Supplemental figures

Targeting primary acute myeloid leukemia with a new CXCR4 antagonist IgG1 antibody (PF-06747143) Yanyan Zhang¹⁻⁴, Erika Saavedra¹⁻⁴, Ruoping Tang⁵⁻⁸, Yin Gu⁹, Patrick Lappin¹⁰, Dusko Trajkovic¹⁰, Shu-Hui Liu¹¹, Tod Smeal⁹, Valeria Fantin⁹, Stephane De Botton^{1,12,13}, Ollivier Legrand⁵⁻⁸, Francois Delhommeau^{5-7,14}, Flavia Pernasetti^{9*}, Fawzia Louache ^{1-4*}

¹INSERM, UMR 1170, 114 rue Edouard Vaillant, 94805 Villejuif: ²Université Paris-Saclay, Gustave Roussy, Villejuif, France ³Gustave Roussy, 94805 Villejuif, France ⁴CNRS GDR 3697 MicroNiT ⁵Sorbonne Universités, UPMC Univ Paris 06, UMR S 938, CDR Saint-Antoine, F-75012 Paris, France ⁶INSERM, UMR S 938, CDR Saint-Antoine, F-75012 Paris, France ⁷Sorbonne Universités, UPMC Univ Paris 06, GRC n°7, Groupe de Recherche Clinique sur les Myéloproliférations Aiguës et Chroniques MYPAC, F-75012 Paris, France. ⁸AP-HP, Hôpital St Antoine, Service d'Hématologie clinique et de thérapie cellulaire, F-75012 Paris, France ⁹Oncology Research & Development, Pfizer Worldwide Research & Development, San Diego, CA ¹⁰Drug Safety Research & Development, Pfizer, San Diego, CA ¹¹Oncology Research & Development, Pfizer Worldwide Research & Development, San Francisco, CA ¹²Gustave Roussy, Université Paris-Saclay, Service d'Hématologie Clinique ¹³Faculté de médecine Paris-Sud, Kremlin-Bicêtre ¹⁴AP-HP, Hôpital Saint-Antoine, Service d'hématologie biologique, F-75012 Paris, France **Corresponding authors:** *Fawzia Louache Mailing address: 114 Rue Edouard Vaillant, 94805, Villejuif Cedex, France E-mail: Fawzia.LOUACHE@gustaveroussy.fr Telephone number: (33) 1 42 11 42 33, Fax number: (33) 1 42 11 52 40 *Flavia Pernasetti

Mailing Address: 10646 Science Center Drive, San Diego CA 92121, USA Email: <u>flavia.pernasetti@pfizer.com</u> Telephone: 1 (858) 622-7587

Supplemental Figure 1

Zhang Y et al

Supplemental Figure 2

Zhang Y et al

Supplemental Figure 3

2500-

2000

1500-

P17^{CXCR4-low}

Α

800

600-

Peripheral Blood *

Bone Marrow

*

Spleen

2000-

1500

**

Supplemental Table I: Characteristics of the two AML patient samples studied in PDX model

patients (No.)	Gender	age	P/S AML*	FAB	Karyotype	WBC(x109/L)
P15 ^{CXCR4-high}	М	81	S	5	Normal	68
P17 ^{CXCR4-low}	F	32	S	5	-7, Inv3, -11p13	25,5

*: primary leukemia, S: secondary leukemia

Supplemental figure legends

Supplemental Figure 1: Specificity of PF-06747143 antibody binding to CXCR4. Representative histograms of flow cytometry comparing PF-06747143 antibody binding to the UT7 CXCR4-negative human AML cell line transduced with empty vector (negative control) or, transduced with CXCR4 vector (UT7-CXCR4).

Supplemental Figure 2: PF-06747143 did not induce ADCC on a CXCR4-negative AML TF-1 cell line. ADCC activity was evaluated by incubating PF-06747143 (100nM) with CXCR4-negative AML TF-1 cell line or CXCR4-positive MV4-11 AML cells in the presence of NK92 158V effector cells.

Supplemental Figure 3: (A) Experimental design for evaluation of PF-06747143 efficacy on leukemic development. Mice were engrafted with CXCR4 low (P17^{CXCR4-low}) and CXCR4 high (P15^{CXCR4-high}) primary patient cells, 5 x10⁶ /per mouse. After leukemia establishment, at 7 weeks for P17^{CXCR4-low} and 10 weeks for P15^{CXCR4-high} the mean percentage of AML cells in the peripheral blood was 7% and 2%, respectively. Mice were then divided into two or three groups, 8 mice/group, which received weekly subcutaneous treatment with IgG1 control, PF-06747143 Ab or daunorubicin (only for P15^{CXCR4-high} PDX model). Twenty-four hours after each weekly treatment, quantitative analyses of PF-06747143-PE binding (mean fluorescence on human PB CD45⁺ cells were performed. Each group comprises 8 mice. **B)** P17^{CXCR4-low} PDX and **C)** P15^{CXCR4-high} PDX. Data for each animal is shown and the horizontal bar represents the mean. * *P*<0,05 ; ** *P*<0,01 assessed by t-test.

Supplemental Figure 4: CXCR4 receptor occupancy by injected PF-06747143 antibody on blood, BM, and spleen AML cells at the end of in PDX efficacy studies. Quantitative analyses of PF-06747143-PE were performed on human CD45⁺ cells derived from BM, spleen, and blood at 24 hours post last antibody treatment, for each PDX model: A) P17^{CXCR4-low} PDX and B) P15^{CXCR4-high} PDX. Each group comprises 8 mice. Data for each animal is represented and the horizontal bar is the average. * *P*<0.05 and ** *P*<0,01 assessed by t-test.