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S1. Supplementary Methods 
 
Cell cycle arrest and cell cycle analysis 
Cells were treated with a 24 h pulse of 40 μM Lovastatin (Sigma-Aldrich) to deplete cells 
in S phase1. To analysize cell cycle status, a combined BrdU-incorporation and PI 
staining protocol was used, following manufacturer’s instruction. Briefly, cells were 
pulsed for 1 h with 10 μM BrdU (Sigma-Aldrich) and then fixed with cold 70% v/v 
ethanol. After washing with PBS + 0.5% BSA, cells were denatured with 2M HCl for 20 
min, neutralized with 0.1 M sodium borate, then labeled with anti-BrdU-FITC 
monoclonal antibody (Becton Dickinson) and 10ug/ml Propidium Iodide stain, and 
analyzed by flow cytometry. Analysis of cell cycle status in live cells was performed with 
Hoerchst 33342 (Invitrogen) stain at 5μg/ml final concentration and analyzed with a UV-
laser equipped flow cytometer. Cell cycle data was then analyzed using the FlowJo 2.2.2. 
software package (Tree Star) to determine the relative proportions of cells in G0/G1, S, 
and G2/M cell cycles.  
 
Quantitative real-time reverse transcription (RT) PCR  
Total RNA was isolated from 8 – 20 x 106 cells by using the RNeasy Mini RNA isolation 
kit (Qiagen). RNA was reverse-transcribed with Omniscript RT-PCR kit (Quiagen) in 
accordance with the manufacturer's protocol and used to test primer activity. Real-time 
PCR was performed on ~250 ng of total RNA/sample with the QuantiTect SYBR Green 
PCR kit (Qiagen) in accordance with the manufacturer's instructions. Amplification 
conditions were as follows: 40 cycles of denaturation at 94 °C for 15 s, annealing at 55°C 
for 30 s, and extension at 72 °C for 30 s using the Mx4000 (Stratagene) or 7300 (Applied 
Biosystems) realtime-PCR machines (Stratagene). Primers for GATA1 were (Right: 
CAGGGCAGAATCCACAAACT, Left: TCCTCTGCATCAACAAGCC), Sca-1 (Right: 
GGTTCTTTAGGCTGGCAGTG, Left: GGGAAGTTTCCATGGTGAAG) (from the 
qPrimerDepot database http://mouseprimerdepot.nci.nih.gov/), PU.1 (Right: 
TGACTACTACTCCTTCGTGG, Left: GATAAGGGAAGCACATCCGG), and GAPDH 
(right: ACCACAGTCCATGCCATCAC, Left: TCCACCACCCTGTTGCTGTA). 
Specificity was verified by melt-curve analysis and agarose-gel electrophoresis. Results 
are standardized for GAPDH expression levels and are expressed as fold induction 
compared with the levels (set to 1) detected in the sample with the lowest expression. 
 
Western Blot analysis 
1 – 5 x 106 cells were pelleted and homogenized with the appropriate volume of RIPA 
buffer (Boston BioProducts) containing 50mM Tris-HCl, 150 mM Nacl, 1% NP-40, 0.5% 
Sodium deoxycholat, and 0.1% SDS, and protease-inhibitor cocktail (Roche) and sheared 
with multiple passages through a syringe. After measurement of protein yield using the 
Dc Protein Assay (Bio-Rad), whole-cell lysates were boiled for 5 min at 95°C with 20% 
sample-loading buffer. 30-40 μg of total cell lysate were subjected to electrophoresis on 
4-20% SDS-polyacrylamide gradient gels (Bio-Rad) and transferred to nitrocellulose 
membranes. Following blocking with 5% milk/PBST (phosphate buffered saline with 
0.1% Tween 20), the membrane was probed either with a 1:200 dilution of anti GATA1-
N6 antibody (Santa Cruz sc-265) or a 1:1000 dilution of anti PU.1 antibody (Santa Cruz 
sc-352). Antibody binding was detected with a 1:10000 dilution of peroxidase labeled 
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anti-rat IgG (Santa Cruz) or anti-rabbit IgG (Vector) and luminescence was detected with 
Supersignal West Dura Signal reagents (Pierce).  
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S2. Supplementary Discussion 
 
 
1. What other factors could contribute to the observed level of heterogeneity in Sca-
1 within one clonal population (Fig. 1 in the main text)? 

Before studying clonal heterogeneity as an intrinsic phenomenon with potential 
biological function, we experimentally considered the following possible (trivial) sources 
for the observed variability:  

(1) Measurement noise (flow cytometry): the upper bound of the error due to 
fluctuations in the measurement process (e.g., machine noise) is given by the spread of 
the signal obtained from standardized MESF2 beads that have uniform amount of 
fluorescence on each bead (within manufacturing error). This error was 2-fold (Fig. 1b in 
the main text). 

(2) Cell size and cell cycle: Because absolute gene expression levels are affected 
by cell size3, we examined whether the observed variability in Sca-1 levels reflects cell 
size variations. The projected area of clonal EML cells ranged over 1.5-fold, which was 
associated with a 1.7-fold difference in mean Sca-1 expression (Supplementary Fig.1a). 
Taken together, this would only account for less than 1% of the total Sca-1 heterogeneity 
we observed. Since some proteins exhibit cell cycle dependence even without an explicit 
role in cell division4, cell cycle asynchrony in populations of clonal cells could also be a 
source of Sca-1 clonal heterogeneity. However, clonal cells in the G0/G1 and G2/M cell 
phases independently showed greater than 500-fold range in Sca-1 expression, differing 
less than 2-fold in mean Sca-1 expression (Supplementary Fig.1b), again a result that 
cannot explain the observed Sca-1 heterogeneity.  

Thus, the variation in Sca-1 expression in clonal EML cells cannot be trivially 
attributed to measurement noise, variation of cell size, or asynchrony in cell cycle. 
 
 
2. What biological process may drive the (re)generation of the parental Sca-1 
distribution from the three sorted, more homogeneous population fractions?    

Here we present experiments or arguments suggesting that some commonly 
assumed mechanisms are unlikely to provide complete explanations for the dispersion of 
Sca-1 and the slow relaxation to the parental distribution, although their partial 
contribution cannot be excluded. 

(1) Shift of cell population demography by overgrowth of a subfraction of cells 
with the appropriate Sca-1 expression level: The sorted fractions could be contaminated 
by a few residual cells from other fractions that outgrow more slowly dividing cells, 
thereby restoring the missing populations. Because the Sca-1Low outlier fraction must 
accumulate cells with higher Sca-1 levels to reconstitute the original histogram (and 
accordingly, the Sca-1High fraction must accumulate low expressors), Sca-1Mid cells would 
be the common “contaminant” that could override both outlier fractions. However, the 
growth rate of the Sca-1Mid fraction was not higher than that of the outlier fractions 
(Supplementary Fig. 3). Moreover, greater than 98% purity was obtained for all sorted 
fractions as obtained by reanalysis of sorted samples. 

(2) Mutations affecting Sca-1 expression distribution. Genetic mutations may in 
principle be responsible for the heterogeneity and slow changes in Sca-1 expression level 
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distribution. However, this is unlikely since thousands of diverse mutations would have 
to be generated within less than 9 days (~ 12 cell divisions), each of which would have to 
confer both a robust growth advantage and a distinct, stable level of Sca-1 surface 
expression to collectively cover a greater than 10-fold range of population variability. 

(3) “Gene expression noise” as basis for dispersion.  Propagation of noise from 
gene transcription5 to the protein level as a source of clonal heterogeneity can be ruled 
out because there was no statistically significant difference in the Sca-1 mRNA levels of 
the Sca-1Low, Sca-1Mid, and Sca-1High fractions,  as determined by real-time PCR 
(Supplementary Fig. 4). However, random fluctuations at later stages in Sca-1 surface 
expression (translation, membrane localization via GPI anchor, trafficking) may play a 
role.  

(4) Uneven partitioning of Sca-1 proteins in cell division. The uneven 
distribution of cellular molecules to the daughter cells during cell division has long been 
suggested to be a mechanism that generates population heterogeneity6. Here we do not 
explicitly study this mechanism. However, we observed that the width (spread) of the 
histogram of Sca-1 expression levels increased significantly within 24 hr. The rate of cell 
division is much slower (Supplementary Fig. 3a) such that only a fraction of cells would 
have undergone cell division in 24 hrs. Thus, while uneven partitioning may still be a 
source of Sca-1 heterogeneity in long-term cell cultures, it is unlikely to be the sole 
driving force behind the restoration of the parental distribution from a narrow 
distribution. 

While here we do not establish the driving force for the diversification of Sca-1 
levels and the mechanisms that slow the underlying kinetic, it is possible that they result 
from the joint effect of several processes including the ones discussed above.  
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S3. Supplementary Figures 
 
 

 
 
Supplementary Figure 1. Robust clonal heterogeneity. a, Weak correlation between 
cellular Sca-1 expression and cell size (projection area) revealed by Fluorescence 
Intensity – Forward Scatter dot plot. b, Clonal cells in G0/G1 (blue), G2/M (red) and 
combined cell cycle phases (black), distinguished by Hoechst stain (inset) showed minor 
differences in overall range and mean Sca-1 expression.  
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Supplementary Figure 2. Clonal heterogeneity in Sca-1 expression among single-
cell-derived subclones converged towards that of the original parental clone. 
Population distribution of non-stimulated, baseline Sca-1 expression for four single-cell 
derived subclones (purple, brown, green, blue solid lines) represented by flow cytometry 
histograms exhibited convergence towards the parental clone histogram (red) over eight 
weeks (Wk) in normal growth culture despite one cycle of freeze/thaw after week 5. 
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Supplementary Figure 3. Growth rates of sorted fractions. a, The growth rates of the 
Sca-1Low (blue diamonds), Sca-1Mid (magenta squares), Sca-1High (green triangles) sorted 
fractions, and a mock-sorted control (black circles) were calculated as the fold difference 
between two daily measurements. b, The three sorted fractions had comparable growth 
rates overall, as shown by the mean and standard deviation of growth rates over all 11 
times points in a. 
 
 

 
 
Supplementary Figure 4. Sca-1 mRNA levels in sorted fractions. Sca-1 mRNA levels 
in the Sca-1Low, Sca-1Mid, and Sca-1High fractions analyzed by quantitative RT-PCR did 
not differ significantly. Results represent the mean and standard errors from 
quadruplicate measurements. Each value has been standardized for GAPDH expression 
levels and is expressed as fold induction compared with the levels (set to 1) detected in 
the Sca-1Low sample. (Sca-1Low vs. Sca-1Mid, p-value > 0.4, Sca-1Mid vs. Sca-1High, p-value 
> 0.5 by Student's t-test.)
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Supplementary Figure 5. Differentiation of EML cells into pro-erythrocytes and 
myelocytes. a, EML cells are positive for the stem-cell markers c-kit and Sca-1 without 
stimulation ('0d') as monitored by flow cytometry. Cells tracked over seven days (d) of 
Epo treatment showed loss of Sca-1 and c-kit expressions ('1d', '3d', '5d', and '7d'). b, 
Seven days of Epo stimulation ('7 Day Epo') results in positive benzidine staining (black 
arrow) as compared to the absence of staining in the un-stimulated cells ('Unstimulated'). 
Phase contrast images taken at 20x. c, EML cells stimulated with IL-3 and GM-CSF 
showed gain of expression for the myeloid-lineage specific markers Mac-1 and Gr-1 
within seven days. 
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Supplementary Figure 6. Sca-1 clonal heterogeneity governs differentiation 
potential among individual subclones. Mean baseline Sca-1 expressions (histograms on 
the right) for four representative subclones (CL6_17, CL6_10, CL6_14, CL6_5) and the 
parental clone (CL 6) were inversely proportional to the rate of commitment to pro-
erythrocytes upon stimulation with Epo (left). Subclones were generated by expansion of 
randomly-selected cells from the parental population. Burgundy diamonds, CL6_17; grey 
triangles, CL6_10; magenta squares, CL6_15; green circles, CL6_20; yellow triangles, 
CL6_14; black circles, CL6 and blue diamonds, CL6_5. Rank-order of differentiation 
kinetics for individual subclones is preserved across all four time points, p < 10-6 
(permutation test). 
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Supplementary Figure 7. Sca-1Low cells are not spontaneously differentiated pro-
erythrocytes. a, Sca-1Low cells (red) showed positive c-kit expression compared to 
differentiated pro-erythocytes (orange) and isotype control (light grey) as do the Sca-1Mid 
(green), Sca-1High (blue), and parental populations (black). b, Distribution of cells in the 
G0/G1 (light grey), S (white), and G2/M (dark grey) cell cycle phases among the Sca-
1Low fraction (solid bars) and a mock-sorted whole population control (dashed bars) are 
similar at 0, 42, and 192 hours (h) after FACS isolation. 
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Supplementary Figure 8. GATA1 mRNA expression among sorted Sca-1 fractions. 
Quantitative RT-PCR analysis of GATA1 mRNA levels in Sca-1 sorted fractions after 5 
or 14 days (d) of regular culture. Means ± standard error of triplicates shown.   
 
 

 
 

Supplementary Figure 9. Global gene expression analysis showed high duplicate 
accuracy. Hybridization duplicates for global gene expression analysis using Illumina 
microbead chips for the Sca-1Low, Sca-1Mid, and Sca-1High cell fractions showed nearly 
identical GEDI maps, while the transcriptome dissimilarities between the cell fractions 
was recapitulated. Pearson’s correlation coefficient were > 99.0% for all three pairs of 
duplicates. 
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Supplementary Figure 10. Live versus dead cells. Live EML cells showed negative 
propidium iodide (PI) staining and high forward scatter (FSC) whereas dead cells show 
positive PI-staining and low FSC. The accurate correlation between FSC and PI-staining 
was used to remove dead cells from all analysis of flow cytometry data by gating out 
cells with low FSC.  
 

 
 
Supplementary Figure 11. An additional example of clonal heterogeneity. 
Heterogeneity in expression of the hematopoietic progenitor cell surface protein CD 34 
(bottom) within clonal cells is comparable to that of Sca-1 (top), and much larger than the 
resolution limit of flow cytometry approximated by measurements of reference MESF 
beads (middle).  
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Supplementary Figure 12. Additional analysis: Restoration of heterogeneity from sorted 
“extreme Sca-1 expressors”. Clonal cells with the highest (Sca-1Extreme High in blue) and lowest 
(Sca-1Extreme Low in red) 2% Sca-1 expression (rather than 15% as in the main text) also re-
established the parental extent of clonal heterogeneity (grey) in separate cultures. However, the 
rate of restoration was very slow and the process incomplete even after 408 hrs. Interestingly, a 
spontaneously differentiating subpopulation is observed among the Sca-1Extreme Low fraction, which 
generated a new population of Sca-1neg cells. This gave rise to the familiar bimodal distribution 
indicative of fate commitment through a discontinuous, “all-or-none” switching process (see 
reference Chang et al in the main text). Notably, cells that did not spontaneously differentiate in 
the Sca-1Extreme Low fraction were capable of regenerating the parental distribution, but with a very 
slow rate. 
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S4. Supplementary Table  
 
  Low-0d Mid-0d High-0d Low-6d Mid-6d High-6d Epo-7d 

Low-0d 
 0.0266 ±  

0.006 
0.0548 ± 
0.011 

   0.0791 ± 0.0215

Mid-0d 
  0.0614 ± 

0.010 
   0.0844 ± 0.0267

High-0d       0.1578 ± 0.0323

Low-6d 
    0.0095 ± 

0.002 
0.0066 ± 0.0018  

Mid-6d      0.0116 ± 0.0023  
High-6d        
Epo-7d        
 
Supplementary Table 1. Quantified dissimilarity of global gene expression between 
samples. Pair-wise dissimilarity between the Sca-1Low (Low), Sca-1Mid (Mid), Sca-1High 
(High) samples at 0 and 6 days (d) and a terminally-differentiated control sample (Epo-
7d) were calculated based on the normalized gene expression levels for 2997 filtered 
genes with 1 – R where R is the Pearson’s correlation coefficient which ranges from 0 to 
1, with 0 being the most similar and 1 being the most different (Methods). Bootstrapping 
was performed by randomly selecting 30% of the genes in any sample to calculate the 
pair-wise dissimilarity metric and repeating the procedure 10,000 times to generate the 
standard deviations reported above.   
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S5. Theoretical Methods 
 

As motivated in the main text, the temporal evolution of the distribution of 
cellular Sca-1 abundance (log fluorescence intensity values) cannot be fitted to a model 
consisting of a single Gaussian. Single-Gaussian fits for the Sca-1 distributions at the 
stationary time points were poor (p<10-50, Kolmogorov-Smirnov test). This is also 
evident from the hump in the long left tail occurring at different time points, a signature 
of multimodality. These features suggest that the restoration of the parental distribution is 
not a simple noise-driven, mean-reverting, equilibrium-seeking process in a smooth 
potential, such as an Ornstein-Uhlenbeck process. Taken together, this led to the 
hypothesis that the multi-modal character stems from the fact that the cell population is 
discretely heterogeneous, consisting of two (or more) distinct but overlapping 
subpopulations. Such a behavior may result from complex regulatory processes that 
involve multi-stability.  

The purpose of the modeling and analysis presented below is to corroborate the 
notion of multiple subpopulations with respect to Sca-1 steady-state expression by testing 
whether the data can be better fitted to a multi-rather than single Gaussian distribution, 
without making assumptions concerning the unknown underlying molecular circuitries. 
The results show that a two-Gaussian model best fits the observed histogram evolution, 
and that the restoration of the parental distribution was predominantly driven by state 
transitions between the subpopulations.  
 
 
S5.A. Fitting of fluorescence histograms 

The experiments show that the stationary distribution of the log-fluorescence 
intensity value of the cell population presents multimodal features. Moreover, after 
sufficient time, the stationary distribution is reconstituted from all three sorted fractions: 
Sca-1High, Sca-1Mid, and Sca-1Low. Therefore, the stationary distribution can be used to 
determine basic parameter values for a model of the distributions.  

As a first approximation, the multimodal character of the data can be captured by 
a linear combination of n Gaussian distributions with different means and variances. The 
underlying assumption is that there are n subpopulations, where each subpopulation in 
isolation has a log-normal fluorescence distribution with different mean and variance. 
This leads to a Gaussian mixture model (GMM) with probability density function (PDF) 
given by  

 (
1

( ) , ,
n

i i
i

P x w x )iφ μ σ
=

= ∑  (1) 

where φ is the density of the ordinary Gaussian distribution with mean μi and standard 
deviation σi and wi is the weight of the ith component (subpopulation). The weights must 

satisfy the constraints and .  
1

1
n

i
i

w
=

=∑ 0iw ≥

 At long times, the histograms of the three sorted fractions converge and the 
parental population is reconstituted. To represent the observed multimodal stationary 
distribution we use a GMM, which is obtained by using the expectation-maximization 
(EM) algorithm7 to fit a total of 15 histograms corresponding to the last five time points 
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of each of the three time course experiments (Sca-1High, Sca-1Mid, and Sca-1Low).  
 

 
 
Supplementary Figure 13. Number of components in GMM: selection through the Akaike 
Information Criterion (2). The AIC was calculated from the likelihood of the fits provided by 
the EM-algorithm and is minimal for n = 2 in most cases (Sca-1Low 

at t = 216h and t = 432h; Sca-
1Mid 

at t = 216h, 264h and 432h; Sca-1High 
at t = 216h, 264h and 432h). The application of another 

model selection criterion8 also selects n = 2 in almost all cases. In some cases, AIC is higher for n 
=2 than n =1 because the fluctuations make the bimodality less apparent.  
 

The number of Gaussians, n, to be fitted to the data is a user-specified parameter 
in the EM algorithm. To compare GMM’s with different choices of n, we use Akaike’s 
information criterion (AIC)9,10 
 
 2 log 2 pAIC L n= − +  (2) 
 
where L is the maximum likelihood of the model, np is the number of independently 
adjusted parameters within the model. When comparing different models, the one which 
minimizes Equation (2) provides the best combination of descriptive power and 
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parsimony. Supplementary Fig. 13 confirms that the GMM with n = 2 is the best choice 
based on the AIC. A similar model-selection framework8, which integrates the EM 
algorithm with an information criterion based on the Fisher information matrix, also 
came out in favor of the n = 2 model.  
 The average parameter values found for the GMM with two Gaussians are given 
in Supplementary Fig. 14. These parameter values are used for the partitioning of the 
cells in the populations of the individual measurement points.  
 

 
 
Supplementary Figure 14. The GMM obtained from the stationary time points. The dash-
dotted black line shows the PDF for the GMM and the solid lines for the two components  (to 
the left in blue) and  (to the right in red). The parameters for the two virtual subpopulations 
were obtained from the last five time points and are given in the figure. The numerical error of 
the EM algorithm for the parameter values is 10-3 and thus too small to be shown. 

1G

2G

 
 

S5.B. Partitioning the fluorescence data based on the GMM 

In order to describe the dynamics by which the parental population is 
reconstituted from the individual sorted experiments (Fig. 2a in main text) the GMM 
binning algorithm was developed. The objective of the algorithm is to partition the cells 
of each measured population into the two overlapping Gaussian distributions 
(Supplementary Fig. 14) that constitute the stationary GMM obtained in Section S5.A. 
The GMM binning algorithm sorts the cells at time t according to their fluorescence 
value  by assigning a probability that each cell belongs to subpopulation 

( )N t
( )jc t

:i ji ( ( ),j i iG P c t ),φ μ σ= . Each cell is then assigned randomly to the Gaussian  based 

on the normalized probability

( )jc t

/ji i
P jiP∑ , as performed by the following pseudo-code: 
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Supplementary Figure 15. Results for the GMM binning algorithm for the data in Fig. 2a in 
the main text. From the top, partitions for t = 0, 9, 48, 96, 144, 216 h for the Sca-1Low (left), Sca-
1Mid (center), and Sca-1High (right) time course. For each panel, the sum of the red and blue 
histograms is equivalent to the data in Fig. 2a in the main text. The probabilistic nature of the 
binning algorithm means that the two inferred subpopulations overlap. For all panels, x-axis is the 
log fluorescence and the y-axis is cell number.  
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Algorithm 1 (GMM binning algorithm) 
 for each time t do 

for each cell  do ( )jc t
   ( ) ( )( ), , ,     1,...ji i j i iP t c t i nφ μ σ= =   

( )iG t ← Assign ( )/ji jii
P P∑  

end for 

( ) ( ) ( )/i iw t N t N t=  

( ) ( ) / ( )i jit c t Nμ = ∑ i

( ) ( ) ( )22 ( ) ( ) / ( ) 1i ji i it c t t N tσ μ= −∑
t

−

 
 

end for 
 
 

The function Assign uses a random to decide to which subpopulation  the 
sample cell should be assigned. The weights can then be calculated as 

, where is the number of cells assigned to subpopulation i. The 

mean, , and variance, , for each subpopulation 

iG
( )jc t

( ) /t N

)
( ) ( )i iw t N t=

(i tμ
( )iN t

( )2
i tσ ( )iG t  can also be calculated. 

Because of the large number of cells in each sample, the algorithm is extremely robust 
and repeated runs give nearly identical results for the parameters (data not shown). The 
resulting histograms for the time points in Fig. 2a in the main text are shown in 
Supplementary Fig. 15. Due to the probabilistic nature of the binning algorithm, the two 
inferred subpopulations overlap. 

 
S5.C. time evolution of the subpopulations 

The separation of the fluorescence data into two subpopulations for each time 
point makes it possible to track the evolution of the relative weights of the 
subpopulations, as shown in Supplementary Fig. 16. We have considered two models to 
describe the temporal evolution of the , which we describe below.  

iw

iw
(a) Lineage Model 
A simple model of two interacting and growing subpopulations with linear first 

order kinetics (Supplementary Fig. 17) leads to the following equations for the size ix  of 
subpopulation i:  
 

 1 1 1 1 2

2 2 1 1 2

2

2

x rx k x k x
x rx k x k x

= − +
= + −

 (3) 

 
where the dot denotes differentiation with respect to time,  is the transition rate from 1k 1x  
to 2x  and vice versa for . Since the cells are in a culture where there is a steady supply  2k
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Supplementary Figure 16. Time evolution of the weights for the two subpopulations as 
inferred by the GMM binning algorithm from the data. Symbols represent the weights  
for (circles) and  (triangles). The linear model is shown as a dotted line and the quadratic 
model as a solid line. The standard error for the weights obtained using Algorithm 1 is on the 
order of 10-3 and error bars are not shown. The dash-dotted black lines denote the stationary 
values of the weights (Supplementary Fig. 14). See also the caption of Fig. 2 in the main text for 
further discussion.  

( )iw t

1G 2G
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of nutrients, we assume that both subpopulations grow at the same rate . This 
assumption is supported by the data in Supplementary Fig. 3, which indicates that cells 
grow at the same rate regardless of their Sca-1 levels.  

r

 

 
 
Supplementary Figure 17. Linear model for two interacting and growing populations. The 
two subpopulations interact and cells transition from 1x  to 2x  at rate  and vice versa at rate .  1k 2k
 
 

The fluorescence intensity value is proportional to the relative fractions of the 
subpopulations. Therefore Equation (3) must be rewritten in terms of the relative 
populations. The evolution of the total population 1 2y x x= +  is giving by . y ry=
Let and . From Equation 1 1 /w x y= 2 2 /w x y= (3), the evolution of  can be written as iw
 

1 1
1 12

x y x yw k w
y 1 2 2k w−

= = − +  

 
whence we obtain 
 1 2 1 2( )w k k k w1= − +  (4) 
 
The solution for this equation is 

 ( ) 1 2( )2
1 1

1 2 1 2

(0)k k tkw t e w
k k k k

− + ⎛ ⎞
= + −⎜+ +⎝ ⎠

2k
⎟  (5) 

 
 The rates and  and the integration constant 1k 2k ( )1 0w  can be fitted to the data. 
The obtained fits are shown in Supplementary Table 2.  

Note that the linear model does not capture two important features of the data. 
First, the asymptotic behavior of ( )1w ∞  and ( )2w ∞  is clearly different from the 
stationary w values in Supplementary Fig. 14. Second, Supplementary Fig. 16 shows that 
the linear model fails to capture the sigmoidal character of the growth for the earlier time 
points ( t  96) in the cases of the Sca-1Mid 

and Sca-1High 
population fractions.  ≤
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 Sca-1Low Sca-1Mid Sca-1High 

1
1k h−⎡ ⎤⎣ ⎦  .0010 .0027 .0009 

1
2k h−⎡⎣ ⎤⎦  .0006 .0011 .0007 

1(0)w  .17 .0001 .0001 

1( )w ∞  .38 .30 .43 

2 ( )w ∞  .62 .70 .57 
 
Supplementary Table 2. Parameters for the linear model for  given by Equation 1w (5). The 
first three lines show the fitted parameters from the data. The last two lines show the asymptotic 
values calculated from the model.  
 
 

(b) Nonlinear model 

To better capture the asymptotic behavior and to explain the sigmoidal increase of 
the  for the Sca-1Mid 

and Sca-1High 
fractions, a simple non-linear model was 

introduced. The linear model in Equation 
( )w t

(3) predicts an exponential behavior of the 
weights, compatible with a probabilistic (first-order) transition of individual cells from 
subpopulations  to . The sigmoidal departure from this exponential time evolution 
suggests a deviation from first order kinetics. In the simplest case, this can be caused by 
interaction between the cells. Cell differentiation and other discrete phenotypic state 
switches are often controlled by autocrine mechanisms that establish an autocatalytic 
loop that influences the rate of the state transition11-13. If, for instance, cells in one of the 
two states secrete a factor that promotes the switch to that state, this would cause the 
switching rate to depend on the ratio of the two subpopulations, resulting in sigmoidal 
rather than exponential kinetics.  

2G 1G

 As illustrated in Supplementary Fig. 18, the simplest model that captures this non 
cell-autonomous process contains two additional nonlinear (quadratic) terms that 
represent second order interactions between the two subpopulations. These terms model 
the effect of switching between the subpopulations mediated by the diffusion of a soluble 
signaling molecule. Assuming rapid diffusion, a simplified mean field model can be 
obtained in which the switching rate is proportional to the number of cells in a given state 
(subpopulation) in the culture.  
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Supplementary Figure 18. Nonlinear model of two interacting and growing populations. As 
in Supplementary Fig. 17, the two subpopulations interact and cells transition from  to  at 
rate  and vice versa at rate . In addition, the transition rates are increased by the terms 
representing the diffusive signaling interactions 

1G 2G

1k 2k

3 2 3 2/k x y k w=  and , where 4 1 4/k x y k= 1w

1 2y x= + x  is the total population.  
 
 The equations governing the growth of the two subpopulations will then be: 
 

 
[ ]
[ ]

1 1 1 1 2 2 3 2 1 4 1

2 2 1 1 2 2 3 2 1 4 1

2

2

x rx k x k x k w x k w x

x rx k x k x k w x k w x

= − + − +

= + − + −
 (6) 

 
where  and are parameters determining the signal-induced switching rate. Rewriting 
in terms of the relative fraction  as before, the growth is determined by  

3k 4k

1w
 
  (7) 2

1 2 1 2 1( )w k k k k w kw= + − − − 1

3

 
where . This equation has the solution 4k k k= −
 

 1 2
1

1( ) tan
2 2 2 2

k kw t t c
k k

κ κ+ ⎛= − − −⎜
⎝ ⎠

0
⎞
⎟  (8) 

 
where 2

1 2 1 2(2 2 ) ( )k k k k k kκ = − − − + and [ ]( )0 1 2 1arctan 2 (0) /c k k k kw κ= + − + . The 
parameters obtained from fitting the data are shown in Supplementary Table 3.  
 Note that for the Sca-1Mid and Sca-1High experiments, . If we make 2k k1 2 0k = , 
Equation (7) becomes a standard logistic equation14 with solution 
 

 1
1

1 1

(0)( )
(0) ( (0)) at

aww t
kw k aw e−=

+ −
 (9) 

where .  1a k k= −
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 As shown in Supplementary Table 3 and Supplementary Fig. 16, the nonlinear 
model has the expected asymptotic behavior. Moreover, it captures the sigmoidal kinetics 
for the Sca-1Mid 

 
and Sca-1High 

 
datasets, with plateaus for both the early and late time 

points, with the correct asymptotic behavior.  
 
 

 Sca-1Low Sca-1Mid Sca-1High 

1
1k h−⎡ ⎤⎣ ⎦  .12 .09 .06 

1
2k h−⎡⎣ ⎤⎦  .012 81 10−×  .0002 

1k h−⎡ ⎤⎣ ⎦  .084 .11 .08 

1(0)w  .17 .005 62 10−×  

1( )w ∞  .20 .23 .21 

2 ( )w ∞  .80 .77 .79 
 
Supplementary Table 3. Parameters for the quadratic model (7) for . The first four rows 
show parameters fitted from the data. The last two rows show the asymptotic values calculated 
from the model with the fitted parameters.  

1w

 
 
 We compare the linear and quadratic models to assess if the improvement of the 
fit warrants the introduction of the additional parameter in the quadratic model using the 
following formula of the AIC15:  
 

 
2

log( )
1

p d
d

d p

n N
AIC N MSE

N n
= +

− −
 (10) 

 
where is the number of data points used in the fitting, is the number of independent 
parameters fitted, and MSE is the mean square error. Equation 

dN pn
(10) is a standard form of 

AIC which approximates the likelihood in terms of the MSE assuming that the errors are 
normally distributed with a constant variance and corrects for the bias introduced when 
the number of data points is not much greater than the number of parameters15.  
 For the Sca-1Mid 

and Sca-1High 
experiments, the AIC is smaller for the quadratic 

model, as shown in Supplementary Table 4. It is not surprising that there is no clear 
improvement of AIC for the Sca-1Low 

experiment with the current amount and quality of 
data, since the data show a quasi-exponential decay. However, note that the asymptotic 
behavior of the quadratic model is more consistent with the stationary values of the 
experiments.  
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 Sca-1Low Sca-1Mid Sca-1High 

Linear -70.2 -82.8 -88.5 

Non-linear -69.6 -86.0 -93.0 
 
Supplementary Table 4. AIC for the linear and quadratic models. AIC values for the linear 
(5) and quadratic (7) models obtained from Equation (10) using the MSE calculated for the fitted 
functions with respect to the data. The values of the AIC indicate that for the Sca-1Mid and Sca-
1High experiments, the improvement of the fit is large enough to warrant the introduction of the 
additional parameter in the quadratic model. Although the decay observed in the Sca-1Low 
experiment is quasi-exponential, and can thus be fitted well by both models, the asymptotic value 
of the quadratic model is more consistent with the stationary data (Supplementary Tables 2 and 
3). Note that comparing AIC values is only meaningful for related models and the absolute value 
of AIC does not carry any meaning. It is normal for AIC values to be either positive 
(Supplementary Fig. 13) or negative15, as in this table.  
 
 
 Clearly, other nonlinear terms governing the switching could be considered to 
explain the features. However, due to our limited knowledge of the detailed genetic 
circuitry involved in this process, more elaborate models would be highly speculative. 
Equation (6) has the virtue of modeling a typical cell interaction (autocrine regulation) 
and making minimal assumptions about the nature of the interactions, while its 
parameters carry a distinct biological interpretation.  
 

(c) Fast relaxation within subpopulations 
The application of the GMM binning algorithm to the data provides us with an 

empirical decomposition into two (virtual) subpopulations for all times. Thus, it is 
possible to obtain the time evolution of the mean, variance and higher moments of these 
empirical sub-histograms.  
 Supplementary Fig. 19 shows the time evolution of the means of the two 
Gaussians, iμ , while Supplementary Fig. 20 shows the time evolution of the skewness of 
the distributions. For all three experiments, the cells spread out and repopulate the full 
width of  over the first 24-48 hours after the sorting, as shown by the rapid 
disappearance of the skewness in Supplementary Fig. 20. The means of the Sca-1Mid 

and 
Sca-1High 

experiments exhibit decay towards the stationary value with a relaxation 
occurring on the order of around two days. This drift in mean fluorescence is due to the 
approach towards the stationary distribution from initial histograms that are not fully 
populated (Supplementary Fig. 15). The fluctuations in the means of the unsorted Sca-1 
controls (Supplementary Fig. 19d) reveal an overall decay pattern reflecting procedural 
noise. No such pattern is visible in the evolution of the skewness which indicates that the 
problem is due to an overall shift of the histogram between different time-points.  

2G

The salient feature of the fluorescence histograms is that the changes of the 
relative heights of the peaks (the relative sizes of the two subpopulations) are much more 
significant than the changes of the width and locations of the two peaks. This is also in 
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agreement with the variability in the parameters of our GMM fits. As shown in 
Supplementary Fig. 19, the process of relaxation within the subpopulations is much faster 
than the slow process of balancing the weights to reconstitute the original distribution. 
This is in agreement with a model in which the restoration of the parental population 
distribution involves a more complex process with at least one discrete state transition 
rather than a simple mean-reverting process.  
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Supplementary Figure 19. Time evolution of the means for the two subpopulations as 
inferred by the GMM binning algorithm. Symbols represent the means ( )i tμ  for (circle) 
and (triangle). The trend of the two populations is similar across all three experiments and it is 
due to the repopulation of the partly filled histograms. For the Sca-1Mid 

and Sca-1High 
experiments, 

there are few samples in  for the early time-points and consequently, there are larger 
fluctuations. Comparison with the unsorted Sca-1 controls reveals a similar pattern of fluctuations 
which implies that they are due to procedural errors. The dash-dotted black lines denote the 
stationary values of the means (Supplementary Fig. 14).  

1G

2G

1G
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Supplementary Figure 20. Time evolution of the skewness for the two subpopulations as 
inferred by the GMM binning algorithm. Symbols represent the skewness for (circle) and 

(triangle). The skewness, (i.e., the normalized third central moment of the distribution) 
measures the asymmetry of the distribution. A value of zero indicates perfect symmetry. After 
FACS sorting, the starting subpopulations are non-Gaussian but they rapidly become symmetric. 
The process of balancing the relative weights to reconstitute the parental population occurs at a 
much slower timescale, as shown in Supplementary Fig. 16. For the Sca-1Mid 

and Sca-1High 

experiments, there are few samples in  for the early time-points and consequently, there are 
larger fluctuations.  

1G

2G

1G
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