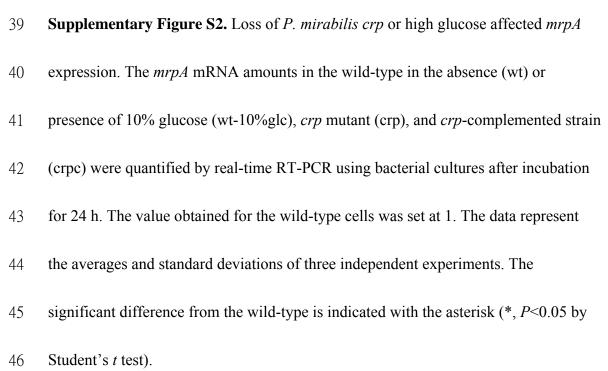
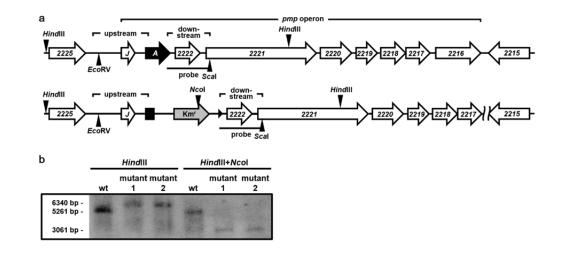
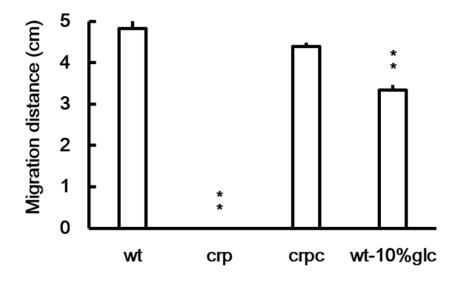
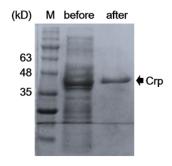

1	cAMP receptor protein regulates mouse colonization, motility, fimbria-mediated
2	adhesion, and stress tolerance in uropathogenic Proteus mirabilis
3	
4	Yi-Lin Tsai, Hsiung-Fei Chien, Kuo-Tong Huang, Wen-Yuan Lin & Shwu-Jen Liaw
5	
6	Supplementary Information




8 **Supplementary Figure S1.** (a)(b)(c) Construction and verification of *P. mirabilis crp* 9 mutant. (a) Insertion mutagenesis of the wild-type *crp* gene with the Km^r cassette (containing the *aph3'-Ia* gene from pUT-Km1) was performed as described in the 10 11 Supplemental Material. Upstream and downstream regions of the crp gene amplified 12 are indicated. Restriction enzyme cleavage sites are indicated by vertical triangles. (b) 13 PCR verified the insertion of the Km^r cassette, conferring kanamycin resistance, within the *crp* gene. PCR with I-out and argD-ovF primers was performed using the 14 15 control plasmid pUTcrp-Km and chromosomal DNA from wild-type, *crp* mutant 1 or *crp* mutant 2 as a template. Primer binding sites are shown in **a**. The mutant DNA 16 17 produced a 1486-bp PCR product but not in wild-type. M, 1-kb DNA marker; N, 18 negative control; wt, wild-type. (c) Southern blot hybridization verified the crp 19 mutant. Chromosomal DNA of wild-type, mutant 1 and mutant 2 was digested with

20	EcoRV and EcoRV/XhoI, respectively, before Southern blot hybridization using the
21	labeled probe DNA indicated in a. EcoRV digestion resulted in a 3913-bp fragment in
22	the wild-type but a 5227-bp fragment in mutants. EcoRV/XhoI digestion produced a
23	3913-bp fragment in the wild-type but a 2243-bp fragment in mutants. wt, wild-type.
24	(d) Growth curves of the wild-type <i>P. mirabilis</i> in the absence or presence of glucose,
25	the crp mutant and crp-complemented strain. The bacterial growth was expressed as
26	the optical density at 600 nm (OD_{600}) on a log_{10} scale. Overnight bacterial cultures
27	were diluted and grown to an OD_{600} of 0.01 and the growth was monitored at 1-h
28	intervals. The data represent the averages and standard deviations of three
29	independent experiments. wt, wild-type; crp, crp mutant; crpc, crp-complemented
30	strain; wt-2%glc, wild-type with 2% glucose; wt-10%glc, wild-type with 10% glucose.
31	(e) Correlation of gene expression between <i>crp</i> mutant and 10% glucose-treated
32	wild-type P. mirabilis. Total RNA from wild-type (wt), 10% glucose-treated
33	wild-type (wt-10%glc), or <i>crp</i> mutant (crp) was analyzed by RNA-seq. The x-axis
34	indicates the log ₂ fold-change value in reads per kilobase per million (RPKM) of
35	10% glc-treated wild-type relative to the wild-type and the y-axis indicates the \log_2
36	fold-change value in RPKM of <i>crp</i> mutant relative to the wild-type. Each dot
37	represents one gene.





Supplementary Figure S3. Construction and verification of *P. mirabilis pmpA* 48 mutant. (a) Insertion mutagenesis of the wild-type pmpA gene with the Km^r cassette 49 50 (containing the aph3'-IIa gene from pKD4) was performed as described in the 51 Supplemental Material. Upstream and downstream regions of the *pmpA* gene 52 amplified are indicated. Restriction enzyme cleavage sites are indicated by vertical 53 triangles. (b) Southern blot hybridization verified the insertion of the Km^r cassette 54 within the *pmpA* gene. Chromosomal DNA of the wild-type, mutant 1 and mutant 2 55 was digested with HindIII and HindIII/NcoI, respectively, before Southern blot hybridization using the labeled probe DNA indicated in **a**. HindIII digetion resulted in 56 57 a 5261-bp fragment in the wild-type but a 6340-bp fragment in mutants. HindIII/NcoI 58 digestion produced a 5261-bp fragment in the wild-type but a 3061-bp fragment in 59 mutants. wt, wild-type.

61 Supplementary Figure S4. Swimming migration of the wild-type *P. mirabilis* in the 62 absence or presence of 10% glucose, crp mutant and the crp-complemented strain. 63 Overnight cultures were inoculated centrally into the swimming agar (0.3%, w/v)plates. The migration distance was measured at 16 h after inoculation. The data 64 65 represent the averages and standard deviations of three independent experiments. The significant difference from the wild-type is indicated with the asterisk (**, P<0.01 by 66 67 Student's t test). wt, wild-type; wt-10%glc, wild-type with 10% glucose; crp, crp 68 mutant; crpc, crp-complemented strain.

70	Supplementary Figure S5. The His-tagged recombinant Crp protein before and after
71	purification. E. coli BL21(DE3) cells carrying the plasmid for expression of
72	His-tagged recombinant Crp were induced by 0.1 mM IPTG for 3 h at 25°C, the cell
73	pellet was collected and total proteins were extracted by sonication and centrifugation.
74	The soluble fraction was analyzed by 12% SDS-PAGE before and after being purified
75	by a Ni ²⁺ -nitrilotriacetic acid column. M, protein ladder.

ptsG

E. coli MG1655

TATTGTGACATATGTTTTGTCAAAATGTGCAACTTCTCCAATGATCTGAAGTTG<u>AAACGTGATAGCCGTCAAACAA</u>ATTGGCACTG AATTATTTACTCTGTGTAATAAAGGGCGCTTAGATGCCCTGTACACGGCGAGGCTCTCCCCCCTTGCCACGCGTGAGAAC GTAAAAAAAGCACCCCATACTCAGGAGCACTCTCAATTATG*plsG* translation start site

P. mirabilis N2

<u>AAACGTGACAGCTATCATATA</u>TCAATAATGGATTTATT<u>TTTATG</u>ATGTAA4ATAGAGCTTATTATTAGATAAGTTAATTGAATAA ACCTACCTTAACTTTAAACAAATAAAAAACTTATAACACATACAACCCATATTCGGGAGTCTGCTTG**ATG**_{ptsG}translation start site

crp

E. coli MG1655

AAGGCGACCTGGGTCATGCTGAAGCGAGACAQCAGGAGACACAAAGGCGAAAGQTATGCTAAAACAGTCAQGATGCTACAGTAAT ACATTGATGTACTGCA<u>TGTATGCAAAGGACGTCACATT</u>ACCGTGCAGTACAGTTGATAGCCCCTTCCCAGGTAGCGGGAAGCATA TTTCGGCAATCCAGAGACAGCGGCGTTATCTGGCTCTGGAGAAAGCTTATAACAGAGGATAACCGCGCATG_{cp} translation start site *P. mirabilis* N2

TATTATAATCTATTCCTTATTAACTTTCCGAATTCTCAGGAAGTTAATCGGTAAAGATAGGATTTTAAGCACGCTGTATCAAAAGGG TGTCAATCCGTTTTGAAAGGCTGCATTAACGTACAGAGGATAACGCGAATG_{cop} translation start site

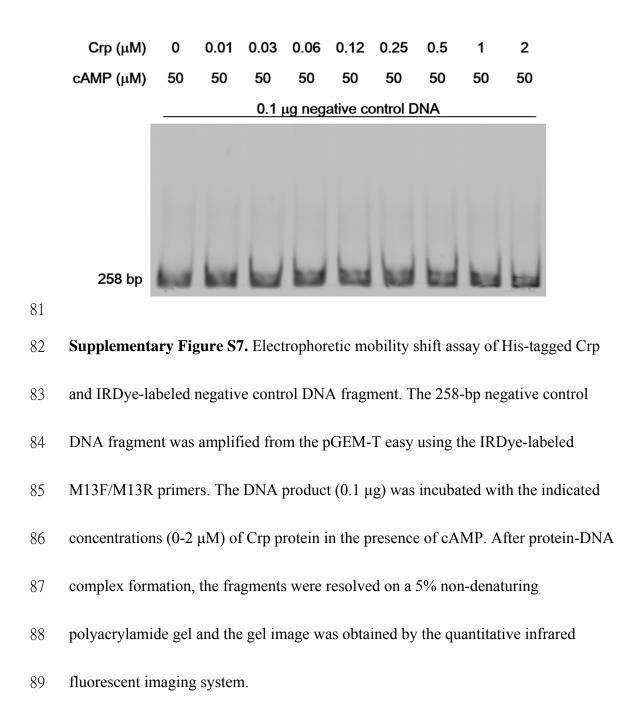
cyaA

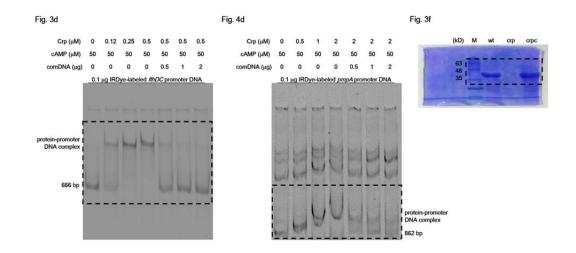
E. coli MG1655

P. mirabilis N2

TTTACGCCTTGCTTGCAAGGTGTAAATTGATCACGTTTCCCGAGATTTTGTTAGTAAAGTTTTATCTATTAATAATTGAATAATTAAA GCTCGGTAATTTATAAACTCAGATTCTACTATTTTCTTAGTATTGTTCAGGCGAAACTCTTG_{cyaA}translation start site

hfq


E. coli MG1655


<u>GGTTGGGAAGGGGTTCACTGGC</u>TTGACAGTGAAAAACCAGGACAGGCGCGTGACGAAGTATTACAGGTTG[<u>TGGTG</u>CTATCGCA GGCTGAATGT<u>(TACAAT</u>]TGAGAQGTATCGTGCGCAATTTTTTCAGAATCGAAAGGTTCAAAGTACAAATAAGCATATAAGGAAAAG AGAGA**A**TG_{*h/g* translation start site}

P. mirabilis N2

<u>GGTTGGCATGATGTTCATTGGT</u>TAGATAGTGAAGATTTTGAACAGTCTCTTAACACTGTTTTGCAGGTAG<u>TTAGTG</u>CATAGATGGT AGGTTTGTG<u>TAAAAT</u>IGATAGTTGCTAAAGTGCAATTTTTGAGTAGTTCATTTTTCGAACCATTAGGTTCTAGTATAAAACAACAAA ATAAGGAAAACATAGA**ATG***h/q* translation start site

- 77 Supplementary Figure S6. The upstream regulatory regions of *ptsG*, *crp*, *cyaA* and
- 78 hfq of P. mirabilis N2 and E. coli MG1655 showing the putative Crp-cAMP binding
- 79 sites. Putative Crp-cAMP binding sites are underlined. The -10 and -35 boxes or the
- 80 transcription start site of the sigma 70 promoter is framed.

- **Supplementary Figure S8.** Full-length images of gels presented in the main figures
- 92 3d, 3f and 4d.

Strain or plasmid	Genotype or relevant phenotype	Reference
P. mirabilis		
wt	wild-type N2; Tet ^r	Clinical isolate
crp	wt derivative; crp knockout mutant; Km ^r	This study
crpc	crp mutant containing pGcrp-com;	This study
	<i>crp</i> -complemented strain; Amp ^r	
hfq	wt derivative; <i>hfq</i> knockout mutant; Km ^r	1
pmpA	wt derivative; <i>pmpA</i> knockout mutant; Km ^r	This study
pmpA/crp	wt derivative; <i>pmpA/crp</i> double mutant; Km ^r Gm ^r	This study
rpoS	wt derivative; <i>rpoS</i> knockout mutant; Km ^r	1
rpoSc	rpoS mutant containing pGrpoS-com;	1
	<i>rpoS</i> -complemented strain; Amp ^r	
E. coli		
DH5a	fhuA2 lac(del)U169 phoA glnV44 thi-1 hsdR17	Invitrogen
	$\Phi 80' lacZ(del)M15$ gyrA96 recA1 relA1 endA1	
S17-1 λ <i>pir</i>	λpir lysogen of S17-1 [thi pro hsdR ⁻ hsdM ⁺ recA	Biomedical
	RP4 2-Tc::Mu-Km::Tn7 (Tp ^r Sm ^r)]; permissive	
	host able to transfer suicide plasmids requiring the	
	Pir protein by conjugation to recipient cells	
BL21(DE3)	F^{-} ompT hsdS _B (r_{B}^{-} m_{B}^{-}) gal dcm (DE3)	Invitrogen
Plasmids		
pGEM-T Easy	High-copy TA cloning vector; Amp ^r	Promega
pUT-Km1	Suicide plasmid requiring the Pir protein for	2
	replication and containing a mini-Tn5 cassette	
	containing Km ^r gene	
pKD4	pKD4 is a template plasmid for frt-flanked Km ^r	3
	cassette. The Km ^r cassette originally came from	
	pCP15.	
pX1918GT	A <i>xylE</i> -Gm ^r fusion cassettes-containing plasmid	4
pET32a(+)	Expression vector containing T7 promoter; Amp ^r	Novagen

94 Supplementary Table S1. Bacterial strains and plasmids used in this study.

95 96 streptomycin; Tp, trimethoprim.

Supplementary Table S2. Primers used in this study.

Primer	Sequence (5' to 3')	Description
crp-upF	<u>GTCGAC</u> TATCAATACTATTGT TGTTCCAGG	For <i>crp</i> knockout, and <i>crp</i> reporter assay. Paired with "XbaI-crp-upR".
XbaI-crp-upR	<u>TCTAGA</u> TTGTGAATATGGCAG TGTGA	
XbaI-crp-dnF	TCTAGA CGTGAAACTGTAGGC CGTAT	For <i>crp</i> knockout. Paired with "crp-dnR".
crp-dnR	<u>GCATGC</u> GCATCCACTATTGAA TAAAG	, I , , , ,
I-out	GAGCTCGAATTCGGCCTAG	Check for <i>crp</i> knockout mutant. Paired with "argD-ovF".
argD-ovF	GTATAGCTAAATGTCGGTCAG GT	C
crp-comF	AATTGTACAGCTCGCTCAAC	For <i>crp</i> complementation. Paired with "crp-comR".
crp-comR	GCATGGCTTACGTACACTAT	
pmpA-upF	<u>GCATGC</u> TTGAGATAGACACCA GCTAT	For <i>pmpA</i> knockout, and <i>pmpA</i> reporter assay. Paired with "XbaI-pmpA-upR".
XbaI-pmpA-upR	<u>TCTAGA</u> AGGCTTTTGCTGATT TGACCA	
XbaI-pmpA-dnF	<u>TCTAGA</u> CTGAAGGTGAGTTTA ACGCT	For <i>pmpA</i> knockout. Paired with "pmpA-dnR".
pmpA-dnR	<u>GTCGAC</u> TTGATGAACCGATCC CTTGT	
FRT-out	CCTATTCCGAAGTTCCTATTC	Check for <i>pmpA</i> knockout mutant. Paired with "pmpA-upF".
xylE-R	AAGTCGTACCGGACCATCAG	Check for <i>pmpA/crp</i> double mutant. Paired with "argD-ovF".
flhDC-reF	GGGTAGATTCGCTTATTAATT CTC	For <i>flhD</i> reporter assay and EMSA. Paired with "flhDC-reR".
flhDC-reR	CTCTTTACATCCCGTCCGAT	
crp-purF	<u>GGATCC</u> ATGGTTCTCGGCAAG CCGCAAA	For Crp-His ₆ expression. Paired with "crp-purR".
crp-purR	<u>CTCGAG</u> TTAACGAGTACCGTA AACAACG	
ptsG-rtF	CGCGAAACAAGCGGATAAA	For <i>ptsG</i> real-time RT-PCR. Paired with "ptsG-rtR".
ptsG-rtR	CGCAAGCGTGTAATACAAGC A	
crp-rtF	CCGCCAATTAATTCAGGTCAA	For <i>crp</i> real-time RT-PCR. Paired with "crp-rtR".
crp-rtR	GCGTCATTGCATCAGGTTGTT	
hfq-rtF	ACGGCATTAAATTACAGGGTC	For <i>hfq</i> real-time RT-PCR.

	AGA	Paired with "hfq-rtR".
hfq-rtR	GCTATGATGAGAAACAGGAC	-
	GAGAA	
cyaA-rtF	TTGCATCGATGAGTGATGTG	For <i>cyaA</i> real-time RT-PCR.
		Paired with "cyaA-rtR".
cyaA-rtR	TATTGACCCATTGACGTTGC	
flhDC-rtF	CACGAGCATGGACATTAG	For <i>flhDC</i> real-time RT-PCR.
		Paired with "flhDC-rtR".
flhDC-rtR	GCAGGATTGGCGGAAAGTT	
mrpA-rtF	GGTTCTTTAGGCATTGAAGG	For <i>mrpA</i> real-time RT-PCR.
		Paired with "mrpA-rtR".
mrpA-rtR	TCATTGTTACCATCACGCAG	
rpoS-rtF	GCCTTATTCGTGCTGTTG	For <i>rpoS</i> real-time RT-PCR.
ma o C. mtD	GACGAATAGTGCGGGTTT	Paired with "rpoS-rtR".
rpoS-rtR	AATGGCTTTTTTCTGCGACTGT	Ear mun 4 real times DT DCD
pmpA-rtF	Т	For <i>pmpA</i> real-time RT-PCR. Paired with "pmpA-rtR".
pmpA-rtR	TTGGTTAGCACTTTCGGTAGC	Faned with phipA-tick.
pinpA-nix	A	
gfpuv-rtF	TTCAATGCTTTTCCCGTTATCC	For <i>gfpuv</i> real-time RT-PCR.
Sipur in		Paired with "gfpuv-rtR".
gfpuv-rtR	GCGTCTTGTAGTTCCCGTCAT	5 8-F
0 F	С	
gyrB-rtF	GACCCGTACGCTAAACAAC	Internal control for real-time
		RT-PCR. Paired with
		"gyrB-rtR".
gyrB-rtR	AGAAATAACCGCAATCAGG	
pmp-fpF	TACGTAAATCTCTAACAGGAG	Amplification of <i>pmpA</i>
	CC	promoter for DNase I
		footprinting and EMSA.
		Paired with "pmp-koR".
pmp-koR	AGGCTTTTGCTGATTTGACCA	
M13F	CACGACGTTGTAAAACGAC	M13 primers labelled with
		IRDye or not for EMSA.
) (10D		Paired with "M13R".
M13R	GGATAACAATTTCACACAGG	

98 The recognition sequences of endonucleases are indicated.

99 Supplementary Methods

100	Construction of P. mirabilis mutants and crp-complemented strain. Sequences
101	flanking the crp gene was amplified by PCR using the primer pairs
102	crp-upF/XbaI-crp-upR and XbaI-crp-dnF/crp-dnR, respectively for construction of
103	crp mutant, and cloned into pGEM-T Easy (Promega) to generate pGcrp-up and
104	pGcrp-dn. pGcrp-up was digested with Sall/XbaI, and the crp upstream
105	sequence-containing fragment was ligated to Sall/XbaI-digested pGcrp-dn to produce
106	the pGcrp-updn plasmid, which contains both upstream and downstream sequences of
107	crp. A Km ^r cassette was inserted in the XbaI-digested pGcrp-updn plasmid to
108	generate pGcrp-updn-Km. For <i>pmpA</i> mutant, pGpmpA-updn-Km was constructed in a
109	similar way except using primer pairs pmpA-upF/XbaI-pmpA-upR and
110	XbaI-pmpA-dF/pmpA-dnR. The DNA fragment containing the Km ^r
111	cassette-disrupted combined upstream and downstream sequences of <i>crp</i> or <i>pmpA</i> was
112	cleaved by Sall/SphI from pGcrp-updn-Km or pGpmpA-updn-Km, and ligated into
113	Sall/SphI-cleaved pUT-Km1 to generate pUTcrp-Km and pUTpmpA-Km,
114	respectively. The <i>pmpA/crp</i> double mutant (Km ^r Gm ^r) was constructed in a similar
115	way using an existing <i>pmpA</i> mutant (Km ^r). A <i>xylE</i> /Gm ^r cassette was inserted in the
116	XbaI-digested pUTcrp-Km plasmid for the <i>pmpA/crp</i> double mutant to generate
117	pUTcrp-xylE/Gm. Gene inactivation mutagenesis by homologous recombination and

118	confirmation of mutants with double-crossover events by colony PCR and Southern
119	blot hybridization were performed (Supplementary Fig. S1a, b, c, and Supplementary
120	Fig. S3) as described previously ² .
121	For complementation of crp mutant, the fragment containing full-length crp gene
122	was amplified by PCR using the primer pair crp-comF/crp-comR, and cloned into
123	pGEM-T Easy to generate the plasmid pGcrp-com. crp is thus driven by its own
124	promoter. The plasmid pGcrp-com was then transformed into the crp mutant to
125	generate the crp-complemented strain.
126	Growth curve analysis. Bacteria were grown overnight at 37°C, the cultures were
127	diluted to an initial optical density at 600 nm (OD_{600}) of 0.01 and then the OD_{600}
128	values were measured at 1-h intervals up to 24 h with a spectrophotometer.
129	Swimming assay. The swimming migration was determined on 0.3% (w/v) LB agar
130	plates with 10% glucose or not after incubation for 16 h at 37°C.
131	Nucleotide sequence accession number. The nucleotide sequences of <i>P. mirabilis</i>
132	<i>crp</i> gene have been deposited in GenBank under the accession number KP278143.

134Supplementary References

135	1.	Wang, M. C., Chien, H. F., Tsai, Y. L., Liu, M. C. & Liaw, S. J. The RNA
136		chaperone Hfq is involved in stress tolerance and virulence in uropathogenic
137		Proteus mirabilis. PLoS One 9, e85626; 10.1371/journal.pone.0085626
138		(2014).
139	2.	Liu, M. C., Kuo, K. T., Chien, H. F., Tsai, Y. L. & Liaw, S. J. New aspects of
140		RpoE in uropathogenic Proteus mirabilis. Infect. Immun. 83, 966-977 (2015).
141	3.	Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes
142		in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. U. S. A.
143		97, 6640-6645 (2000).
144	4.	Schweizer, H. P. & Hoang, T. T. An improved system for gene replacement
145		and xylE fusion analysis in Pseudomonas aeruginosa. Gene 158, 15-22
146		(1995).