VapC Toxins Drive Cellular Dormancy under Uranium Stress for the Extreme Thermoacidophile *Metallosphaera prunae*

A. Mukherjee, G.H. Wheaton, B. Ijeomah, J.A. Counts, J. Desai, and R.M. Kelly

SUPPLEMENTARY INFORMATION

Figure	Contents
S1	Initial RNase activity screen of VapC toxins and PIN domain proteins
S2	RNase activity of total RNA degrading VapC toxins
S3	Predicted secondary structure of <i>M. sedula/M. prunae</i> 16S rRNA
S4	Predicted secondary structure of Msed_1804
S5	Predicted secondary structure of Msed_1802
S6	Predicted secondary structure of Msed_0355

Table	Contents
S1	RNase activity of total RNA degrading VapC toxins
S2	M. sedula genes and occurrence of consensus motifs (Supplemental Excel Workbook)
S3	Base-Pairing Probabilities for <i>M. sedula</i> 16S rRNA
S4	Base-Pairing Probabilities for Msed_1804
S5	Base-Pairing Probabilities for Msed_1802
S6	Base-Pairing Probabilities for Msed_0355
S7	Primers and Ek/LIC vectors used for cloning VapC toxins and PIN domain proteins
S8	Primers used for cloning VapB anti-toxins into pET-46 vector
S9	MS2 bacteriophage primer name, sequence and location adapted from Zhu et. al. (2008)
S10	Primers used in messenger RNA degradation assays

Table S1. RNase activity of total RNA degrading VapC proteins on the generic RNA substrate (IDT DNA). Activity was obtained by calculating initial reaction velocity (increase in fluorescence reading over time). The 'no VapC added' control fluorescence was subtracted from the EDTA, VapBC and VapC data prior to determination of initial reaction velocity. Further, the EDTA, VapBC and VapC initial reaction velocities were divided by the VapC loading. The VapC4 and VapC8 loading was 0.01µg while VapC7 was 0.001µg. The VapC:VapB mass ratio was 1:2 for all VapCs. 25 mM EDTA + VapC (EDTA); VapB + VapC (VapBC); Biological replicate #1VapC (VapC-1); Biological replicate #2 VapC (VapC-2).

VapC	EDTA	VapBC	VapC-1	VapC-2
	(RFU/µg∙min)	(RFU/µg∙min)	(RFU/µg·min)	(RFU/µg·min)
VapC4	-2.17E+03 ±	-1.09E+02 ±	1.07E+04 ±	3.09E+04 ±
	1.54E+2	1.50E+02	2.21E+02	2.74E+02
VapC7	-2.55E+04 ±	-3.37E+03 ±	2.60E+05 ±	1.68E+05 ±
	1.62E+03	1.72E+03	2.97E+03	1.62E+03
VapC8*	-2.33E+03 ±	2.30E+01 ±	2.57E+04 ±	2.60E+04 ±
	2.13E+02	2.38E+02	2.62E+02	2.58E+02
(*) The activity of VapC8 when treated with VapB4 was 2.25E+02 ± 2.00E+02				

	Table S3. Base-Pairing Probabilities for <i>M. sedula/M. prunae</i> 16S rRNA.				
		Sequence disp	layed 5' \rightarrow 3'		
1	10	20	30	40	
С	UGCCCUAAU	UCCGGUUGA U	CCUGCCGGAC	CCGAUCGCU A	
41	50	60	70	80	
U	AGGGGUAG G	GCUAAGCCA U	GGGAGUCGU A	CGCUCUCGG G	
81	90	100	110	120	
A	AGAGGGCG U	GGCGGACGG C	UGAGUAACA C	GUGGCUAAC C	
121	130) 140	150	160	
U	GCCCUUGG G	AUCUGGAUA A	CCCCGGGAA A	CUGGGGCUA A	
161	170) 180	190	200	
U	CCGGAGCG G	GCAAGGG <mark>A</mark> A U	CUGGAAUGA U	CUCUUGCCU A	
201	210) 220	230	240	
A	AAGCCUCU C	GGCUGAUCC C	GUCGAGAGG C	GCCCAAGGA U	
241	250) 260	270	280	
G	GGGCUGCG G		UGGGGG A	GUAAAGGUC C	
281	290) 300	310	320	
С	CCAAACCG A		GGGCCGUGG G	AGCGGGAGC C	
321	330) 340	350	360	
С	CCAGUUGG G	CACUGAGAC A	AGGGCCCAG G		
361	370) 380	390	400	
С	GCACCAGG C	GCGGAACGU C		GAAACCGU <mark>G</mark> A	
401	410) 420	430	440	
G	GGCGUUAC C		UCGCAAGAG G	GCUUUUCUC C	
441	450) 460	470	480	
A	CUCCAGAA A	GGUGGAGGA A	UAAGCGGGG G	GCAAGACUG G	
481	490) 500	510	520	
U	GUCAGCCG C	CGCGGUAAUA		GAGUGAUCG G	
521	530) 540	550	560	
G	ACGUUUAU	GGGCUUAAA G	C G C C C <mark>G U A G</mark> C	C GCCUGUA A	
561	570) 580	590	600	
A	GUCACCGU U	UAAAGACCC G	GGCUCAACU C	GGGGAACGG C	
601	610) 620	630	640	
G	GUGAUACU U	A C A G G C U A G G	GGGCGGGAG A	GGUCGGAGG U	
641	650) 660	670	680	
Α	CUCCCGGA G	UAGGGGCGAA	AUCCUCAGA U	CCCGGGAGG A	
681	690) 700	710	720	
С	CACCAGUG G	CGAAAGCGUC	CGGCUAGAA C	GCGCCCGAC G	
		Base-Pairing proba	ability color scale		
		0	1		

Table S7. Primers and Ek/LIC vectors used for cloning VapC toxins and PIN domain proteins. Displayed sequences $5' \rightarrow 3'$.

Gene ID	Annotation	Fwd. primer	Rev. primer	Vector
Msed_0302	PIN 1	GAC GAC GAC AAG ATG ATC TCC TTA CTG CAA G	GAG GAG AAG CCC GGT TAA TCA ACG AAC TCC AC	pRSF
Msed_0338	VapC1	GAC GAC GAC AAG ATG AGT TAC CTC TTCGAT TC	GAG GAG AAG CCC GGT TAC CTC TCA ACT TCA TCA AG	pRSF
Msed_0411	VapC2	GAC GAC GAC AAG ATG GCG GGA CAG GAA TTG	GAG GAG AAG CCC GGT CAT ATT ACC TTA TAA TC	pRSF
Msed_0739	PIN 2	GAC GAC GAC AAG ATG GAG AAA GTG ATA TTT G	GAG GAG AAG CCC GGT CAT TTC CCC CTT TG	pRSF
Msed_0864	VapC3	GAC GAC GAC AAG ATG AGG GTT CTT CTC GAC	GAG GAG AAG CCC GGC TAG GGC GGG AGA TC	pRSF
Msed_0899	VapC4	GAC GAC GAC AAG ATG GCA AGG TAC GTG ATTG	GAG GAG AAG CCC GGT CAT TTC CCA AGT G	pET46
Msed_0908	VapC5	GAC GAC GAC AAG ATG GAG AAG GAG AAG TGC CTA G	GAG GAG AAG CCC GGT TAG AGT AGG TCA TCT GAG	pRSF
Msed_1184	VapC6	GAC GAC GAC AAG ATG CAG AAG AAT AAA TAT TTC	GAG GAG AAG CCC GGT TAT ATC TTG TCA ATT TCA C	pRSF
Msed_1214	VapC7	GAC GAC GAC AAG ATG AGG TTG ATC GTT GAT AC	GAG GAG AAG CCC GGC TAG CCT GGG CAG	pRSF
Msed_1245	VapC8	GAC GAC GAC AAG ATG CAG AGG ACG CAT ATA G	GAG GAG AAG CCC GGC TAG ATC GTC TCA AC	pRSF
Msed_1307	VapC9	GAC GAC GAC AAG ATG ATA TTC TTG GAT GCA AAC	GAG GAG AAG CCC GGT CAC TTT ATC CAG ATC	pET46
Msed_1385	VapC10	GAC GAC GAC AAG ATG AAA TAT TTC GAC ACT AG	GAG GAG AAG CCC GGC TAT TCC AGT AGG TTT AC	pET46
Msed_1534	VapC11	GAC GAC GAC AAG ATG CAA AGG TAC ATT CTT GAC	GAG GAG AAG CCC GGC TAG GAA AGA GGT ACA AAG	pRSF
Msed_2242	VapC12	GAC GAC GAC AAG ATG GGG ACA GGT GGT TCT G	GAG GAG AAG CCC GGC TAA ATA GTG CGA AA	pRSF

Table S8. Primers used for cloning VapB anti-toxins into pET-46 vector. The vector was constructed by assembling the gene fragment and vector backbone using Gibson Assembly. Gene specific nucleotides (underlined) vector specific nucleotides (not underlined). Displayed sequences $5' \rightarrow 3'$.

Gene ID	Annotation	Fwd. primer	Rev. primer
Msed_0898	VapB4	CAT CAC GTG GAT GAC GAC GAC AAG <u>ATG AGC TGG GTC ACA GTG</u>	CGG TGG CAG CAG CCT AGG TTA ATT A <u>AT CAC GTA CCT TG CC ATC</u>
Msed_1215	VapB7	CAT CAC GTG GAT GAC GAC GAC AAG <u>ATG AGC GAC ACA ATC TCC</u>	CGG TGG CAG CAG CCT AGG TTA ATT A <u>AC GAT CAA CCT CAT CCC TAT C</u>
Msed_1246	VapB8	CAT CAC GTG GAT GAC GAC GAC AAG <u>ATG AGA AAG ACA TTG GTT CG</u>	CGG TGG CAG CAG CCT AGG TTA ATT A <u>AC TAC CGC TAT ATG CGT C</u>
pET46	Vector Backbone	TAA TTA ACC TAG GCT GCT G	CTT GTC GTC GTC ATC CAC

Table S9. MS2 bacteriophage primer name, sequence and location adapted from Zhu et. al. (2008)			
Location on MS2	ID	Primer sequence (3' → 5')	
2026-2007	M1	TCTCTATTTATCTGACCGCG	
156-137	S1	CCCTATCAAGGGTACTAAA	
3435-3416	E1	GAGCACACCCACCCGTTTA	
3097-3077	E3	GGTCCGTCCCACCGAAGAAC	
3231-3212	E5	AGAACTTGCGTTCTCGAGCG	
3326-3307	E6	TATAACGCGCACGCCGGCGG	
3158-3139	E4	CGGAGTCTTGGTGTATACCG	
2621-2602	E2	GCGGATACGATCGAGATATG	
2271-2252	M9	GCGCACATTGGTCTCGGACC	
2244-2225	M8	CCGCTCTCAGAGCGCGGGGG	
1843-1824	M7	GCAATTGATTGGTAAATTTC	
1915-1896	M6	AATTCGTCCCTTAAGTAAGC	
1806-1787	M5	GAAGATCAATACATAAAGAG	
1663-1644	M4	TGCATTGCCTTAACAATAAG	
1476-1457	M3	TACAGGTTACTTTGTAAGCC	
1302-1283	M2	GAGCCGTTGCCTGATTAATG	
1140-1121	S7	AGCGTCAACGCTTATGATGG	
1078-1061	S6	AGCATCCCACGGGGGCCG	
976-957	S5	GGTTCAAGATACCTAGAGAC	
859-840	S4	GACGGCCATCTAACTTGATG	
511-492	S3	CTTCGGTCGACGCCCGGTTC	
86-67	S2	TAGCCATGGTAGCGTCTCGC	

Table S10. Primers used in messenger RNA degradation assays. Upper case indicates

gene specific portion while lower case represents the T7 promoter sequence.

Primer ID	Primer Sequence (5' → 3')
Msed_0355F T7	taatacgactcactatagggATGAGTATAACCCAGTCTTATTA
Msed_0355R	TTATATTTCCGCCTTTTCAC
Msed_1538F T7	taatacgactcactatagggATGGAGGGAGTTTATCTCGT
Msed_1538R	TCATGTGGAGATCACGATAAATC
Msed_1802F T7	taatacgactcactatagggATGATCTACAACAGGTACCCTCT
Msed_1802R	TCACTTGGCAACCTCCGC
Msed_1804F T7	taatacgactcactatagggATGAAATTCCCTAAGCTAGTCAA
Msed_1804R	TCATTTGATCACCTCAACTAGTT

Figure S1. Initial RNase activity screen of VapC toxins and PIN domain proteins. RNase activity of VapC Toxins/PIN domain proteins on the generic RNA substrate (IDT DNA) was obtained by calculating initial reaction velocity (increase in fluorescence over time). PIN domain protein (PIN2) and VapC toxins, which had low activity, are shown in the inset. VapC7 had the highest RNase activity (598,633 ± 109,774 RFU/µg.min); the VapC7 activity has been scaled down by a factor of 10 to be able to represent it along with the other VapCs/PIN domain proteins.

Figure S2. RNase activity of total RNA degrading VapC toxins. RNase activity of total RNA degrading VapC toxin proteins using the generic RNA substrate (IDT DNA). The RNA substrated was treated with (A) VapC4 (Msed_0899), (B) VapC7 (Msed_1214) and (C) VapC8 (Msed_1245). VapC4 and VapC8 reactions were loaded with 0.01 μ g protein while VapC7was loaded with 0.001 μ g protein. The VapC:VapB mass ratio was 1:2 for all VapCs. No VapC added (\blacklozenge); 25 mM EDTA + VapC (\blacksquare); VapB + VapC (\blacklozenge); VapC (-).

Figure S3. Predicted secondary structure of *M. sedulalM. prunae* **16S rRNA.** The 16S rRNA contains a total of 28 consenusu motifs (See **Table 1**), shaded green and indicated by numbers. The RNA structure and base pairing probabilities (see **Table S6**) were determined using RNAfold (http://rna.tbi.univie.ac.at/) with default settings followed by drawing in VARNA (http://varna.lri.fr/). The structure represents the minimum free energy structure.

Figure S4. Predicted secondary structure of Msed_1804. Mse_1804 contains a total of 7 VapC4 (Msed_0899) consensus motifs (GAAG), shaded green and indicated by numbers. The RNA structure and base pairing probabilities (See **Table S7**) were determined using RNAfold (http://rna.tbi.univie.ac.at/) with default settings followed by drawing in VARNA (http://varna.lri.fr/). The structure represents the minimum free energy structure. The mRNA molecule includes a GGG at the beginning, runoff from T7 promoter.

Figure S5. Predicted secondary structure of Msed_1802. Mse_1802 contains a total of 25 VapC4 (Msed_0899) consensus motifs (GAAG), shaded green and indicated by numbers. The RNA structure and base pairing probabilities (See **Table S8**) were determined using RNAfold (http://rna.tbi.univie.ac.at/) with default settings followed by drawing in VARNA (http://varna.lri.fr/). The structure represents the minimum free energy structure. The mRNA molecule includes a GGG at the beginning, runoff from T7 promoter.

Figure S6. Predicted secondary structure of Msed_0355. Mse_0355 contains a total of 3 VapC4 (Msed_0899) consensus motifs (GAAG), shaded green and indicated by numbers. The RNA structure and base pairing probabilities (See **Table S9**) were determined using RNAfold (http://rna.tbi.univie.ac.at/) with default settings followed by drawing in VARNA (http://varna.lri.fr/). The structure represents the minimum free energy structure. The mRNA molecule includes a GGG at the beginning, runoff from T7 promoter.