Supplementary Information

Acoustofluidic bacteria separation

Sixing Li,¹ Fen Ma,² Hunter Bachman,⁴ Craig E. Cameron,³ Xiangqun Zeng,^{*2} and Tony Jun Huang^{*1,4}

¹ The Molecular, Cellular and Integrative Biosciences (MCIBS) Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
² Department of Chemistry, Oakland University, Rochester, MI 48309, USA. E-mail: zeng@oakland.edu
³ Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
⁴ Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA. E-mail: tony.huang@duke.edu

Video captions

Supplementary Video S1: Bright-field video taken at the outlet region of the bacterial separation experiment when the taSSAW was not applied. RBCs exited the microchannel through the lower outlet.

Supplementary Video S2: Fluorescence video taken at the outlet region of the bacterial separation experiment when the taSSAW was not applied. *E. coli* also exited the microchannel through the lower outlet mixed with RBCs.

Supplementary Video S3: Bright-field video taken at the outlet region of the bacterial separation experiment when the taSSAW was applied. Most of the RBCs were pushed to the upper outlet.

Supplementary Video S4: Fluorescence video taken at the outlet region of the bacterial separation experiment when the taSSAW was applied. Most of the *E. coli* remained in the lower outlet and were separated from the RBCs.