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Ribosomal protein L1 is encoded by two genes in Xenopus
laevis. The comparison of two cDNA sequences shows that
the two L1 gene copies (L1a and L1b) have diverged in many
silent sites and very few substitution sites; moreover a small
duplication occurred at the very end of the coding region of
the L1b gene which thus codes for a product five amino acids
longer than that coded by L1a. Quantitatively the divergence
between the two L1 genes confirms that a whole genome
duplication took place in Xenopus laevis ~ 30 million years
ago. A genomic fragment containing one of the two L1 gene
copies (L1a), with its nine introns and flanking regions, has
been completely sequenced. The 5’ end of this gene has been
mapped within a 20-pyridimine stretch as already found for
other vertebrate ribosomal protein genes. Four of the nine
introns have a 60-nucleotide sequence with 80% homology;
within this region some boxes, one of which is 16 nucleotides
long, are 100% homologous among the four introns. This
feature of Lla gene introns is interesting since we have
previously shown that the activity of this gene is regulated
at a post-transcriptional level and it involves the block of the
normal splicing of some intron sequences.
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Introduction

Eukaryotic ribosome biosynthesis is a complex process which
involves the co-regulated expression of many genes coding for
its structural components, the rRNA and the ribosmal proteins
(r-proteins). In recent years several r-protein mRNAs and genes
from various eukaryotic systems have been cloned in order to
elucidate the molecular mechanisms involved in their coordinate
expression (for a review, see Fried and Warner, 1984).

We have previously reported the construction, isolation and
characterization of cDNA clones specific for six different r-
proteins of Xenopus laevis (Pierandrei-Amaldi and Beccari, 1980;
Bozzoni et al., 1981; Amaldi et al., 1982) and we have used
them to study the expression of r-protein genes in Xenopus oocyte
and embryo development (Pierandrei-Amaldi ez al., 1982, 1985).
One of these cDNA clones, pXom102, contains the 3’ portion
of the mRNA for r-protein L1. We have shown that the cor-
responding gene is present in two copies per haploid genome in
X. laeyis (Bozzoni et al., 1981). One of the two L1 gene copies
was isolated from a X. laevis genomic library and its structure
analyzed at the level of restriction map and exon-intron organiza-
tion (Bozzoni et al., 1982): it is ~6 kb long and consists of 10
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exons, of sizes ranging from ~ 60 to 200 bp, and nine introns.
To study the mechanisms involved in its regulation, the cloned
L1 gene has been microinjected into Xenopus oocytes. These ex-
periments have shown that a specific block of processing of the
L1 transcript, resulting in the retention of two of the nine in-
trons, is responsible for its regulation (Bozzoni et al., 1984). Here
we report the nucleotide sequence of the entire L1 gene, including
the nine introns which have been searched for structural features
which might be responsible for the described regulation at the
processing level. We also report and compare the sequences of
two newly isolated cDNA clones which represent the transcrip-
tion products of the two L1 gene copies.

Results and Discussion

Isolation, analysis and comparison of cDNA clones for Lla and
LIb r-proteins

Since the amino acid sequence of r-protein L1 is unknown, the
identification of exon and intron positions along the gene requires
the comparison with the nucleotide sequence of a full-length
cDNA for the same r-protein. On the other hand the cDNA clone
specific for X. laevis L1 protein which we previously isolated
(Bozzoni et al., 1981) and sequenced (Amaldi et al., 1982) cor-
responds to only about one third of the mRNA at its 5’ end. For
this reason we have now screened, using our cDNA clone as
probe, another cDNA library constructed in Agt10 with poly(A)*
RNA from Xenopus oocytes by D.Melton and kindly made
available to us. Several clones have been isolated which fall into
two classes, by restriction map analysis, as we might have ex-
pected on the basis of the presence of two L1 gene copies in the
X. laevis genome. Two clones, one for each class, have been
sequenced.

The strategies used to sequence these two cDNA inserts are
shown in Figure 1a and a’, and the sequences are presented and
compared in Figure 2. One of the two cDNAs (L1a) falls short
of a full length mRNA as it almost reaches the 5’ end of the gene
(see below), while the other (L1b) lacks ~ 50 nucleotides belong-
ing to the first exon. The comparison of the two cDNA sequences
reveals that the two L1 gene copies have somewhat diverged since
the gene duplication occurred. Most of the nucleotide substitu-
tions are observed at silent sites, thus leaving the protein primary
structure unchanged. The few cases where replacement muta-
tions have occurred led to conservative changes which result in
the substitution of an amino acid with another of similar proper-
ties. This divergence between the two L1 gene copies is quan-
titatively very similar to that found between the two copies of
the vitellogenin A gene and between the two copies of the
vitellogenin B gene in this same species (Germond et al., 1984),
and agrees with the notion that a whole genome duplication took
place in Xenopus ~ 30 million years ago (Bisbee et al., 1977).
It is interesting to notice that the 3'-untranslated regions, ~ 60
nucleotide long, are almost identical in the two cDNAs, sug-
gesting that this part of the RNAs, although not coding, has some
important function.

The two cDNAs differ also in the total length of the coding
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Fig. 1. Sequencing strategies for L1a cDNA (a), L1b cDNA (a’), and for the X. laevis genomic fragment containing the Lla gene (b); for this, the exon-
intron organization is also shown. Only the restriction sites used for sequencing are indicated in the maps. Abbreviations: E, EcoRI; H, Hinfl; D, Ddel; Bg,
Bglll; Av, Avall; A, Alul; Hd, Hindlll; S, Sall; B, BspRI. Arrows indicate the direction and extent of sequence analysis. Arrows starting at positions not
corresponding to any restriction site indicate sequencing of subcloned fragments obtained by Bal31 digestion.

region. In fact the L1b mRNA (cDNA) has a 15-nucleotide in-
sertion, with respect to L1a, at the very end of the coding region
before the TAA stop codon. A closer look at this 15-nucleotide
sequence suggests that it might have originated by duplication
of the 15-nucleotide sequence just preceding it (also present in
Lla mRNA), followed by some divergence. On the other hand
when we analyze r-proteins by two-dimensional gel electro-
phoresis, although the L1 protein appears generally as a single
spot (Pierandrei-Amaldi and Beccari, 1980), sometimes a slight
separation of more than one component can be seen. The resolu-
tion of the L1 spot into three components can be obtained by
changing the acrylamide-bisacrylamide ratio of the second dimen-
sion SDS gel. Figure 3 shows the resolution of the three L1 com-
ponents by one-dimensional SDS gel electrophoresis of r-proteins
from the large subunit. The first two of these three components
are indistinguishable by peptide mapping after digestion with
Staphylococcus aureus V8 protease, and represent the products
coded by the two L1 gene copies (as indicated by hybrid-selected
translation experiments; not shown). The small difference in mol.
wt. between the two L1 proteins is probably due to the short
duplication, described above, at the end of the coding region of
L1b cDNA. Both genes appear to be active (L1a more than L1b)
in the X. laevis oocytes, as shown by the isolation of L1a and
L1b sequences from the cDNA bank and by the observation of
the two resolved L1 spots in the electrophoretic patterns of r-
proteins prepared from oocytes. The third component now resolv-
ed from the original L1 spot has a completely different peptide
map and probably represents another r-protein (Lx in Figure 3).

In Figure 2 we have indicated as initiation codon the first ATG
followed by the long open reading frame. The next ATG on the
same reading frame is five codons downstream. If the first ATG
is the functional initiation signal the protein product coded by
the L1a gene contains 396 amino acids, has a mol. wt. of 44 920
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daltons and, as expected, is basic in character: arginine, lysine
and histidine together represent 25% of the residues while <6%
are glutamic and aspartic acids. We do not consider L1b here
as it is incomplete at the amino terminus.

Nucleotide sequence of the Lla gene

Figure 1b shows the structural map of the portion of the X. laevis
genomic fragment inserted in AXlIrpl4 (Bozzoni et al., 1982),
which contains one of the two gene copies coding for r-protein
L1 (gene L1a). Figure 1b diagrams the strategy and the restric-
tion enzyme sites used to obtain the L1a gene sequence which
is presented in Figure 4, including several hundred nucleotides
of the flanking regions. The comparison of this sequence with
those of the two cDNAs described above allowed the precise iden-
tification of the position of exons and introns in this genomic
fragment. The same comparison allowed the identification of the
position of the cleavage/polyadenylation site at the 3’ end of the
gene; it has been found to be located 15 nucleotides downstream
of the polyadenylation signal (AAUAAA) in both cDNAs, while
in our previous L1 cDNA clone (corresponding to a L1b) it was
located at 13 nucleotides from the AAUAAA. Similar 3’ micro-
heterogeneity has been described for other gene transcription pro-
ducts in particular for mouse r-protein L30 (Wiedemann and
Perry, 1984).

The 5’ end of the gene has been positioned with a few
nucleotides of uncertainty by a primer extension experiment
(Figure 5). In a previous paper (Bozzoni et al., 1982) we localized
it several hundred nucleotides downstream of the site now iden-
tified. We know now that this 5’ end localization, which was
obtained by S1 mapping, refers to an unrelated RNA originating
from transcription of the other strand (unpublished data). The
now identified 5’ end of the L1a gene is located nine (plus or
minus two) nucleotides upstream from the 5’ terminus of the clon-
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Fig. 2. Comparison of the nucleotide sequence of Lla and L1b ¢DNA and of the deduced amino acid sequences. Nucleotide and amino acid substitutions are
boxed. Closed triangles indicate the positions of introns in the Lla gene. The open triangles indicate the 5’ ends of the cloned Lla and L1b cDNAs; the few
nucleotides which complete the Lla sequence upstream have been deduced from the Lla gene sequence (Figure 4) and the primer extension experiment

(Figure 5).

ed Lla cDNA; it falls within a 20 pyrimidine residue tract and
is preceded upstream (—25) by a reasonable TATA-like se-
quence. The presence of a pyrimidine-rich 5 end has been
described in two mouse r-protein genes (Wiedemann and Perry,
1984; Dudov and Perry, 1984), not in the r-protein 49 gene of

Drosophila (O’Connell and Rosbash, 1984) and only in some
of the several yeast r-protein genes analyzed (for references see
Teem et al., 1984). On the other hand it has been noted that this
type of 5’ end is common to several ‘housekeeping’ eukaryotic
genes (Dudov and Perry, 1984).
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Fig. 4. Nucleotide sequence of the X. laevis Lla gene and its surrounding regions.
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1201
1261
1321
1381

;6L

GTCAATACGL
ATCACCTLOA
GOGCLLOALT
TATTATTIAL
CLAGATOAGL
TTATTARAGG
ABTGALATAL
THACTTOOAT
ATLCALTOOL
AGGCCTGACA
ARGTTOOTAR
ACATATTART
TLOARRAGAT
TLTGATATAC
SIS
GROTLBALTE
GARTATLATA
GOCTCTLATA
CACCTITATT
GOOGCARRCA
CARATGCAAT
CATTAAGLTG
GTTTATARAG
TIGTOTTART

CTATATGGOA GCCAAGLTOA
CH6C66CTTT AGTICCLGTO
CTACTATGGA GACAACGTOC
GLICTTCTAT ACTGOAGLCA
CACTTROETA ACCATGTGTT
OGARCTCCOD CCARARACTA
TATTGARAGA AGGTTTAATT
CAGTLITATA ARATHGOACA
CTSAGTTGLL TCTAGGHCTT
TCCCTOTTTA TTGTTALTAG
CATTTRTCLCG TAAIGLTTOA
ATGACTOAGT CACTAI
ATTTCCARGA BAGATC
ATGTAGARA,
HOALN: © ARAGLIALLY
ATATACARLT CTTCTGLIGA
CAAGAATTAG TTTCOTATGA
TTCTARCTAT AACCAGCTTG
TTCTCACCAR ATACTTLITT
COTTTTTINT 775097117
GRTGGTGTAA TTTGLLTCTT
GTGCCGAGGL CTGACGATAA
COOGTCTAAC CTHAGGLTTG

LLTCCALCCC A '4’([%(5[

AT
S

ARTALARTTL

1501 | TCOTCCGCTA ATATCGGTGT ACTCLGAGAA
1561 |GCCTGLAGTA TTCAGGGCAL CCATTCOGEC
1621 |TCGCAAGAAT AACCGLCAAC CCTACGLAGT

GOOGGAATCA
TOHATATTGTC
GAGCAAACTT

TCTGGCARAR ATGTCACCAT
AACTTTGTCL ACACAAACCT
GLIGHTATET AGTGTTSCTT

1681 TGATCCACAT GTATTITICT TGGCTGGATT
1741 CCALTTCATG GTCCOIGTIT CTOARCLTAG

ABATTCARTG
TGATATTAAT

TCTARTCOAT ATGATGALTT
GGAAGTTCTG ATTTCAGACA

1801 TTTGGAATAT ATTTAAATTT CITCLGTTLTT

ACTALLTUTO

TTTCAGATTA GTGTAACACA

186, TTTTTATUTT TCAGRTCACT AAACAAGTGL
TEOTATTCCC £6T6T606T0 LAGHALLAAL

TOAATCLTGO
FCACCHITLT

GOARCTOGTC GAGLCGTTOT
GETLALGGT0 CCTTCLOAAA

Suml | UBTATLCTTT TGOOATTTAG ATTTLTGCTT
TCOTACTOTA CATCATGIOA CAGTIGECTO
AATATLOLGT TOTGAGLAAR ARATALT GG
TTATEARAAR TTTCTETTCG GOTAAGAGAT

TTTTTACTTG
CIGTEATIAT
ATARGTTTAG
CTTCTAGATA

CTATOATOTC GTRATTIGCS
LLTOLTOTED ATGALTOALG
AATATATTAR TAGARAAGTC
TITICCTTAR TATTICATCT

T6T6TC6 T6OTGOACHT ATGTTTGLLE
SAGTCAATAC AACACAGAAG (GLTATGLAD

CAACTAAGAL
TCT60TC6EA

LIG6CLHC0T CAGCLLTIC

CTHOAGALHT 'GGEMCGTAI

TOCTCTTATT ATGTCTAAAG [GTARATCCTT
TAGTTGETTT ATGATGAGLT CCACTTLTAT

TIGTTGEATE
GTLCOTETT

TAGTARATAT TALTGGLATS
TOIGATSCAT CATGATLICT

GTGOAAGTTC TGATCAGCAT GATGOAATGG

TATCTTAAAR TARRGGTATG CACTTIGOTT

GCATTATACS
TCAGDLTCACT

GITCCCLTTS TTGTTGARGA TAARGTAGAG
CTGTTAARGA AGLTGAAAGC CTGGAATGAC

AGCTATAALE
ATARAGARGD

2700 TACTTCTTGT ACTAAGTCAT
276l TTCCAATATA TCTTGTATAT
2871 CTIGATARAT THOATCOTCD
ZRBL TATTTATAAA TAAGLTTTCC TCARAATART
J46l ALTITTITIT STITTITTINT AAGGTTTTTA
3001 TARGCTTGAD ACTTACCTOA TTACTGTTOA

TAGLARATTA
TI1CCeTeTy
TETATTTAAT

TGTTTGTAL
ARAGLOTTHT

CTARAAAL A

ALRRCTTOCA

[T

CARTTATIIC

TCARRTCTSG GTTUAGATAL
GTATTOAGOR GATLLLLGRAGL
ARCARRLGA AGCTGTICTE
SCAGARTTL TCLLCUATAT
HTLLTARTL RATATTCTAL
ACTAOARLA TTALCLTLCA
TAGLAATTA [
ATTTTAL A

A
T

;

AGARRIATCL CAGRTARGTA A& AT
TEGTACATG" TGAGRACTGA GLICCATTH
TCATATARCE ABCATHTTHG TCATATARTT
TCARCACTAT TTCAAGTATG L TRTTCTCA
TTARRSGEGR THCGRTLALT TALATTETAT
TICTACATAR TALTOLTTOT ABGADTAGAR
CATGGHCCOL AGCTTATTGG BLLTTATATL
AGGTTTCARR ARCCCTTIOA GAGTGATCAL
ATATTAATTA TTG6ATCAGL ACTATTIGEC
3901 TTTITTGITC TTTT75GT61 SUATGTTCNT

LOGAGLTOOLCA

TR166TCAT THACTOLLAT
ACCT TTTTRTATGA CATTGATTTT
Tak TTTRGGAGGL AGELARTGT
STHATARGTL T5TGTTACAG CCTCTECTST
LITACTTACA CTTAGTTTAG CLIGTAATTT
GATCCTCTOT TTARTATTAR GGTGLLTATT
TOOATLTCAD BABGTLTGLL HAL 660

AATCTE

LTA

CALRAST TRGLTATART COTATIRATA
CLAGDATGAL TTHACAACAT TAGGCAGAGT
GACTCTATGT CLCARTGTTA CTTOLTAGRC

ATCACCOTCD TCARTHTAAG CAALTTHAAL
u42: L GOACOGTTCT GTATCTOOAL ALARAGINLL
TOOCOCAAAT CAGLLAAGLT DARGGLAGHT

CTTTTARGGE "AGCTCTTS60 TGETCATGTT
TTLCOLAAGT TAGATHATCT CTALGLTALA
TACRAGTARG TATATCTTGG ATTTTITTTT

TITTTTTCAG ARTT T aTel
GGGTTHOATC AGTGTOCTAR AATALATTAL
ATTTCCACTT CTATOLTLCG THTTTLTGAA

ALTOTAGAAG TTAGATTTTT TTITOOGO0G
176 TT ATACATOATG
TCATOATA TTTGIGOAAG TTCTGATTTA

4321 COTGOAGGLT GATGLUTALA TTASGLTG
ACTTICCACE GAGTARAGAT TTRAGLATS
CAGGOOTHCA ALGAGLAGLT GLACTALT
GCATOTAGTT TAGGTTTHAL THLAGTLHAL
GTOAAGCALT AGATLTCTCG ACACTCAATT

OO TTAACAGTET TCTATAAATA
GIRTAGLITC CGACTCCATG TTAGTGTATG
TEIO66OGT [AGLAATATA GATTATACTT
ATTHCTGTGA GGATTCATTT TGGCACTTAR
TTAACAGTTT GTATTAACCA TCAGGCCTTG

4621 AACATTCTGT TTTCCAGLCT TCCAATGCAC
4681 [CTGARAAGCC AGGAGATCCA GAGGOLICTG

AAGATGACAR ACACAGATCT GACCAGAATC
AGGOLTLLAR AGTAAGTAAT TGGAGTATTT

CATTIGACTE AARGGARAAL CATATTIALT
AARAACTCAG AACTCLTCCT ATATOTARAG
TTGOATAATC CTATTTTAAG CATGTCTGE

GATGAAAGGL AAARAGCACA CATACATGLT
TCTCTTAATC ACTTACTGTT GLAACCTGLA
TTCCACTTCA TTGOTCCOTG TTTLTGARAL

GLAGGTCTOT TTARAAAAAR CAARAAAALL
CABTGTITTA TRAAAGTAAG TAGAATGTCA
CTCTOOCTCA ARTOAGGEAC TGTGCTTACA
AGGTTACACC AGUAAATGAA TGOACAGLTG
TTATTTAGTT ATGTAGGTGT TAATGATOAG
CTTATGATCT AAGTGGAAGT TCTGACTOAT

GCATAGCLTG ACCCCTARAG CTAGGGTGAT 5T

GCAAGTGT GTLARACCTA TTTATITAGA

GLTAATGTTA CLTTSCARCA ARRAGGTGAR
GAATCTAAGA ATCATHATHA GHUTGAALLL

SAGARGLGAG CTCAAGAAGA ACCCTCTOAA
ATETGLARAG ACTOUAAGAT GICATGLTAT

COTGOAGCAD CTTGAGRATIG TAAGTACCAL
GCTCTGEGEA < TROATTGGT TAGTAGLLTA
ATGAUATTCA CTATTSOARG T607T

CAGTTEOGTG ACATLATTL T4 AR
CARCTTCAG

TTITELTITN CALTTLCAA
[7TB0A ART
SROOTAL THATHAR

REGGOOGHTOA ATLALARGAD

GTTHTTEOG!
HLARATATAL
ATOOTTAGAC TACTRCLUTG CALATOTTLT
AGATTATTTA LT56AGGLTH TLARLAGLLT

CTCACCCAGE TTTABAATTG ATLLAGLALA

AARGEARATC TATCTUTTLL TAATACAAGG
SLATATAGAA ACTTTAGTTG GAATGLARAG
TRGTRCT GLATTEIGET
GOTAGAT LOARGLCARE
LALGARGAR AACTLATALT

ATT
s Th o TAGLL ARRARAALTE
TLTATTRLTA AATHTTGACK ALRATTAATE

kit

LATCTCAAAL “TTCATTOAL AQRTTRAAGL

TARAGLANAG ARGLLALTTL ATLOAAARAL

RUGSCARGTC AGGGAASCAL [TAAGHLAGT

AIGTTLAGLA LT T65RTTT

ALTLAATARR

TRBAGRRRAG ARGLLAGATL ATGLTAAGLL
TASKATOATE Ch ARGLARAGAR
GHARACARRS TARTLLEAGA GLLTTATCTC

TTLTGT TAR TRCTITETGT GTTTCTATTT

RAGET66C

TTTTTTARAT GTTTACTAAT CTTARALLAL
THOGALLTTS THTHAAAMATA SLLTATLLLA
SCATTOTGAR TTROTUTGTE SCTTTARTTT
ATRT AAGELTTRT TATATARAAN

GTTTT

BIAAL

Nucleotides are numbered

TEICTCTCTC CRATARTTAL THATTTICTA
TTTIGTLATG GTATAATTLD THAATLTLLA
NES GIT GTAGTARRAC ATCTTLTT
TAGACATTAS ACCCALARTH

TITTOLLLTAT & et

in the direction 5’ to 3'. starting with number 1

at the position of the 5’ end of the corresponding transcript as determined (plus or minus two nucleotides) by the primer extension experiment (Figure 5). The
10 exons (boxes) have been identified by comparison with the Lla cDNA sequence (Figure 2). The homologous sequences present in introns 2, 4, 7 and 8
are underlined. Lower-case letters indicate uncertainty in nucleotide identification.
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Structure of L1 r-protein gene of Xenopus laevis
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Fig. 5. Determination of the 5' end by primer extension. A PstI-Clal fragment (139 bp) including part of the second exon and part of the second intron was
isolated (P), end-labelled and used to prime cDNA synthesis from oocyte poly(A)* RNA as shown in the schematic diagram. The product (EP) was

electrophoresed on acrylamide gel together with size markers (A and B).

intron 1
1436 bp
intron 2
210 bp
intron 3
241 bp
intron 4
194 bp
intron 5
564 bp
intron €
589 bp
intron 7
522 bp

. .CATG:GTGAGCCCAA. ...
.. .GCTG:GTATGTAGTG. .. .
+ . ARAC: GTATCCTTTT, ...
o AAAG: GTAAATCCTT. ...
.+ GAAG: GTGCAGAATT. ...
.. .CCAG:GTAAGTAAAT. ...
. ACAA: GTAAGTATAT. ..,
. CAAA: GTAAGTAATT. ...
.. .GAAT:GTAAGTACCA. ...

... TCCACCCCAG:6CCT. ..
. JATTTTTCAG:GTCA. ..
. TTTCATGTAG:ATGT. .,
... TTGCTTTCAG:GTCA. ..
... TGTTGTGCAG:GTTT. ..
o TACTTGCTAG: GCAT. ..
. TGTTTTCCAG:CCTT. ..
.. TACCTTGCAG: CAAA. ..
.. TCATTGACAG:ATTA. ..

intron 8
457 bp
intron 9
663 bp

CCCCCC.Cpe <6
e TTTTTTRTAG: BT

consensus

o EAGHGTRRGT. .

Fig. 6. Exon/intron and intron/exon junctions in the Lla gene are compared
with the consensus sequence (Breathnach and Chambon, 1981).

Structural features of the introns of Lla gene

Figure 6 compares the exon-intron-exon junctions of the nine
introns of the L1a gene. All the sequences obey the GT/AG rule
and in general are in good agreement with the larger consensus
observed by Breathnach and Chambon (1981).

We have previously shown that the expression of the L1 gene
is regulated at a post-transcriptional level both in vivo during
embryogenesis (Pierandrei-Amaldi ez al., 1985) and in oocytes
injected with the cloned L1a gene (Bozzoni er al., 1984). In par-
ticular we have been able to identify, in the oocyte system, a
specific regulation of L1 r-protein synthesis. The observed regula-
tion involves a splicing block which leads to the accumulation
of a precursor RNA still containing the second and the third in-
trons (Bozzoni et al., 1984). With these notions in mind we have
now performed a computer analysis of the sequence of the L1la

1728 GATATGATGAGTTCCACTTGA-TGGTCCGTGTTTCTGAACC - TAGITGA
2208 TTTATGATGAGOTCCACTTQTATGGTCCGTGTTTCTGATGCATCATGA
2252 TAGATGATGATTTCCACTTQTATGGTCCGTGTTTCTGARAC-TCATGA
5030 TTAATGATGAGTTCCACTTCATTGGTCCGTGTTTCTGAAACCTTATGA

TTAATGGAAGTTCTGATTT
TCTGTGGAAGTTCTGATCA
TTTGGGAAGTTCTGATTT
TAAGTGGAAGTTCTGACTG

INTRON 2 1794
INTRON 4

INTRON 7

2476

4319

INTRON 8 5098

Fig. 7. Comparison of the homologous sequences present in four introns of
the X. laevis L1la gene. The positions of the first and last nucleotides of the
four sequences are given according to the nucleotide numbering of Figure 4.

gene, with particular attention paid to the introns. Although no
peculiar structure common to the second and third introns has
been found, the search for repeats in the gene has revealed a
striking feature in four of the nine introns: as shown in Figure
7 a sequence of 60 nucleotides is present with 80% homology
in introns 2, 4, 7 and 8 (no other significant repeated sequence
has been found in this genomic fragment with the exception of
several T-runs present mainly in the introns). A closer analysis
of these sequences shows that within these 60 nucleotides there
are five boxes, ranging in size from 4 to 16 bases, which are
100% homologous. No case has been described so far of such
high sequence homology in different introns interrupting the same
gene, besides sequences necessary for splicing at border junc-
tions and branching sites. Sequence homology has been describ-
ed only in that particular class of introns which autosplice or code
for a maturase (for references, see Waring and Davies, 1984).
These considerations suggest that the homologous sequence pre-
sent in the four introns of L1a gene might be involved in some
specific regulatory or structural function. Experiments are now
in progress to test whether these sequences are important for the
regulation of the L1 RNA maturation or whether other specific
functions must be attributed to them; this possibility is suggested
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by the fact that the homologous sequence occurs in four introns
only one of which is involved in processing regulation.

Materials and methods

Screening of the cDNA bank and subcloning

A full-length cDNA bank (constructed in Agtl0 with poly(A)* RNA from
X. laevis oocytes, by D.Melton) was screened using the clone pXom102 (Boz-
zoni et al., 1981) as a probe specific for r-protein L1 sequences. The isolated
clones were analyzed by Southern blot hybridization and those which appeared
to contain inserts of the expected length were subcloned in pSP6. The genomic
fragment clones in Xlrp14 (Bozzoni et al., 1982), containing the entire L 1a gene,
was digested with several restriction enzymes. The fragments obtained (some
of them were also treated with Bal31 exonuclease) were subcloned in pBR322.
Both the lambda clones and the plasmid subclones were used for sequence analysis.

DNA sequence analysis

DNA sequencing was carried out according to Maxam and Gilbert (1980) with
the addition of a T-specific reaction (Rubin and Schmid, 1980). Fragments were
end-labelled with T4 polynucleotide kinase and strand separated or restricted with
a second enzyme yielding a single labelled end. The chemical reaction products
were electrophoresed on urea-polyacrylamide (30:1) gels 40 X 20 x 0.03 cm
(a20% and two or three 6%), yielding an average of 200 — 300 nucleotides of
sequence per labelled end.

Primer extension

The restriction fragment PstI-Clal (139 bp) including parts of the second exon
and of the second intron (Figure 5) was end-labelled with T4 polynucleotide kinase
and the strands separated on acrylamide gel. This primer was annealed to 5 ug
poly(A)* RNA in 80% formamide, 0.4 M NaCl and 40 mM MOPS (pH 6.5)
at 44°C for 5 h. The mixture was ethanol precipitated and then resuspended in
20 pl of 50 mM Tris (pH 8.3), 5 mM MgCl,, 40 mM KCI, 2 mM DTT, 1 mM
of each ANTP, 20 units of RNasin and 13 units of AMV reverse transcriptase.
After incubation for 2 h at 42°C the RNA was hydrolyzed with alkali. After phenol
extraction the extended products were recovered by ethanol precipitation and elec-
trophoresed in urea-acrylamide sequencing gel together with size markers.
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