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SUP. MATERIALS AND METHODS 

Estimating ages by Gibbs sampling 

We consider a random variable ! = (!!,… ,!!)  with ages of ! 

individuals. Furthermore, we introduce an ordering ! of these ! individuals 

from youngest to oldest, which can always be re-labeled such as ! =
(1,… ,!). In a Bayesian framework, age estimation can thus be formalized as 

computing the posterior distribution 

! ! ! =  ! ! ! !(!)
!(!|!)!(!)!!!∈!

 

where !(!) is an arbitrary prior distribution on the ages of the individuals 

satisfying ! ! = !(!!)!
!!! , and the likelihood function ! ! !  is defined as 

! ! = (1,… ,!) ! = !!,… , !! = 1 !" !! < !!  ∀ ! < !
0 !"#! . 

In order to avoid explicit computation of the normalizing constant, we 

opted to approximate the posterior distribution by statistical sampling 

techniques. A naïve approach to sample from the posterior is to randomly 

draw an age for each of the ! individuals independently, and then test if the 

resulting sample satisfies the ranking constraint. If not, the value is discarded. 

However, the more the individuals’ prior age distributions overlap, the more 

samples generated by this approach would have to be discarded. To solve 
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this more efficiently, we implement a Gibbs sampling approach, which 

samples from the posterior distribution directly without having to discard any 

age-vector. The key to achieve this lies in considering only univariate 
conditional distributions, i.e. the age distribution of one individual when all 

other individuals are assigned a fixed value from their respective range (3, p. 

16), i.e. !! !!   !!,… !!!!, !!!!,… , !!). How an initial set of values ! satisfying 

the age ranking can be found is described below (point 1). Iterating over all 

individuals in this manner generates a sample !, and it can be shown that the 

sequence of samples ! thereby generated converges to the desired target 

posterior distribution (3, p. 17) . 

In our case, a Gibbs sampler can be constructed in the following 

manner. First, we observe an ordering ! of all individuals and label them 

accordingly, i.e. individual labeled 1 is younger than individual 2 etc., the 

oldest being individual !. Next, iterative rounds of sampling are performed. 

Denote the !!! sample of ages ! by !(!) = (!!(!),… , !!(!)). Assume for example 

that !!(!)~!"#$(!,!), i.e. the a priori age of any individual is distributed 

uniformly within an interval bounded by values !  and ! . We note that 

alternative distributions for !!(!) – such as a normally distributed a priori age 

– are easily accommodated in a way analogous to the one described below. 

Setting !! ≔ −∞ and !!!! ≔ ∞ for the sake of simplicity, our Gibbs sampler 

proceeds as follows: 

1) Initialize the first sample ! = 0: 

!!! =  max(!! , !!!!(!) ), for ! ∈ {1,… ,!} 

2) Iterate ! times to generate ! + 1 samples, i.e. ! ∈ {1,… ,!}: 

!!(!)~ !"#$(max !! , !!!!! ,min !! ,… ,!!, !!!!(!!!) ), for ! ∈ {1,… ,!} 

This procedure generates as many samples as desired. As always with 

empirical distributions, the general trade-off is that more samples occupy 

more memory space and require longer computation time, but reduce the 

stochastic sampling error and therefore better approximate the underlying 

distribution. 
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Figure 5 in the main text illustrates the type of input required and output 

generated by our method for five fictitious individuals. 

 

Implementation details 

We have implemented the Gibbs sampling algorithm in Python 2.7 (5). 

In order to find sensible parameter values for the total number of iterations, 

burn-in and thinning, we analysed 50,000 sampling iterations for the toy 

example with five individuals presented in Figure 5B of the main text. 

Panel A of Supplementary Figure S3 shows perfect mixing, with low 

autocorrelation (see Panel D) also confirmed by a high effective sample size 

of 33521.62, meaning that for the estimation of the posterior mean 50,000 

samples correspond to 33,522 independent samples. This suggests that no 

thinning is required. Panel B and C illustrate how the sample mean changes 

in the course of the sampling process. Based on visual inspection, we chose a 

burn-in of 50 iterations, largely exceeding Raftery-Lewis (9) method’s 

recommendation of two to four. Panel B already suggests that convergence is 

achieved relatively quickly, as means remain stable after 10,000 iterations. 

Gelman and Rubin’s shrink factor (8), a formal test for convergence 

presented in Panels E and F and computed on 4 independent runs of the 

Gibbs sampler with the first 10,000 iterations discarded, shows a shrink factor 

of 1 after 10,000 additional iterations. Therefore, we set our default to 20,050 

iterations in total, resulting in 20,000 ages sampled per individual with no 

thinning and 50 iterations discarded a burn-in. 

 All diagnostic statistics were computes and plotted in R version 3.1.3 

(6) using functions from the ‘coda’ and ‘mcmcplots’ libraries. 

 

Palanan Agta: data collection method 

In order to construct relative age rankings, we took and printed 

photographs of all individuals in every camp. Individuals were then assigned 

to approximate age cohorts (0-4, 4-8, 8-12, 13-19, 20-45, and 45+). Those not 

easily assigned to one cohort were included in the two nearest cohorts (e.g., 
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an individual aged ~45 would be included in both the 20-45 and 45+ cohorts). 

Either individually or in small groups, we presented these photographs to 

individuals from a target cohort, one at a time. The target cohort was the 

cohort the individual (‘ego’) was included in, as well as all cohorts younger 

than ego. Cohorts, especially for children, were often presented together, so 

that some rankings included, for instance, all individuals aged 0 to 12. 

Children under the age of five were often unable to make the age rankings 

themselves, and in this instance either their mothers or older siblings would 

conduct the ranking. Individuals from a specific camp were shown pictures of 

others from their camp and neighbouring camps. More distant camps were 

not included due to a lack of familiarity, unless ego knew individuals from 

more distant camps particularly well (e.g. they grew up in the same camp and 

moved apart upon marriage). For cohorts including ego, ego’s picture was 

displayed first. Participants were first asked if they knew the individual on the 

photograph (i.e. the target), and if so they were then asked if they knew the 

target well enough to give their approximate date of birth relative to other 

individuals. Each photograph was put into one of three categories; ‘don’t 

know’, ‘know but not the age’, and ‘age known’. If ego knew both the target 

and their age, they were asked to rank the age of the target relative to others. 

Although similar to the method by Hill and Hurtado (2), rather than having two 

piles of simply older and younger (with ego as reference), our method 

produced a relative age list from youngest to oldest. This process was 

repeated multiple times with different subjects producing a total of 266 partial 

ranks, including 587 individuals. 

The second stage involved deriving age estimates for these 587 

individuals. One invaluable source of information, especially for older 

individuals, was the Headlands’ database from Casiguran (4), since some 

individuals from our study population were included in this database, with 

relatively accurate dates of birth assigned. Absolute ages of individuals were 

ascertained via various other methods, including; asking individuals if they 

knew their own or their children’s age (which could be from various sources, 

such as, birth certificates, other documentation, school grades, own 

estimates, etc.), births near dated events (such as martial law in 1970 or 
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various known typhoons), and age-mates of individuals with known birthdays. 

For children up to the age of 12 years, it was also possible to estimate age 

brackets by dental development.  

There are, however, some issues with methods used to estimate 

absolute ages, especially estimates given by individual Agta, the dental aging 

and school grade. For example, many individuals gave various conflicting 

dates and/or ages, including; saying a child was four years old, yet born in 

2004 (during the 2013 fieldwork season), or giving a birth date for one child as 

2004 (~eight years old) yet saying a younger child was nine years old, and 

age conflicts between parents (for example, one child was given an age of 

seven months by one parent and two years by the other). For both teeth ages 

and school grades, the margins of error were often quite large (+/- half a 

year), which was especially problematic regarding school ages, as the grade 

reached was often variable for individuals of a similar age, and most children 

in the community either do not go to school, or start school at older ages than 

their agricultural neighbours. Therefore, strict criteria were used to select 

accurate ages/birth dates. First, if an individual was given two markedly 

different birth dates, that person was excluded from the absolute age list. 

Second, if ages for an entire sibling-set were provided, but at least one age 

was wrong (e.g., did not correspond to teeth ages, or did not allow at least 

nine months pre- or post-birth of the nearest sibling), then ages for the whole 

sibling-set were excluded. Furthermore, for all children, the birth date had to 

fall within the range of teeth ages to be accepted, and a similar protocol of 

matching with teeth ages was established for estimating the ages of 

individuals from school grade. For ages estimated based on comparisons to 

individuals with known birth dates, these individuals with estimated ages were 

given a year of birth with a +/- one year margin to account for error. Using 

these methods, 98 individuals (out of 587; 16.7%) were given an exact 

birthday, while many others were given age estimates within +/- one year 

(Supplementary Table S3).  

For individuals which we could not attach a secure date or estimate, 

three of the field researchers (DS, AEP, & MD), as well as the principle 

investigator (ABM) estimated the ages based on cues such as dental 
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development, school grade, birth order (if older or younger siblings have a 

known age), age of ego’s children (if known), number of children, and visual 

inspection. Independently, each of the four researchers estimated an upper 

and lower age bound for each individual. In collating these estimates, the 

youngest lower bound and oldest upper bound of the four estimates were 

used in order to include as much uncertainty as possible. There was 

increased uncertainty for older individuals, as the average difference between 

upper and lower estimates increases with age (Supplementary Table S3). 

 

 SUP. RESULTS 

Validation and benchmarking 

Table 1 and Figure 1 in the main text show that the Gibbs sampler 

provides more accurate age estimates than the regression approach. 

However, the performances may be influenced by the specific cross-validation 

parameters chosen, i.e. k=5 partitions of n=13 individuals each for which ages 

are assumed to be known exactly. Therefore, we tested other parameter 

values from k=2 partitions, resulting in n=32 individuals, to k=13, with n=5 

individuals per partition. We considered each partition in turn to estimate the 

regression equation and then deduced the ages of the remaining individuals. 

This procedure enabled us to assess how the number of individuals with 

known ages affects each method’s accuracy.  

Supplementary Figure S1 shows that the accuracy for the fifth-degree 

polynomial approach massively drops when more than five partitions are 

chosen (i.e. k>5). This is expected, as fewer known ages are available for the 

regression, resulting in a less constraint curve leading to overfitting. Note that 

although the LOESS approach also shows reduced accuracy in smaller 

partitions, the magnitude of the error is much smaller. 
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A flexible method for fieldwork data: dealing with multiple partial 
ranks 

 We relax the assumption of a single complete ordering !  of all ! 

individuals from youngest to oldest, and rather allow for multiple partial ranks. 

The approach we describe in the following is heuristic. Describing the problem 

of multiple partial ranks in a formal manner and finding optimal solutions is an 

important and interesting problem for future research. 

 Let ! = {!!,… ,!!}  be a set of partial rankings of individuals. As 

described in the main text, we first merge partial ranks that are compatible, 

resulting in a modified set of partial ranks {!′!,… ,!′!} , ! ≤ !, where each !′! 
represents a subset of mutually compatible partial ranks from the initial full 

set, i.e. !′! ⊆ !. Merging is not always possible without ambiguity, as various 

different ways in which rankings could be merged may exist, e.g. if !! is 

compatible with !! and !!, but !! and !! are not compatible with each other. 

In this case, we leave the corresponding ranks separate ({!′!,… ,!′!}  is 

therefore a partition of the set !). It should be noted that alternative heuristics 

can easily be envisaged at this stage, for example a greedy strategy. The next 

step is to compute the posterior ! ! !′!  separately for all merged partial 

ranks !′! , ! ∈ 1,… , ! ,  by Gibbs sampling. Finally, we merge the resulting 

distributions per individual by forming a weighted finite mixture: 

! !! = !|! = !!(!′!)
!!(!)

!

!!!
! !! = ! !′!  

where !!()  denotes the number of times individual !  occurs in the 

corresponding set of rankings. The nominator term !!(!′) therefore preserves 

the information how many times an individual has been ranked consistently in 

a certain way in the initial set of unmerged partial rankings !. 
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SUP. FIGURES 

 

Supplementary Figure S1. Differences in estimation accuracy under 

varying cross-validation parameters. Boxplots of the mean of the differences 

between known ages and those estimated using regression analyses; top: 

third-order (3rd degree) polynomial, middle: fifth-order (5th degree) 

polynomial, bottom: local regression (LOESS; 7). The x-axis shows the 

number of partitions used (‘k’) and the number of individuals (‘n’) in these 

corresponding partitions; ‘k2,n32’ for example means 2 partitions of 32 

individuals whose ages are known and used to estimate the regression 

coefficients. The y-axis shows the mean of the differences between known 

and estimated ages per individuals over the k partitions. Note that the scale of 

the y-axis of these three panels is not the same. 
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Supplementary Figure S2. Error calibration of posterior distributions. 

For the cross-validation experiment corresponding to Figure 1, we show that 

the highest posterior densities (HPD) contain the true age as often as the size 

of the interval suggests, and the posterior therefore correctly quantifies 

estimation uncertainty. For example, the 95% HPD covers the true age in 

95% of the individuals. Panel A shows the results for each of the 5 cross-

validation partitions (black points), their average (grey points) and standard 

deviation (black bars). Panel B shows the same analysis for the case where 

no age has been fixed, i.e. all priors were proper intervals. 
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Supplementary Figure S3. Gibbs sampler diagnostic statistics. 50,000 

sampling iterations were performed for the toy example with five individuals 

presented in Figure 5B of the main text. In Panels A to D, all sampling 

iterations are included, i.e. no burn-in is discarded. Panel A shows the trace 

and resulting density estimates (less smoothed versions of densities shown in 

Figure 5B) for the first 2000 iterations. Panel B and C show the running mean 

age for all 50,000 respectively for the first 500 samples. Panel D visualises 

the autocorrelation between consecutive samples. Panel E and F show 

Gelman and Rubin’s shrink factor (8) on all respectively the first 2000 

samples after discarding the first 10,000 in 4 independent runs of the Gibbs 

sampler.  
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Supplementary Figure S4. Estimation robustness to error in known 

ages. We repeated the validation from Figures 1 and 2, however, added 

different amounts of error to the individuals’ ages, where errors are 

constrained not to change the ranking order. Panel A summarizes how this 

affects the different methods: linear regression shows that estimation 

accuracy measured as the median of the differences between estimated and 

actual ages of the individuals across the 5 cross-validation partitions is 

reduced most for the polynomial regression approach, slightly for LOESS and 

not at all for our Bayesian method. Panel B gives the corresponding 

distributions in form of boxplots.	
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Supplementary Figure S5. Estimation robustness to error in ranking 

order. We repeated validation from Figures 1 and 2, however, introduced 

different amounts of error in the ranking order (all errors we introduce are 

consistent with the age brackets). As changing the ranking order would 

require to adjust the age of the individuals to reflect the altered ranking order, 

we focus on the performance of our Bayesian method when no ages are 

considered known. This prevents that the effects of errors in ranking order 

and age (see Supplementary Figure S4) are conflated. Panel A summarizes 

the results showing the medians of the differences between estimated and 

actual ages of the individuals, Panel B gives the corresponding distributions in 

form of boxplots. 
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Supplementary Figure S6. Raw values behind Figure 1. We show the 

same distributions as in Figure 1 in the main text, however, without showing 

absolute differences and with a y-axis in natural scale. 
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SUP. TABLES 

	

Supplementary Table S1. Numerical values corresponding to absolute 
differences between actual and estimated ages shown in Figure 1 of the main 
text. The minimum, 25th percentile, median, mean, 75th percentile and 
maximum given in the last row (total) directly correspond to the boxplots 
plotted in Figure 1. The remaining rows provide more detail as the results are 
split by age cohort. Bold red values indicate worst, bold black best 
performance. See legend of Figure 1 and explanation of the benchmarking 
procedure in the main text for further information. Note that photographs in the 
Headland database (13) were taken in different years (between 1972 and 
2010), and all ages and age estimates were therefore adjusted to the present 
day (2015). Hence, the youngest age is 15 explaining why the 10-20 cohort is 
the first row. 
Abbreviations: minimum (min.), maximum (max.), percentile (per.), standard 
deviation (sd.), mid-point (MP) 
	

Age 
Cohort 

Sample 
Size 

Statis- 
tic 

5th-order 
polynomial 

5th-order 
polynomial, 

with MP 
LOESS Gibbs 

(mean) 

Gibbs 
(mean), no 

known 
ages 

  min. 0.06 1.17 0.03 0.00 0.04 
  25th per. 0.71 6.71 0.12 0.08 0.15 

10-20 10 median 1.64 7.92 0.18 0.18 0.24 
  mean (sd.) 4.71 (6.30) 7.96 (3.20) 0.25 (0.20) 0.25 (0.27) 0.28 (0.23) 
  75th per. 3.91 8.88 0.29 0.31 0.32 
  max. 18.46 14.55 0.84 1.12 0.85 
  min. 0.01 0.02 0.01 0.00 0.00 
  25th per. 0.23 1.70 0.20 0.11 0.12 

20-45 40 median 0.67 4.32 0.57 0.25 0.26 
  mean (sd.) 1.13 (1.19) 4.25 (2.73) 0.94 (1.11) 0.45 (0.58) 0.47 (0.56) 
  75th per. 1.65 6.23 1.19 0.49 0.53 
  max. 5.41 10.37 5.59 3.38 2.59 
  min. 0.08 0.07 0.14 0.01 0.21 
  25th per. 1.64 1.81 1.25 0.57 0.88 

45+ 15 median 3.42 2.89 2.71 1.03 3.46 
  mean (sd.) 5.38 (6.01) 8.02 (11.03) 4.09 (4.05) 2.57 (2.68) 3.45 (3.15) 
  75th per. 5.94 11.83 5.28 4.06 4.81 
  max. 28.32 34.70 16.82 10.02 10.15 
  min. 0.01 0.02 0.01 0.00 0.00 
  25th per. 0.38 2.05 0.21 0.12 0.18 

Total 65 median 1.16 4.39 0.64 0.29 0.33 
  mean (sd.) 2.66 (4.35) 5.69 (6.09) 1.47 (2.36) 0.91 (1.64) 1.13 (2.01) 
  75th per. 2.90 7.36 1.57 0.80 0.90 
  max. 28.32 34.70 16.82 10.02 10.15 
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Supplementary Table S2. Kolmogorov-Smirnov p-values and Bayes factors 
for all pairwise comparisons of error distributions shown in Figure 1. BFs 
greater than three are considered positive evidence, above 150 as strong 
evidence. Abbreviations: mid-point (MP), Bayes factor (BF) 

	

	 5th-order 
polynomial	

5th-order 
polynomial, with 

MP	
LOESS	 Gibbs (mean)	

5th-order 
polynomial, 

with MP	

p=1.554312e-15; 

BF=4.128145e+20 

   

LOESS	
p=0.0004320986; 

BF=	29.39566 

p=1.776357e-15; 

BF=	7.426503e+38 

  

Gibbs (mean)	
p=3.108624e-15; 

BF=2.81064e+12 

p=1.554312e-15; 

BF=2.04265e+63 

p=4.486276e-06; 

BF=1377.745 

 

Gibbs 
(mean), no 

known ages	

p=9.447281e-06; 

BF=419.9913 

p=7.771561e-16; 

BF=6.354463e+27 

p=0.02777288; 

BF=1.054143 

p=0.6081314; 

BF=0.2328565 
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Supplementary Table S3. Average difference between upper and lower 
bound of the age bracket and number of accurately known ages for different 
age cohorts of the Palanan Agta. For the purposes of this table, the mean 
value of the upper and lower bound was considered an individual’s age and 
used for grouping into cohorts. Number of exact birth dates and birth dates 
accurate within +/- 1 year are also displayed. 
 

Age 
Cohort 

Sample 
Size 

Average 
Difference 

Number of 
Exact 

Birthdates 

Percentage 
of Exact 

Birthdates 

Number of 
Birthdates 
+/- 1 year 

Percentage 
of Birthdates 

+/- 1 year 
<1 20 0.16 15 75% 20 100% 
1-5 103 1.73 30 29.13% 67 65.05% 

5-10 103 3 19 18.45% 33 32.04% 
10-20 116 4.1 13 11.21% 33 28.45% 
20-45 164 9.47 18 10.98% 26 15.85% 
45+ 81 18.56 3 3.7% 12 14.81% 

Total 587 6.85 98 16.7% 191 32.54% 
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