Supplemental information:

Epigenetic regulation of starvation-induced autophagy in *Drosophila* by histone methyltransferase G9a

Phan Nguyen Thuy An^{1,*}, Kouhei Shimaji ^{2,3,*}, Ryo Tanaka ^{2,3}, Hideki Yoshida^{2,3}, Hiroshi Kimura⁴,

Eiichiro Fukusaki^{1,**}, Masamitsu Yamaguchi^{2,3, **}

¹ Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.

² Department of Applied Biology, ³ The Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Kyoto, 606-8585, Japan.

⁴Departmetnt of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of

Technology, Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan.

* These authors contributed equally to this work

**Corresponding author

MY: Tel.: +81 75 724 7781; Fax: +81 75 724 7799; E-mail: myamaguc@kit.ac.jp

EF: Tel./ Fax: +81-6-6879-7424; E-mail: fukusaki@bio.eng.osaka-u.ac.jp

Compound	OPLS-DA		<i>p-value</i> from Two-way ANOVA		
	p(corr)	VIP	Starved time	Genotype	Interaction
Threonine	-0.63	1.53	7.15E-04	2.45E-07	5.40E-03
Inositol	-0.96	2.32	1.59E-05	6.88E-23	7.05E-03
Serine	0.56	1.32	1.23E-03	7.14E-06	7.05E-03
Methionine	0.65	1.61	4.65E-02	1.02E-06	7.54E-03
Uric acid	-0.92	2.26	9.71E-07	2.42E-20	3.73E-02
Tryptophan	-0.86	2.11	5.85E-06	3.43E-15	4.02E-02
Lactic acid	0.42	1.06	1.21E-02	1.62E-03	4.35E-02
Acetyl CoA	-0.54	1.34	1.51E-02	1.08E-04	0.09
Fructose	-0.53	1.21	2.39E-06	7.14E-06	0.08
Guanosine	-0.97	2.36	0.12	1.01E-20	0.20
Glutamine	0.73	1.72	4.48E-02	1.02E-06	0.21
FMN	-0.68	1.68	0.35	4.75E-06	0.23
Urea	-0.50	1.22	3.94E-02	1.62E-03	0.22
NADP	-0.49	1.20	0.19	2.77E-03	0.32
Xylitol	-0.47	1.14	0.15	5.22E-03	0.38
NADPH	0.85	2.08	0.06	1.01E-10	0.41
Ru5P	-0.48	1.14	8.52E-07	1.59E-05	0.55
cAMP	-0.41	1.01	0.13	1.03E-02	0.52
Hypoxanthine	-0.56	1.36	1.52E-02	2.35E-04	0.56
Pyruvate	0.47	1.11	1.24E-02	5.23E-03	0.56
GMP	0.62	1.43	1.31E-02	7.98E-05	0.62
Asparagine	0.63	1.52	4.70E-06	1.14E-06	0.91
G6P	-0.46	1.10	9.09E-03	2.77E-03	0.91
Inosine	-0.86	2.07	1.57E-02	9.41E-11	0.92
Malic acid	-0.49	1.22	0.18	5.35E-03	0.97

Table S1. Potential metabolites affected due to the loss of *dG9a* during starvation.

Figure S1. (A) The result of viability assay under starvation conditions using larvae of wild type and $dG9a^{RG5}$ mutant (n=120 from 6 independent experiments). *P* >0.05. **(B)** Quantification of mRNA level of dG9a in fat-body specifically dG9a knockdown strain (w; FB-GAL4/UAS-FLAG-IR dG9a ;+) and control strain (w; FB-GAL4/+;+). n=3. *P<0.05. **(C)** Immunostaining with anti-GFP antibody in the adult abdominal fat body. The used fly

strain was P(GAL4)fat; UAS-GFP. Scale bars: (a,b) 0.9 mm, (c,d) 100µm. (D) The result of viability assay under starvation conditions using adult female of Canton S, dG9a^{RG5} and $dG9a^{RG5}/dG9a^{de/34}$. n=100 from 5 independent experiments. Error bars represent standard errors (SE). Significant differences were observed between Canton S and $dG9a^{RG5}$ (P <0.0001), between Canton S and $dG9a^{RG5}/dG9a^{de/34}$ (P <0.0001) and between $dG9a^{RG5}$ and $dG9a^{RG5}/dG9a^{del34}$ (P <0.0001). $dG9a^{RG5}$ lacks the whole open reading frame (ORF) of *dG9a*, however, *dG9a*^{de/34} lacks a part of *CG3038* including its transcription start site as well as almost all of the ORF of *dG9a*²¹. *CG3038* is suggested to have glycosyl transferase activity based on the sequence and structural similarity (Flybase:http://flybase.org/). The possible reduction of CG3038 may result in the further reduction of starvation tolerance in $dG9a^{RG5}/dG9a^{del34}$ compared with $dG9a^{RG5}$ flies. (E) The results of viability assay under starvation conditions utilizing male flies of UAS-GFP (UAS-GFP/+) (n=38 from 2 independent experiments), Canton S (n=33 from 2 independent experiments), UAS-dG9a Δ (UAS-dG9a Δ /+) (n=40 from 2 independent experiments) and UAS-dG9a (UAS-dG9a/+) (n=80 from 4 independent experiments). P >0.05.

Figure S2. Metabolic profile of wild type and *dG9a*^{*RG5*} **mutant flies under starvation.** PCA score plot (upper panel) constructed by PC2 (17.4%) and PC3 (15%) shows the discriminations in genotypes and in various time points under starvation. This discrimination is explained by the composition of metabolites on loading plot (lower panel). 4-5 replications for each time point.

Figure S3. Glycolysis pathway of wild type and *dG9a*^{*RG5*} **mutant flies during fasting.** The line graphs showing the changes of metabolites. 4-5 replications for each time point. The bar graphs showing the mRNA level of enzymes related to glycolysis. 1,3-BPG: 1,3-Biphosphoglycerate; 3PGA: 3-Phosphoglycerate; F6P: Fructose 6-phosphate; F1,6P: Fructose 1,6-phosphate; G6P: Glucose 6-phosphate

Figure S4. (A) Immunostaining of the larval fat body with anti-Atg8a IgG (α -Atg8a) and anti-GFP IgG (α -GFP). Atg8a down-regulated clones marked by GFP were generated in larval fat body. Scale bars: 50µm. (B) A western blot analysis of extracts from Canton S and $Atg8a^{d4}$. Blots were probed with anti-Atg8a and anti- α -tubulin antibodies. The comparison of TAG, total protein, trehalose and glucose levels between $dG9a^{RG5}$ and $Atg8a^{d4}$ were shown in (C), (D), (E) and (F), respectively. No significant differences were observed between $dG9a^{RG5}$ and $Atg8a^{d4}$ at 24 h after starvation. Error bars represent SE.

Figure S5. The comparison of energy reservoirs between the males of $dG9a^{RG5}$, FB>Atg8a ($dG9a^{RG5}$; FB-GAL4/ Atg8a^{Scer/UAS.P/T.T:Avic/GFP-EGFP,T:Disc/RFP-mCherry; +) (n=39 from 2 independent experiments) and FB>Atg8a (+; FB-GAL4/ Atg8a^{Scer/UAS.P/T.T:Avic/GFP-EGFP,T:Disc/RFP-mCherry; +) (n=38 from 2 independent experiments) strains. The level of TAG, total protein, trehalose and glucose were shown in (A), (B), (C), and (D), respectively. No significant differences were observed at 24 h after starvation. Error bars represent SE.

Figure S6. (A) The full-length image of Figure 2F. (B) The full-length image of Figure 6B.