, Hospital Nacional de Niños, San José, Costa Rica; ⁵Department of Pediatrics, University of Connecticut Health Center, Farmington, CT; ⁶Department of Pediatrics and ⁷Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, PR.

Corresponding author: Juan C. Celedón, MD, DrPH, FAAAAI Division of Pulmonary Medicine, Allergy and Immunology Children's Hospital of Pittsburgh of UPMC 4401 Penn Avenue, Pittsburgh, PA 15224 Phone: 412.692.8429; Fax: 412.692.7636 Email: juan.celedon@chp.edu

FEV₁ – Functional analysis of SNPs rs117902240, rs72716237, and rs35312258

Using data from ENCODE¹ and is-rSNP², a software designed to predict *in silico* whether a SNP has a regulatory effect on transcription factor binding sites, we found that while SNP rs117902240 in chromosome 8q24.13 is intergenic, it lies within <1 Kbp from a transcription factor binding island identified in ENCODE using ChIP-seq. Transcription factor C/EBP-beta (CEBPB) binds in this region in human lung fibroblasts (ENCODE accession ENCSR000EFM). CEBPB forms part of the signaling pathway of interleukin (IL)-17, nuclear factor Kappa-B (NF-KB), and interferon (IFN-) γ (see **Figure 3** in the main document)³⁴.

SNP rs72716237, in chromosome 9p21.2, lies right outside (<200bp) a transcription factor binding site for MAFK (ENCODE accession ENCSR000EFH), whose expression can be induced by transcription growth factor (TGF-) β^5 . MAFK regulates expression of NF- κ B⁶ and NF-E2-related factor 2 (NRF2), implicated in antioxidant pathways⁷. Of note, MAFK and NRF2 may also regulate CFTR gene expression⁸.

SNP rs35312258, in chromosome 3q24, is an intronic SNP in gene *SLC9A9* (solute carrier family 9, subfamily A, member 9), a Na+/H+ transmembrane exchanger that has been linked to autism and ADHD⁹, and more recently to increased arterial stiffness¹⁰.

Supplemental Figures – Titles and Legends

Figure S1 – Regional LD plots of the three top SNPs for FEV₁

Linkage disequilibrium (LD) plots generated at the SNP Annotation and Proxy Search (SNAP) website (<u>https://www.broadinstitute.org/mpg/snap/ldplot.php</u>) using data from the 1,000 Genomes Pilot 1.

<u>Table S1</u> – Main effects of the three top SNPs on FEV_1 , in PRGOAL as a whole and stratified by dust mite allergen level.

	rs117902240	rs72716237	rs35312258	
Non stratified	+0.07 (0.10)	-0.04 (0.09)	+0.03 (0.052)	
Non-stratified	p=0.48	p=0.64	p=0.33	
Low dust mito	+0.84 (0.15)	-0.39 (0.11)	-0.14 (0.052)	
Low dust linte	p=1.2x10 ⁻⁷	p=5.3x10 ⁻⁴	p=0.0061	
	-0.41 (0.14)	+0.49 (0.15)	+0.21 (0.051)	
High dust mite	<i>p</i> =0.0032	p=0.0011	p=1.0x10 ⁻⁴	

Shown are the beta coefficients (standard error) and p-values for the additive, adjusted genotypic models in PRGOAL, for the whole cohort or stratified by low (<2mcg/g, n=227) or high ($\geq 2mcg/g$, n=213) dust mite allergen level. **Positive association in bold**, *negative association in italics*. All models adjusted for age, sex, height, and height².

GENE	SNP	A1	Covariate ¹	BETA	P-VAL
IL9	rs2066758	G	Genotype main effect	0.1604	0.046
	rs4390174	G	Genotype*dust mite	0.082	0.039
IL10	rs3024498	G	Genotype main effect	0.076	0.042
	rs6673928	А	Genotype main effect	0.075	0.046
	rs62285907	G	Genotype*dust mite	0.16	0.0033
	rs58448575	А	Genotype*dust mite	-0.22	0.0075
	rs2276763	А	Genotype*dust mite	0.57	0.0077
	rs7646193	С	Genotype*dust mite	-0.19	0.011
P2RY2	rs58448575	А	Genotype main effect	-0.19	0.031
	rs62285878	А	Genotype*dust mite	-0.31	0.042
	rs116537786	А	Genotype*dust mite	0.21	0.044
	rs16863376	G	Genotype*dust mite	-0.29	0.047
	rs765281	G	Genotype*dust mite	-0.11	0.047
TGFB1	rs79033882	G	Genotype*dust mite	-0.076	0.037

Table S2 – SNPs in IL-9, IL-10, TGF-β1, or P2RY2 associated with FEV1

Models included the main effects of genotype (additive) and dust mite allergen level (dichotomized <2 vs \geq 2 mcg/g) and the interaction term (*genotype*dust mite allergen level*), and were additionally adjusted for age, sex, study site (San Juan, PR, or Hartford, CT), height, and height², and principal components. SNP=single nucleotide polymorphism; A1=minor allele; BETA=beta coefficient; P-VAL=one-sided p-value.

SNP	CHR	BP	A1	A2	BETA	P-VAL	MAF
rs17048089	3	68923779	G	А	-0.067	4.01E-07	0.204
rs115997623	4	119115917	А	G	0.37	3.94E-07	0.011
rs10021113	4	159678591	А	G	0.36	1.51E-07	0.013
rs75863350	5	148423424	А	G	0.47	2.79E-07	0.013
rs78930606	6	119078652	С	А	-0.32	1.49E-07	0.018

Table S3 – GWIS results for dust mite allergen level and FEV₁/FVC in PRGOAL

Models included the main effects of genotype (additive) and dust mite allergen level (dichotomized <2 vs \geq 2 mcg/g) and the interaction term (*genotype*dust mite allergen level*), and were additionally adjusted for age, sex, study site (San Juan, PR, or Hartford, CT), height, and height², and principal components. SNP=single nucleotide polymorphism; CHR=chromosome; BP=base position; A1=minor allele; A2=major allele; BETA=beta coefficient for interaction term; P-VAL=interaction p-value; MAF=minor allele frequency.

FEV₁/FVC	CAMP Caucasians		CAMP Hispanics		GACRS			COMBINED P-VAL			
SNP	A1	BETA	P-VAL	A1	BETA	P-VAL	A1	BETA	P-VAL	All cohorts	Replication only
rs17048089	G	1.35	0.20	G	-1.077	0.39	G	-0.22	0.45	1.6E-05	0.35
rs115997623	Т	0.64	0.44	Т	NA	NA	Т	-13.55	0.04	1.5E-06	0.10
rs10021113	Т	NA	NA	Т	NA	NA	Т	NA	NA	NA	NA
rs75863350	А	NA	NA	А	NA	NA	А	NA	NA	NA	NA
rs78930606	С	10.99	0.037	С	NA	NA	С	NA	NA	9.9E-07	NA

Table S4 – GWIS	replication	results for	r FEV₁/FVC	in CAMP	and the	GACRS

Models included the main effects of genotype (additive) and dust mite allergen level (dichotomized <2 vs \geq 2 mcg/g) and the interaction term (*genotype*dust mite allergen level*), and were additionally adjusted for age, sex, study site, and principal components. SNP=single nucleotide polymorphism; A1=minor allele; BETA=beta coefficient for interaction term; P-VAL=interaction p-value; MAF=minor allele frequency; NA=not available (genotyped or imputed). Combined P-values calculated only if at least two cohorts were significant.

<u>Table S5</u> – *Post hoc* power calculations for interaction term based on results from SNP rs117902240

Alpha =	0.05	0.01	0.005	0.001
Power =	0.8975	0.7427	0.6630	0.4749

Shown are power calculations using different levels of significance. Calculations were performed using Quanto (<u>http://biostats.usc.edu/Quanto.html</u>), given a population mean FEV1 of 1.87 with SD=0.65 (see Table 1, main manuscript), an exposure proportion of 48.4% (Table 1), and risk allele frequency of 0.015 (rs117902240, Table 2), with N=440, and based on the observed main effects of the additive SNP and dust mite level as well as their interaction, using a 2-sided test (null: no significant interaction).

Online Supplement References

- 1. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 2012;**489**(7414):57-74.
- 2. Macintyre G, Bailey J, Haviv I, et al. is-rSNP: a novel technique for in silico regulatory SNP detection. Bioinformatics 2010;**26**(18):i524-30.
- 3. Ruddy MJ, Wong GC, Liu XK, et al. Functional cooperation between interleukin-17 and tumor necrosis factor-alpha is mediated by CCAAT/enhancer-binding protein family members. The Journal of biological chemistry 2004;**279**(4):2559-67.
- 4. Gaffen SL. Structure and signalling in the IL-17 receptor family. Nat Rev Immunol 2009;**9**(8):556-67.
- 5. Okita Y, Kamoshida A, Suzuki H, et al. Transforming growth factor-beta induces transcription factors MafK and Bach1 to suppress expression of the heme oxygenase-1 gene. The Journal of biological chemistry 2013;**288**(28):20658-67.
- 6. Hwang YJ, Lee EW, Song J, et al. MafK positively regulates NF-kappaB activity by enhancing CBP-mediated p65 acetylation. Scientific reports 2013;**3**:3242.
- 7. Ishikawa T. Genetic polymorphism in the NRF2 gene as a prognosis marker for cancer chemotherapy. Frontiers in genetics 2014;**5**:383.
- Zhang Z, Leir SH, Harris A. Oxidative stress regulates CFTR gene expression in human airway epithelial cells through a distal antioxidant response element. Am J Respir Cell Mol Biol 2015;52(3):387-96.
- 9. Zayats T, Athanasiu L, Sonderby I, et al. Genome-wide analysis of attention deficit hyperactivity disorder in Norway. PLoS One 2015;**10**(4):e0122501.
- Levy D, Larson MG, Benjamin EJ, et al. Framingham Heart Study 100K Project: genomewide associations for blood pressure and arterial stiffness. BMC Med Genet 2007;8 Suppl 1:S3.