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Fig. S1.  The steroidogenic regulatory network (SRN). The synthesis of glucocorticoids in 

adrenocortical cells is governed at multiple levels by both genomic and non-genomic 

components. In addition to the high degree of cross-talk between these components, an 

intra-adrenal feedback loop mediated by A-CORT/GR may underlie adrenal responsiveness 

and maintain appropriate levels of glucocorticoids. 

 

 

 

 

 



 

 

 

 

 

 
 

Fig. S2. Virtual (in silico) computer simulations of ACTH endogenous oscillations and 
perturbations. (a) The model was driven by oscillating levels of ACTH that represented 

endogenous fluctuations. (b) A simple function representing a “virtual” pulse of ACTH. (c) 
The pulse was of a size comparable to the maximum endogenous levels in normal 

physiological conditions. (d) The “virtual” pulse was given near the nadir of the circadian 

ACTH rhythm, at approximately the same time corresponding to the in vivo experiments 

(between 8 and 9 AM). 

 

 

 

 

 

 

 

 

 



 

 
 

Fig. S3. A short pulse of ACTH dynamically activates the SRN and CORT 
biosynthesis. (a) Representative Western immunoblotting of the effect of a pulse of ACTH 

on intra-adrenal phospho-GR (quantification is shown in Fig. 2c in the main text). (b) A pulse 

of ACTH dynamically affects plasma CORT (P-CORT). (c) Representative Western 

immunoblotting and quantification of the dynamic effect of a pulse of ACTH on 

phosphorylation of HSL (pHSL-(Ser660) and pHSL-(Ser563)). (d) Representative Western 

immunoblotting and quantification of the dynamic effect of a pulse of ACTH on 

phosphorylation of CREB in Ser133. (e) A pulse of ACTH dynamically affects plasma CORT 

steroidogenic genes hnRNA and mRNA. (f) Representative Western immunoblotting and 

quantification of the dynamic effect of a pulse of ACTH on steroidogenic protein expression 

(quantification of StARp37, SF-1 and DAX-1 proteins is shown in Fig. 2 in the main text). For 

Western immunoblotting data, optical density was normalised to Vinculin; for RTqPCR, data 

were normalised to GAPDH mRNA levels; Western immunoblotting and RTqPCR data are 

expressed as fold induction of time 0 (n=4-7/time point). Details of asymptotic significances 

are reported in Table S2.  

 

 



 

 

 

 

 

 

 
 

Fig. S4. Modelling ACTH dose-dependent effects on DAX-1 mRNA stability. While an 

increasing function g+ is supported by previous experiments performed at high doses of 

ACTH, only a decreasing function g- fits our in vivo experiments at low doses of ACTH. We 

hypothesise a non-monotonous –decreasing, then increasing– response mechanism that 

successfully reproduces our data at both low and high doses of ACTH. 

 

 

 

 

 

 

 

 

 

 



 

 
 

Fig. S5. Dynamic synthesis of adrenal glucocorticoids and activity of the SRN 
following a high dose of ACTH. (a) Representative Western immunoblotting of the effect of 

a high dose of ACTH on intra-adrenal phospho-GR (quantification is shown in Fig. 3c in the 

main text). (b) A high dose of ACTH dynamically affects plasma CORT (P-CORT). (c) 
Representative Western immunoblotting and quantification of the dynamic effect of a high 

dose of ACTH on phosphorylation of HSL (pHSL-(Ser660) and pHSL-(Ser563)). (d) 
Representative Western immunoblotting and quantification of the dynamic effect of a high 

dose of ACTH on phosphorylation of CREB in Ser133.  (e) A high dose of ACTH dynamically 

affects plasma CORT steroidogenic genes hnRNA and mRNA. (f) Representative Western 

immunoblotting and quantification of the dynamic effect of a high dose of ACTH on 

steroidogenic protein expression (quantification of StARp37, SF-1 and DAX-1 proteins is 

shown in Fig. 3 in the main text). For Western immunoblotting data, optical density was 

normalised to Vinculin; for RTqPCR, data were normalised to GAPDH mRNA levels; 

Western immunoblotting and RTqPCR data are expressed as fold induction of time 0 

(n=4/time point). Details of asymptotic significances are reported in Table S2.  

 

 



 

 
 

Fig. S6. Dynamic synthesis of adrenal glucocorticoids and activity of the SRN 
following administration of LPS. (a) Representative Western immunoblotting of the effect 

of LPS on intra-adrenal phospho-GR (quantification is shown in Fig. 4c in the main text). (b) 
Administration of LPS dynamically affects plasma CORT (P-CORT). (c) Representative 

Western immunoblotting and quantification of the dynamic effect of LPS on phosphorylation 

of HSL (pHSL-(Ser660) and pHSL-(Ser563)). (d) Representative Western immunoblotting 

and quantification of the dynamic effect of LPS on phosphorylation of CREB in Ser133. (e) 
Administration of LPS dynamically affects plasma CORT steroidogenic genes hnRNA and 

mRNA. (f) Representative Western immunoblotting and quantification of the dynamic effect 

of LPS on steroidogenic protein expression (quantification of StARp37, SF-1 and DAX-1 

proteins is shown in Fig. 4 in the main text). For Western immunoblotting data, optical 

density was normalised to Vinculin; for RTqPCR, data were normalised to GAPDH mRNA 

levels; Western immunoblotting and RTqPCR data are expressed as fold induction of time 0 

(n=4-12/time point). Details of asymptotic significances are reported in Table S2.  

 

 

 



 

 

 

 

 
 

Fig. S7. Effect of LPS vs direct administration of a high dose of ACTH on intra-adrenal 
cytokines gene expression. The effect of LPS and high s.c. ACTH was evaluated by 

measuring the hnRNA and mRNA dynamics by RTqPCR (n=4-5/time point). Data are 

expressed as fold induction of time 0. LPS administration dynamically increased (a) IL-1b 

hnRNA (P<0.0001) and mRNA (P<0.0001), (b) IL-6 hnRNA (P<0.0001) and mRNA 

(P<0.0001), and (c) TNF-a hnRNA (P=0.006) and mRNA (P<0.0001). In contrast, 

administration of a high dose of ACTH significant decreased (d) IL-1b hnRNA (P=0.005) and 

mRNA (P=0.003), whereas only a small but significant increase was observed in (e) IL-6 

hnRNA (P=0.03) but not on mRNA (P=0.171), and a trend toward significant increase and a 

significant decrease was observed in (f) TNF-a hnRNA (P=0.067) and mRNA (P=0.02), 

respectively. 

 

 

 

 

 



 

 

 

 
 

Fig. S8. Cross-talk between the SRN and the immune pathway. During the inflammatory 

response elicited by LPS, the synthesis of glucocorticoids in adrenocortical cells is 

modulated by the immune pathway through cytokines. The SRN, in turn, also feeds back 

upon these cytokines, thus exhibiting cross-talk between both regulatory networks. 

 

 

 

 

 

 

 

 



 

 

 

 
 

Fig. S9. ACTH and cytokine “virtual” pulse input functions used in the computer 
simulations and their associated sensitivities. (a) Small pulse (low dose) of ACTH, (b) 
large pulse of ACTH integrated by four cumulative doses, (c) large pulse of ACTH elicited by 

LPS, (d-f) cytokine pulses elicited by LPS. 

 

 

 

 

 

 



Supplementary Tables 
 

 

 

 

 

 

Supplementary Table 1. Primer Sequences. 
 

 Target Forward Primer Reverse Primer 
   
CYP11A1 hnRNA TGTGTGTGTGACCCCAGGAGAC CCCAGGTCCTGCTTGAGAGGCT 
CYP11A1 mRNA TGCGAGGGTCCTAACCCGGA ACCTTCCAGCAGGGGCACGA 
DAX-1 hnRNA TCCAGGCCATCAAGAGTTTC AAGCTCACCCACTTGACCAC 
DAX-1 mRNA TCCAGGCCATCAAGAGTTTC GTGCTCAGTGAGGATCTGC 
GAPDH mRNA CCATCACTGCCACCCAGAAGA GACACATTGGGGGTAGGAACA 
HSL hnRNA AGGTAGGAGCTGTACCCCTG CTGCAAAGACGTTGGACAGC 
HSL mRNA TATCCGCTCTCCGGTTGA CGAGCACTGGAGGAGTGTTT 
IL-1b hnRNA AGTTGTCCGTGTGTATGGGATG GCCAGGCAGAAAGGTTTTTGTT 
IL-1b mRNA ACCTATGTCTTGCCCGTGGA AGGTCGTCATCATCCCACGA 
IL-6 hnRNA CCCAGAGCACTCCACAAGG TCTTGGTCCTTAGCCACTCCT 
IL-6 mRNA AGCCACTGCCTTCCCTACTT GCCATTGCACAACTCTTTTCTCA 
MC2R hnRNA GAAGTCCGTGAGGTTGSACA TTGTGCGGAAGGATCCAGTTT 
MC2R mRNA GCTTTTGATCCCTGCTTTGAGTG CATCTGTTAAAGAAGGAAAGGCTGG 
MRAP hnRNA ACCTCATTCCTGTGGACGAG ACCCGCCATATTATCACTGC 
MRAP mRNA CCTCCCGGTGTGTGGCCTCT GGGGACTATGCCTTACCTGTGGGG 
NR4A1 hnRNA CTTGTGGGGTCCCTGCCTGC ACGTGGAGAAGGGGCGGTCT 
NR4A1 mRNA GCGGAACCGCTGCCAGTTCT GCATCTGGGGGCTGCTTGGG 
SF-1 hnRNA AGAGGGTGATGGGCTGCT ACCTCCACCAGGCACAATAG 
SF-1 mRNA CGCCAGGAGTTTGTCTGTCT ACCTCCACCAGGCACAATAG 
StAR hnRNA GCAGCAGCAACTGCAGCACTAC GTGCCCCCGGAGACTCACCT 
StAR mRNA CTGGCAGGCATGGCCACACA GGCAGCCACCCCTTGAGGTC 
TNF-a hnRNA CCGTGACTGTAATCGCCCTAC CTTTAGGAGGCTGCAGAGAGAC 
TNF-a mRNA AAATGGGCTCCCTCTATCAGTTC TCTGCTTGGTGGTTTGCTACGAC 

 

  

 

 

 

 

 

 

 



 

Supplementary Table 2. Statistical information (P values). Related to Figs. 2–4, 6, and to 

Figs. S3,5,6. 

 

Component 
P value 

Fig. 2 and Fig. S3 Fig. 3 and Fig. S5 Figs. 4, 6 and Fig. S6 

    

ACTH <0.0001 0.002 <0.0001 

A-CORT <0.0001 <0.0001 <0.0001 

P-CORT <0.0001 <0.0001 <0.0001 

pHSL-(Ser660) <0.0001 0.001 <0.0001 

pHSL-(Ser563) <0.0001 0.003 <0.0001 

pCREB 0.001 0.028 <0.0001 

StAR hnRNA <0.0001 0.001 <0.0001 

StAR mRNA 0.067 <0.0001 <0.0001 

CYP11A1 hnRNA <0.0001 0.002 0.007 

CYP11A1 mRNA 0.013 0.051 <0.0001 

MRAP hnRNA <0.0001 <0.0001 <0.0001 

MRAP mRNA <0.0001 <0.0001 <0.0001 

MC2R hnRNA 0.016 0.051 0.002 

MC2R mRNA <0.0001 0.002 <0.0001 

HSL hnRNA 0.517 0.16 0.006 

HSL mRNA 0.221 0.021 <0.0001 

Nur77 hnRNA <0.0001 <0.0001 <0.0001 

Nur77 mRNA <0.0001 <0.0001 <0.0001 

SF-1 hnRNA 0.008 0.003 0.005 

SF-1 mRNA 0.361 0.002 0.091 

DAX-1 hnRNA 0.001 0.001 0.001 

DAX-1 mRNA 0.154 0.002 <0.0001 

StARp37 0.755 0.441 <0.0001 

StARp32 0.967 0.457 <0.0001 

StARp30 0.354 0.007 0.433 

CYP11A1 0.482 0.814 0.971 

HSL 0.777 0.993 0.146 

SF-1 0.385 0.492 0.76 

DAX-1 0.728 0.301 0.003 

pGR 0.032 0.003 0.528 

 

 

 



Supplementary Materials and Methods 
 
 
Animals 
All experiments were conducted on adult male Sprague–Dawley rats (Harlan Laboratories, 

Inc., Blackthorn, UK) weighting 220-250g at the time of arrival. Animals were given a 1-week 

acclimatization period prior to the start of the experiments, they were maintained under a 

14 h light, 10 h dark schedule (lights on at 0500 h), and housed four per cage with ad libitum 

access to food and water. All animal procedures were approved by the University of Bristol 

Ethical Review Group and were conducted in accordance with Home Office guidelines and 

the United Kingdom Animals (Scientific Procedures) Act, 1986. 
 
Surgery  
Rats were anaesthetised using isoflurane and an indwelling catheter was inserted in the 

right jugular vein as previously described (Spiga et al., 2007). In brief, the right jugular vein 

was exposed, and a silastic-tipped (Merck, Whitehouse, NJ) polythene cannula (Portex, 

Hythe, UK) was inserted into the vessel to allow substance infusion. Cannula was prefilled 

with pyrogen-free heparinized (10 IU/ml) isotonic saline; the free end was exteriorized 

through a scalp incision and then tunnelled through a protective spring that was anchored to 

the parietal bones using two stainless steel screws and self-curing dental acrylic. For the 

high dose ACTH experiment, in addition to the intravenous cannula, during the same 

surgery a subcutaneous cannula was implanted under the skin between the shoulder 

blades. After recovery, animals were housed in individual cages in a soundproof room. The 

end of the protective spring was attached to a mechanical swivel that rotated through 360° in 

a horizontal plane and 180° through a vertical plane, allowing the rats to maximize freedom 

of movement. The cannula was flushed daily with heparinized saline to maintain patency. 

 

Experiments and tissue collection 
All experiments started at 9 AM and were performed 5–7 days after the surgery. ACTH pulse 

experiment. To investigate the dynamic adrenal response to an ACTH pulse rats were given 

an intravenous injection of synthetic ACTH (10 ng per 0.1 ml, i.v.; Synachten, Alliance 

Pharma, Cheltenam, United Kingdom). High dose ACTH experiment. To investigate the 

effect of a high dose of ACTH, that is able to produce similar plasma ACTH levels as 

observed after LPSs treatment, rats were given four injections of ACTH (2 μg/kg, sc; 

Synachten Depot, AlliancePharma, Cheltenam, United Kingdom) at 35-minute intervals, as 

previously described in (Gibbison et al., 2015). LPS experiment. To investigate the dynamic 



adrenal response to an inflammatory stress rats were given an intravenous injection of LPS 

(Escherichia coli, clone 055:B5; 25 μg/rat in 0.1 mL of sterile saline; Sigma, Dorset, United 

Kingdom). 

 

At the end of each experiment, rats were overdosed with 0.2 mL of sodium pentobarbitone 

(Euthatal, 200 mg/mL; Merial, Harlow, United Kingdom) at specific time points shown in the 

figures. Trunk blood was collected in ice-cold tubes containing EDTA (0.5 M; pH 7.4) and 

Trasylol (Aprotinin, 500,000 KIU/mL, Roche Diagnostics). Plasma was separated by 

centrifugation and then stored at –80°C until processed for ACTH and corticosterone 

measurement. 

 

Adrenal glands were collected and the inner zones (comprising the zona fasciculata and the 

zona reticularis of the cortex and the adrenal medulla) were separated from the outer zone 

(containing the zona glomerulosa and the capsula). Individual inner zones were immediately 

frozen until processing for isolation of RNA for real-time quantitative polymerase chain 

reaction (RTqPCR; left adrenal), and for protein extraction for Western immunoblotting and 

corticosterone measurement (right adrenal) as previously described (Park et al., 2013; Spiga 

et al., 2011b).  

 

RNA isolation and RT-qPCR 
Total RNA was extracted from the inner zone of individual adrenals using TRIzol reagent 

(Invitrogen, Hopkinton, MA, USA), followed by purification using RNeasy mini kit reagents, 

and column DNase digestion (Qiagen, Valencia, CA, USA) to remove genomic DNA 

contamination. Complementary DNA was reverse transcribed from 1 μg of total RNA using 

Cloned AMV First-Strand cDNA synthesis kit (Invitrogen). Primers were designed to 

specifically detect primary transcript (hnRNA) or mRNA (Table S1). Fast SYBRGreen Master 

(Applied Biosystems, Foster City, CA, USA) was used for the amplification mixture with each 

primer at a final concentration of 200 nm and 2 μl of cDNA for a total reaction volume of 

25 μl. PCR reactions were performed on a spectrofluorometric thermal cycler. The 

expression of each target gene was normalized to glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) mRNA as determined in a separate real-time PCR 

reaction. The absence of RNA detection when the reverse transcription step was omitted 

indicated the lack of genomic DNA contamination in the RNA samples. 

 

Western immunoblotting  

Whole cell lysate from the inner zone of individual adrenals were prepared using RIPA buffer 

(Sigma) supplemented with 0.2 mM Na orthovanadate, 2 mM NaF, and Complete Protease 



Inhibitor (Roche Diagnostics Ltd., Burgess Hill, UK). Protein concentration was quantified 

by spectrophotometry using the Pierce BCA protein assays, (Thermo Fisher Scientific Inc. 

Rockford, IL, USA). Aliquots of each sample (10–15 μg of protein) were loaded and 

separated in a 10% or 4–15% Tris–Glycine gel (BioRad, Hercules, CA, USA), transferred to 

a PVD membrane (GE Amersham Biosciences, Piscataway, NJ, USA), blocked with 5% 

non-fat milk or 1% bovine serum albumin (BSA, sigma) in 1 × Tris-buffered saline plus 

0.05% Tween 20 (TBST) and incubated overnight with Aliquots of each sample (10–15 μg of 

protein) were loaded and separated in a 10% or 4–15% Tris–Glycine gel (BioRad, Hercules, 

CA, USA), transferred to a PVD membrane (GE Amersham Biosciences, Piscataway, NJ, 

USA), blocked with 5% non-fat milk or 1% bovine serum albumin (BSA, sigma) in 1 × Tris-

buffered saline plus 0.05% Tween 20 (TBST) and incubated overnight with antibodies to 

StAR, DAX-1, CYP11A1, HSL, GR (Santa Cruz Biotechnologies, Inc., Dallas, TX, US), SF-1 

(Upstate Biotechnlogies Inc., Lake Placid, NY, US); CREB, phospho-CREB(Ser133), 

phospho-HSL(Ser660), phospho-HSL(Ser563); phospho-GR(Ser211) (Cell Signalling 

Technology, Danvers, MA, US). 

 

After washing with TBST, the membranes were incubated with a horseradish peroxidase-

conjugated donkey anti-rabbit IgG or donkey anti-goat IgG (Santa Cruz Biotechnologies). 

Immunoreactive bands were visualized using ECL Plus TM reagents (GE Amersham 

Biosciences) followed by exposure to BioMax MR film (Eastman Kodak; Rochester, NY, 

USA). After film exposure, blots were stripped and assayed for anti-goat vinculin (Santa 

Cruz Biotechnology). The intensity of the protein targets bands integrated with the area was 

quantified using a computer image analysis system, Image J (developed at the National 

Institutes of Health and freely available at: http://rsb.info.nih.gov). Data points for each gene 

were then normalized relative to the vinculin band in the respective sample. 

 

Hormone measurement  
Adrenal CORT was measured in adrenal whole cell extract prepared for Western blotting 

and CORT levels were normalized to the total protein content. Total plasma and adrenal 

CORT was measured by radioimmunoassay (RIA) using a citrate buffer (pH 3.0) to denature 

the binding globulin as previously described (Spiga et al., 2007). Antiserum was kindly 

supplied by Professor Gabor Makara (Institute of Experimental Medicine, Budapest, 

Hungary) and [125I] CORT was purchased from Izotop (Budapest, Hungary). ACTH in 

plasma was measured by RIA using a commercially available assay (MP Biomedicals, Santa 

Ana, California, USA) in accordance with the manufacturer’s instructions. 

 

 



Statistics  

Sample sizes in each experiment were determined on the basis of pilot studies and 

previous experience with similar experimental design. Animals were allocated to each 

experimental group (time point after treatment) by simple randomization. Experimenters 

were blinded to the experimental group at the time of hormones, RNA and protein 

measurements.  

 

Data are represented as the mean ± SEM, hnRNA, mRNA and protein data are expressed 

as fold induction of basal (time 0). No animals or samples were excluded from statistical 

analysis.  To check data for normality and equality of variance, we used Shapiro-Wilk and 

Leven tests, respectively. The overall effect of treatments was analysed using the 

Independent-Samples Kruskal-Wallis Test. Asymptotic significances for each experiment are 

shown in Table S2. Statistical significance was set at P < 0.05.  
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1 Model Development

The adrenal SRN controlling the CORT biosynthetic pathway is very complex (Fig. S1). In order
to develop a useful yet, manageable mathematical model, we simplified the network by reducing
the number of components to a minimum (Fig. 1). Our model predictions support these gene
components as the core regulatory clockwork of the SRN. A list of source references to the connections
between nodes in both the full and reduced network is shown in Table A.

The mathematical model is representative of a single adrenocortical cell stimulated by an ACTH
input. Specifically, ACTH stimulates adrenocortical cells for controlling the biosynthesis of CORT,
which, respectively, represent the ‘input’ and ‘output’ of the SRN. Since our model is decoupled
from other components of the HPA axis, we reproduced endogenous ACTH levels originated from
the brain by using an ultradian oscillatory input (T = 75 min) with circadian modulated amplitude.
Thus, in basal, non-stressed conditions, the model dynamics is not static but exhibits an ultradian
and circadian rhythmicity driven by the ACTH input. Some model assumptions and biological
considerations are the following:

i) The model doesn’t focus on the specifics of the CORT biosynthetic pathway within the mi-
tochondria or its release into the bloodstream. Instead, we consider A-CORT as a better
readout of the network since its increase occurs earlier than P-CORT, thus reflecting the very
first product of CORT biosynthesis.

ii) The network architecture emphasises the crosstalk between StAR, DAX-1 and SF-1 genes. For
each of these genes, their hnRNA, mRNA and protein species are modelled explicitly. Though
MC2R, MRAP, Nur77 and HSL genes are included in the full network map (Fig. S1), the
network architecture suggests they’re not directly involved in feedback regulation within the
genomic pathway.

iii) Likewise, even though the dynamics of the different phosphorylation states of the HSL protein
(pHSL-S565, pHSL-S563 and pHSL-S660) is important to understand cholesterol synthesis,
it is StARp37 the one controlling the mitochondrial import of cholesterol, which is the rate-
limiting step for ACORT biosynthesis. Accordingly, we didn’t include the pHSL dynamics in
the present model.

iv) To decouple the intra-adrenal system from the whole HPA axis, we assumed ACTH as an
externally controlled input that targets specific components within the adrenal SRN. This
took the form of either an endogenous ultradian input with circadian amplitude, a single pulse
perturbation, or a combination of both.

Furthermore, we simplified the model by reducing the number of model equations. For instance,
cAMP, PKA and pCREB intermediary species in the signalling cascade ending in promoter regula-
tion are not modelled explicitly. Though pCREB is known to regulate transcription of StAR [Manna
et al., 2009; Sugawara et al., 1997a,b; Zhao et al., 2005] as well as of other steroidogenic genes, the
components of the cascade are known to be downstream of the ACTH pathway, which is already
considered in the model.

To reproduce experimental conditions, we administered “virtual” ACTH pulses near the circadian
nadir of the endogenous ACTH oscillations. Specifically, we simulated 7 pulses, one every 10 min,
distributed between 8 AM and 9 AM of the day. The dynamics during the 120 min following the
stimuli was recorded and averaged for the ACTH i.v. pulse experiments, and during 240 min for the
high s.c. ACTH and LPS challenge experiments.
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1.1 DAX-1 Gene Expression

The dynamics of gene activation, represented by the newly synthesised, non-edited hnRNA dax11,
can be represented by the following equation:

˙dax1 = σdax1 + kdax1fdax1(SF1, pGR)g−dax1(ACTH)− γdax1dax1 (1)

where σdax1 is the basal transcription rate, kdax1 is the maximum transcription rate, γdax1 is the
dax1 hnRNA degradation rate, and fdax1 is a function accounting for dax1 transcription initiation
by the synergistic action of SF1 and pGR, which is modulated by ACTH. Since the specific molecular
mechanisms governing the Dax12 promoter activation are still poorly understood, we take an heuris-
tic approach and propose a phenomenological function that captures the effects observed in the study
by [Gummow et al., 2006], in which SF1 and GR were cotransfected with a Dax1-Luc reporter into
JEG3 cells and stimulated with varying doses of dexamethasone (thus mimicking steroid activation
of the GR). Subsequently, a similar experiment was performed in Y1 cells which were concomitantly
stimulated with ACTH to assess the level of induction when SF1 and GR were present separately
or simultanouesly.

CORT-activated GR, which we measured via its phosphorylated form pGR, is known to synergise
with SF1 to enhance Dax1 gene expression (up to 30-fold activation in a dose-dependent dexam-
ethasone stimulation experiment). In addition, SF1 is known to also activate the promoter in a
pGR-independent way (11-fold activation). Moreover, Glucocorticoid Responsive Elements (GREs)
have been identified in the Dax1 promoter and they are dose-responsive to dexamethasone stimula-
tion in the absence of SF1 [Gummow et al., 2006]. However, we will not consider SF1-independent
effects on fdax1 as the elicited fold activation is not only very close to baseline but also small when
compared against SF1-pGR synergistic activation and SF1-dependent induction. Further experi-
ments performed by [Gummow et al., 2006] suggest that SF1 and pGR form a molecular complex at
the Dax1 promoter which enhances its expression upon steroid stimulation. Considering this and the
role that SF1 has in regulating the expression of the StAR gene after binding to the DAX1 protein
(thus forming another molecular complex) [Sugawara et al., 1997a,b; Fan et al., 2004; Gummow
et al., 2006; Manna et al., 2009], we propose that fdax1 takes the form:

fdax1(SF1, pGR) =
SF1
KSF1

+ SF1·pGR
KSF1·KG

1 + SF1
KSF1

+ SF1·pGR
KSF1·KG

(2)

In Eq. 2, it can be seen that SF1 is necessary for activating the Dax1 promoter, either inde-
pendently (i.e. in its free form) or forming a complex with pGR. Thus, pGR can be viewed as
an enhancer which acts upon Dax1 promoter through the SF1-pGR complex. The non-linearity
observed in Eq. 2 is expected from the pGR-independent SF1 binding to any of its three binding
sites within the Dax1 promoter and from the synergy between the central SF1 binding site and
the proximal GRE binding site that enhances expression [Gummow et al., 2006]. As the specific
mechanisms of regulation are unknown, we chose the simplest empirical representation of the Dax1
promoter regulation by SF1 and pGR transcription factors.

Furthermore, [Gummow et al., 2006] also show that both the SF1 and SF1-pGR synergistic acti-
vation of the Dax1 promoter are decreased upon ACTH stimulation. We modelled this by multiplying
the second term in Eq. 1 by a decreasing function g−dax1(ACTH). As the specific mechanisms and
molecular intermediaries of ACTH-dependent modulation are unknown, it is convenient to choose
a non-linear Hill type function (see Eq. 3). The K’s in Eqs. 1 and 2 account for half-maximum
constants which were determined by fitting the model to data.

g−dax1(ACTH) =
KACTH
dax1

4

KACTH
dax1

4
+ACTH4

(3)

1The hyphen in dax-1, Dax-1, DAX-1, sf-1, Sf-1, SF-1, and A-CORT labels was dropped to avoid confusion with
a minus sign.

2In what follows, the non-italicised nomenclature will be used for gene names unless otherwise specified, whereas
the italicised will be reserved for state variables used in the mathematical model (e.g. dax1, Dax1, and DAX1 refer,
respectively, to hnRNA, mRNA, and protein concentrations).
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The mature transcript dynamics is given by

˙Dax1 = kDax1dax1τDax1
− γDax1Dax1 · g∓Dax1(ACTH) (4)

where kDax1 stands for the mRNA maturation rate and γDax1 is the mRNA degradation rate. RT-
PCR experiments aimed at detecting hnRNA can’t distinguish the transcriptional stage at which the
RNA is within the nucleus. However, we know that edition processes such as splicing have finished
once mature mRNAs are detected. Hence, we assumed Eq. 4 is delayed by τDax1, which accounts for
the elapsed time since transcription initiation up to the emergence of a hnRNA plus the maturation
time after completion of transcription (splicing, capping, polyadenylation and mRNA nuclear export
processes).

In addition, high doses of ACTH are known to destabilise Dax1 transcripts [Ragazzon et al.,
2006], which in a first instance was modelled by multiplying the turnover term in Eq. 4 by a positively
increasing function of ACTH (g+Dax1(ACTH)). However, when re-calibrating the model by fitting
it to our ACTH i.v. pulse experiments, we observed a mismatch between its predictions and our
DAX1 mRNA and protein data. We realised that our assumption of a monotonously-increasing
function was based on experimental results by [Ragazzon et al., 2006] that were performed using
very high levels of ACTH. Thus, to fit our model to data from low ACTH i.v. pulse experiments,
but keeping consistency with previous observations by [Ragazzon et al., 2006] at high ACTH levels,
we hypothesised an ACTH dose-dependent control mechanism of Dax1 mRNA stability that was
modelled assuming its turnover rate is modulated by the function g∓Dax1(ACTH). Though it’s
not clear how ACTH actually promotes or inhibits degradation of Dax1, we propose that a non-
monotonous regulatory function would provide the best fit of the model to our experimental data
in both the low and high ACTH stimuli experiments. We model this through a decreasing-then-
increasing function containing two half-maximum constants: KACTH−lo

Dax1 for inhibition at low doses

of ACTH, and KACTH−hi
Dax1 for activation at high doses of ACTH (Fig. S4). This function takes the

form:

g∓Dax1(ACTH) =
KACTH−lo
Dax1

KACTH−lo
Dax1 +ACTH

+
ACTH

KACTH−hi
Dax1 +ACTH

(5)

Finally, the DAX1 protein dynamics is governed by:

˙DAX1 = kDAX1Dax1τDAX1
− γDAX1DAX1 (6)

where kDAX1 stands for the protein translation rate, τDAX1 is the delay associated to translation,
and γDAX1 is the protein degradation rate.

1.2 SF-1 Gene Expression

The dynamics of gene activation, represented by the newly synthesised, non-edited sf1 hnRNA, can
be represented by the following equation:

˙sf1 = σsf1 + ksf1g
+
sf1(ACTH)− γsf1sf1 (7)

where σsf1 is the basal transcription rate, ksf1 is the maximum transcription initiation rate, and
γsf1 is the sf1 degradation rate. To the best of our knowledge, the SF1 gene is not subject to
transcriptional regulation by any of the proteins considered in the model. Thus, conversely to Eq. 1,
here we have no function accounting for sf1 transcription modulation by any transcription factors
other than the effects induced by ACTH. This is modelled by a function g+sf1(ACTH), which takes
the form:

g+sf1(ACTH) =
ACTH4

KACTH
sf1

4
+ACTH4

(8)

Though in our model we consider that SF1 gene expression is regulated by ACTH alone [Ragazzon
et al., 2006], regulation by other transcription factors within the steroidogenic pathway cannot be
ruled out. This poses interesting questions about the role of this gene in controlling the adrenal
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response. Moreover, evidence suggests that its mRNA and protein levels remain constant after
variations in cAMP concentration, which is a known mediator of the ACTH pathway [Fan et al.,
2004].

The mature transcript dynamics is given by:

˙Sf1 = kSf1sf1τSf1
− γSf1gSf1(Sf1) (9)

where kSf1 stands for the mRNA maturation rate and γSf1 is the mRNA degradation rate. By
similar arguments as in Eq. 4, we assumed Eq. 9 is delayed by τSf1. Importantly, we found out that
the best fit of the model to our data was achieved when assuming a Michaelis-Menten degradation
of Sf1 mRNA. Thus, the function hSf1(Sf1) takes the form:

hSf1(Sf1) =
Sf1

KSf1 + Sf1
(10)

Finally, the SF1 protein dynamics is governed by:

˙SF1 = kSF1Sf1τSF1
− γSF1SF1 · g−SF1(ACTH) (11)

where kSF1 stands for the protein translation rate, τSF1 is the delay associated to translation, and
γSF1 is the protein degradation rate. Since ACTH is suspected to stabilise SF1, probably through
phosphorylation or ubiquitination of the proteasome [Æsøy et al., 2002], we assume its turnover rate
is modulated by a function g−SF1(ACTH), which takes the form:

g−SF1(ACTH) =
KACTH
SF1

KACTH
SF1 +ACTH

(12)

1.3 StAR Gene Expression

The dynamics of StAR gene activation, represented by the newly synthesised, non-edited stAR
hnRNA, can be represented by the equation:

˙stAR = σstAR + kstARfstAR(SF1, DAX1)g+stAR(ACTH)− γstARstAR (13)

where σstAR is the basal transcription rate, kstAR is the maximum transcription initiation rate,
γstAR is the stAR degradation rate, and fstAR is a function accounting for stAR transcription ini-
tiation controlled positively by SF1 and negatively by DAX1. This DAX1-mediated steroidogenic
inhibition follows from the finding that DAX1 inhibits SF1 transactivation upon binding it [Babu
et al., 2002; Fan et al., 2004], thus preventing StAR gene activation. In addition, ACTH is known to
control the StAR gene activation directly through pCREB [Sugawara et al., 1997a,b; Manna et al.,
2009]. However, since we’re not modelling pCREB explicitly, we employ the function g+stAR(ACTH)
to model the StAR gene activation by ACTH. This function takes the form:

g+stAR(ACTH) =
ACTH4

KACTH
stAR

4
+ACTH4

(14)

In summary, an SF1 dependent activation mechanism, similar to the one modelled in Eq. 2, has
been shown to be responsible for StAR gene activation [Sugawara et al., 1997b; Manna et al., 2003;
Fan et al., 2004; Xu et al., 2009]. This follows from cotransfection experiments carried out by [Fan
et al., 2004] to explore the effects of SF1 (a.k.a. Ad4BP) and DAX1 concomitantly with Forskolin
stimulation of the PKA pathway.

These considerations were taken into account to assume that fstAR takes the form:

fstAR(SF1, DAX1) =
SF1
KSF1

1 + SF1
KSF1

+ DAX1
KD

(15)

In Eq. 13, it can be seen that both ACTH and SF1 are necessary for activating stAR, whereas
DAX1 modulates the promoter activity by binding to SF1 at the promoter site (the gene is inactive
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if either ACTH or SF1 are absent, but not if DAX1 is). Importantly, this empirical approach
facilitates modifying Eq. 15 if we wish to account for DAX1 dosage dependent effects observed in
diseased states [Xu et al., 2009; Sadasivam et al., 2015]. Just as in Eq. 2, the K’s in Eq. 15 account
for half-maximum constants (often interpreted as sensitivities) and were determined by fitting the
model to data.

The mature transcript dynamics is given by:

˙StAR = kStARstARτStAR
− γStARhStAR(StAR) (16)

where kStAR stands for the mRNA maturation rate and γStAR is the mRNA degradation rate. By
similar arguments as in Eq. 4, we assumed Eq. 16 is delayed by τStAR. Importantly, we found out
that the best fit of the model to data was achieved when assuming a Michaelis-Menten degradation
of StAR mRNA. Thus, the function hStAR(StAR) takes the form:

hStAR(StAR) =
StAR

KStAR + StAR
(17)

Finally, for the StAR protein dynamics we will account for the 37 kDa precursor, as it has been
shown to be the one responsible for cholesterol import before being itself cleaved and imported to
the mitochondria [Arakane et al., 1998; Bose et al., 2002; Manna et al., 2009]. It’s dynamics is given
by:

˙StARp37 = kStARp37StARτStARp37
− µStARp37StARp37g−StARp37(ACTH) (18)

where kStARp37 stands for the protein translation rate, τStARp37 is the delay associated to translation,
and µStARp37 = γStARp37 + εStARp37 is the StARp37 turnover rate. This value accounts for the
proteasome-mediated degradation rate of the active precursor StARp37, γStARp37, and the import
rate of the StARp37 cleaved byproducts into mitochondria, εStARp37 [Arakane et al., 1997; Bose
et al., 2002; Manna et al., 2009]. As it has been show that StARp37 activity is proportional to
its residence time in the cytosol [Bose et al., 2002; Granot et al., 2003], and that PKA-mediated
phosphorylation stabilises the precursor [Clark and Hudson, 2015], we have included the function
g−StARp37(ACTH) in the turnover term in Eq. 18, which takes the form:

g−StARp37(ACTH) =
KACTH
StARp37

4

KACTH
StARp37

4
+ACTH4

(19)

1.4 A-CORT Dynamics

As mentioned before, the CORT biosynthetic pathway within the mitochondria won’t be modelled
explicitly at this stage. Instead, we assume that ACORT dynamics is governed by:

˙ACORT = kACORT fACORT (StARp37)− µACORTACORT (20)

where kACORT is the maximum synthesis rate of ACORT, and the turnover term µACORT =
γACORT + εACORT accounts for the ACORT degradation rate γACORT and the export rate from
the adrenal cell into the bloodstream εACORT . The function fACORT expresses the dependence of
ACORT synthesis on the precursor StARp37 and takes the form:

fACORT (StARp37) =
StARp37

KStARp37 + StARp37
(21)

where the big K has the same meaning as in previous functions and was determined by fitting
the model to data. As mentioned before, StARp37 controls the import of cholesterol into the
mitochondria [Bose et al., 2002], which is the rate limiting step for corticosteroid biosynthesis. We
assumed this process can be represented as a Michaelis-Menten reaction (see Eq. 21) [Arakane et al.,
1997; Manna et al., 2009; Spiga et al., 2014]. Importantly, although StARp37 is downstream of
ACTH (through regulation of the StAR gene), ACORT is known to respond to ACTH stimulation
on a much shorter timescale than the time needed for ACTH to exert its effects on StARp37 through
the cAMP/PKA/pCREB pathway. This likely happens due to PKA mediated StARp37 stabilisation
in the cytosol upon ACTH stimulation [Arakane et al., 1997; Manna et al., 2009], a process that is
already accounted for in the turnover term in Eq. 18.
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1.5 pGR Dynamics

Lastly, instead of modelling the concentration of the glucocorticoid receptor, we model the measured
levels of its phosphorylated form pGR, a marker of its activity. We propose the dynamics of the
pGR is governed by:

˙pGR = kGRfpGR(ACORT )− γpGRpGR (22)

where kpGR stands for the pGR activation rate by ACORT and γpGR is it’s deactivation rate. The
function fpGR takes the form:

fpGR(ACORT ) =
ACORT

KACORT +ACORT
(23)

where KACORT stands for the half-maximum constant of pGR activation by ACORT.

1.6 Model Equations for the SRN

The complete set of model equations is shown below:

˙dax1 = σdax1 + kdax1fdax1(SF1, pGR)g−dax1(ACTH)− γdax1dax1,

˙Dax1 = kDax1dax1τDax1
− γDax1Dax1g∓Dax1(ACTH),

˙DAX1 = kDAX1Dax1τDAX1
− γDAX1DAX1,

˙sf1 = σsf1 + ksf1g
+
sf1(ACTH)− γsf1sf1,

˙Sf1 = kSf1sf1τSf1
− γSf1hSf1(Sf1),

˙SF1 = kSF1Sf1τSF1
− γSF1SF1g−SF1(ACTH),

˙stAR = σstAR + kstARfstAR(SF1, DAX1)g+stAR(ACTH)− γstARstAR,
˙StAR = kStARstARτStAR

− γStARhStAR(StAR),

˙StARp37 = kStARp37StARτStARp37
− µStARp37StARp37g−StARp37(ACTH),

˙ACORT = kACORT fACORT (StARp37)− µACORTACORT,
˙pGR = kGRfpGR(ACORT )− γpGRpGR.

where:

g−dax1(ACTH) =
KACTH
dax1

4

KACTH
dax1

4
+ACTH4

,

g∓Dax1(ACTH) =
KACTH−lo
Dax1

KACTH−lo
Dax1 +ACTH

+
ACTH

KACTH−hi
Dax1 +ACTH

,

g+sf1(ACTH) =
ACTH4

KACTH
sf1

4
+ACTH4

, g−SF1(ACTH) =
KACTH
SF1

KACTH
SF1 +ACTH

,

g+stAR(ACTH) =
ACTH4

KACTH
stAR

4
+ACTH4

, g−StARp37(ACTH) =
KACTH
StARp37

4

KACTH
StARp37

4
+ACTH4

,

hSf1(Sf1) =
Sf1

KSf1 + Sf1
, hStAR(StAR) =

StAR

KStAR + StAR
,

fACORT (StARp37) =
StARp37

KStARp37 + StARp37
, fpGR(ACORT ) =

ACORT

KACORT +ACORT
,

fdax1(SF1, pGR) =
SF1
KSF1

+ SF1·pGR
KSF1·KG

1 + SF1
KSF1

+ SF1·pGR
KSF1·KG

, fstAR(SF1, DAX1) =
SF1
KSF1

1 + SF1
KSF1

+ DAX1
KD

.
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Node Target Sign Effect References

ACTH dax1 – Inhibits SF1-dependent activation [Gummow et al., 2006]

Dax1 ∓ Modulates mRNA stability [Ragazzon et al., 2006]

sf1 + Promoter activation [Ragazzon et al., 2006]

SF1 – Protein stabilisation [Æsøy et al., 2002]

stAR + pCREB-mediated promoter activation [Sugawara et al., 1997a]

[Sugawara et al., 1997b]

[Zhao et al., 2005]

[Manna et al., 2009]

StARp37 + PKA-mediated protein stabilisation [Arakane et al., 1997]

[Manna et al., 2009]

HSL + PKA-mediated activation (S563 and S660) [Manna et al., 2013]

+ AMPK-mediated activation (S565) [Watt et al., 2006]

mc2r + Promoter activation [Winnay and Hammer, 2006]

mrap + Promoter activation [Gorrigan et al., 2011]

ACORT pGR + Activation through phosphorylation - - -

pGR dax1 + SF1-dependent enhancement of Dax1 [Gummow et al., 2006]

DAX1 stAR +/– Inhibits SF1-dependent activation [Sugawara et al., 1997a]

[Sugawara et al., 1997b]

[Fan et al., 2004]

Activation at high doses [Xu et al., 2009]

mc2r + Promoter activation [Xu et al., 2009]

nur77 – Promoter inhibition [Song et al., 2004]

NUR77 – Protein inhibition [Song et al., 2004]

SF1 dax1 + Promoter activation [Gummow et al., 2006]

stAR/mc2r + Promoter activation [Babu et al., 2002]

[Gummow et al., 2006]

[Winnay and Hammer, 2006]

StARp37 StARp30/Chol + Cholesterol import to mitochondria [Arakane et al., 1997]

[Manna et al., 2009]

HSL-S660/Chol + Cholesterol biosynthesis [Shen et al., 2003]

HSL S565/S563/S660 +/– Context-dependent phosphorylation [Kraemer and Shen, 2002]

[Watt et al., 2006]

Note: Obvious connections (e.g. transcription, translation, ACORT biosynthesis) are not included in this table.

Table A: Supporting references for cross-talk connections within the adrenal SRN.
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2 Parameter Estimation

The temporal resolution of our experiments is determined by the timescale of the regulatory processes
involved, which was in the order of minutes. We set this as the timescale for our kinetic parameters,
so that all parametric units were expressed in terms of molar concentrations (M) and minutes
(min). Moreover, even though our model equations are considering a single cell system, we must
not forget that our experimental measurements were carried out at the tissue level. This means
our model predictions could be extrapolated to the total number of cells in the adrenal cortex,
provided that the appropriate cellular and nuclear volumes for the different adrenal cell types are
accounted for. Though we couldn’t find measurements of these volumes in Sprague Dawley rats, we
approximated them from a study of the ultrastructure of Wistar rat adrenal cells, which estimates
the cell and nuclear volume of steroidogenic ZF cells as ∼ 3600µm3 and ∼ 260µm3, respectively
[Nickerson, 1976]. Thus, to deal with Molar units in a simpler way, we used the nuclear volume
Vnuc = 2.6× 10−13 lt as it is in this cellular enclosure where gene regulatory reactions take place.

Also, note that the regulatory functions have either sigmoidal or Michaelian shapes and that
they’re normalised (including the multivariate functions). Hence, the overall flux contribution of
these terms is to modulate the weight of kinetic rates (small k’s), whereas their sensitivity to acti-
vation by the independent variable is represented by the half-maximum constants (big K’s), i.e. the
concentration at which the i-th factor reaches ½.

In what follows, we estimate the kinetic rates and other parameter values. A comprehensive
summary of these values is shown in Table B.

2.1 Basal Transcription Rates

The basal transcription rates, denoted by the σ’s, are the rates at which the gene promoters are
activated without the influence of any of the above-mentioned transcription regulators (thought
other factors may be involved), or the minimum level of transcription that these regulators may
exert on the gene (see for instance the influx term in Eq. 7 when ACTH is absent). For the sake of
simplicity, we assumed that basal transcription rates amounted to 5% of the maximum transcription
rates. That is:

σdax1 = 0.05 ∗ kdax1, σsf1 = 0.05 ∗ ksf1, σstAR = 0.05 ∗ kstAR.

2.2 Transcription, Translation and Activation Rates

We calculated the maximum rate of gene expression, assessed by the synthesis of the nascent tran-
script, as:

kgene =
kmaxpol

LhnRNANAVnuc
Dgene (24)

where kgene is the maximum transcription rate of the gene, measured in Molar concentration per
minute; kmaxpol is the maximum elongation speed (processivity rate) of the RNA polymerase, measured
in number of bases synthesised per gene copy per cell per minute and neglecting pauses in polymerase
activity; LhnRNA is the hnRNA transcript length, measured in number of bases per transcript
(including introns); NA is Avogadro’s constant; Vnuc is the nuclear volume of a Zona Fasciculata
(ZF) cell, measured in litres; and Dgene is the gene dosage, or number of gene copies within each
ZF cell.

The maximum processivity rate of the RNA Pol II in mammalian tissue culture cells is estimated
at 71.6nt/sec [Darzacq et al., 2007], corresponding to a maximum elongation speed of kmaxpol ≈
4.3 kbmin−1. Regarding the gene dosage, we only have information for human Dax1 present as a
duplicate, with both copies active. Thus, we will assume for all genes that Dgene = 2. The only
parameter that remains undetermined in Eq. 24 is the transcript length, which depends on the gene
in question and we calculate below.
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For the Dax1 gene, which in rats is known to encode a hnRNA of 4129 b in length 3, we estimate
a maximum transcription rate of kdax1 = 1.33× 10−11Mmin−1 (after splicing, the mature mRNA
is reduced to 1.8 kb in length 4). Similarly, the SF1 gene in rats is known to encode a hnRNA
of 20825 b in length 5, which we estimate will have a maximum transcription rate of ksf1 = 2.64 ×
10−12Mmin−1 (after splicing, the mature mRNA is barely 2182 b in length 6). Lastly, the StAR gene
is known to encode a hnRNA of 4643 b in length 7, for which we estimate a maximum transcription
rate of kstAR = 1.18× 10−11Mmin−1 (after splicing, the predominant transcript variant is a 3.5 kb
mRNA [Ariyoshi et al., 1998]). Thus:

kdax1 = 1.33× 10−11Mmin−1, ksf1 = 2.64× 10−12Mmin−1, kstAR = 1.18× 10−11Mmin−1.

which then implies the basal transcription rates are:

σdax1 = 6.65× 10−13Mmin−1, σsf1 = 1.32× 10−13Mmin−1, σstAR = 5.91× 10−13Mmin−1.

The maturation rates of hnRNA into mRNA are likely subject to high variability given the post-
processing of transcripts depends on multiple, complex reaction steps (e.g. capping, polyadenylation,
splicing, nuclear export) [Keene, 2007]. For the sake of simplicity, we’ll assume their values are half
the above maximum rates of gene expression. Thus, after halving their values and removing Molar
units by multiplying by the product of Avogadro’s constant and the nuclear volume, we arrive to:

kDax1 = 1.04min−1, kSf1 = 0.21min−1, kStAR = 0.93min−1.

We calculate the translation rate (protein synthesis) for any given transcript in a single ZF cell
as:

kprotein =
krib
Lpoly

(25)

where kprotein is the translation rate of the protein per minute per cell (keeping in mind this rate
should be multiplied by the Molar concentration of mRNAs, so that protein concentration changes
in units of Mmin−1); krib is the polypeptide elongation speed (processivity rate) of the ribosome,
measured in number of codons translated (or aa’s synthesised) per transcript per cell per minute and
assuming ribosome stalling is already accounted for; and Lpoly is the polypeptide length, measured
in number of aa’s (we account for the polypeptide length instead of the mRNA length as UTR
regions do not contribute to protein synthesis). We will use the average ribosome progression rate
for translation in Mus musculus as a proxy for that of rat, which was unavailable. This is estimated
at 5.6± 0.5 codons per second, which equals to krib ≈ 336 aamin−1 [Ingolia et al., 2011].

Considering the rat DAX1 polypeptide is 472 aa in length 8, we estimate a translation rate of
kDAX1 = 0.71min−1. Similarly, the SF1 polypeptide in rats is 462 aa in length 9, which corresponds
to a translation rate of kSF1 = 0.73min−1. Lastly, for the StAR protein precursor (the 37 kDa form
StARp37), we can assume as a “rule of thumb” a molecular weight of 100-110 Da per average amino
acid [Phillips et al., 2009]; assuming the newly synthesised StARp37 is ∼ 336 aa in length (the 32
kDa form is 284 aa long 10), we can estimate a translation rate of kStARp37 = 1min−1. Thus:

kDAX1 = 0.71min−1, kSF1 = 0.73min−1, kStARp37 = 1min−1.

3http://www.ensembl.org/Rattus_norvegicus/Transcript/Exons?db=core;g=ENSRNOG00000003765;r=X:

54734385-54738513;t=ENSRNOT00000005023
4http://www.ncbi.nlm.nih.gov/nuccore/NM_053317.1
5http://www.ensembl.org/Rattus_norvegicus/Transcript/Exons?db=core;g=ENSRNOG00000012682;r=3:

22999616-23020441;t=ENSRNOT00000017651
6http://www.ncbi.nlm.nih.gov/nuccore/NM_001191099.1
7http://www.ensembl.org/Rattus_norvegicus/Transcript/Exons?db=core;g=ENSRNOG00000015052;r=16:

71036204-71040847;t=ENSRNOT00000020606
8http://www.uniprot.org/uniprot/P70503
9http://www.uniprot.org/uniprot/P50569

10http://www.uniprot.org/uniprot/P97826
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Lastly, we chose the parameters kACORT and kGR arbitrarily and allow them to vary during
our model fitting to data as a means to probe the negative feedback strength. For these values, we
assumed

kACORT = 6.39× 10−12Mmin−1, kGR = 1× 10−12Mmin−1.

where the chosen value for kACORT is just 1 divided by the product of the nuclear volume and
Avogadro’s constant.

2.3 Delays

From the HPA model proposed in [Walker et al., 2010], the overall delay for ACTH signal transduc-
tion within the adrenal has been estimated to be τAdrenal ∈ [6.5, 20]min. However, recent detailed
experiments suggest two different time scales for the intra-adrenal network responsiveness, one for
the slow genomic pathway and another for the fast, non-genomic one. Specifically, an intra venous
(i.v.) pulse of ACTH produced rapid, transient increases in plasma CORT, with maximal responses
achieved after 5 to 15 min (though some in vitro studies show ACTH can trigger CORT synthesis
within ∼ 3min), and a decrease to almost basal levels at ∼ 30min. In contrast, StAR and P450scc
hnRNA levels increased at 15min following ACTH and decreased towards basal values after 30min
[Spiga et al., 2011a]. Hence, we can assume τNon−genomicAdrenal ≤ 5min and τGenomicAdrenal ≈ 15min.

The case of the StAR gene is of particular interest since it is known to control the limiting step
in CORT biosynthesis, which occurs very rapidly during the adrenal response to ACTH stimulation.
From [Miller, 2013], we know that on a 15 − 60min time scale, ACTH rapidly stimulates both
the activation of pre-existing StAR protein and its de novo the synthesis. ACTH/cAMP doubles
the activity of StAR proteins almost immediately [Arakane et al., 1997] and induces transcription
of the StAR gene within minutes [Manna et al., 2009]. StARp37 then interacts with a complex
macromolecular machine in the Outer Mitochondrial Membrane (OMM) that increases the flow of
cholesterol from the OMM to the Inner Mitochondrial Membrane (IMM), where it becomes the
substrate for CORT biosynthetic enzymes. Thus, we can assume that CORT synthesis is triggered
almost instantaneously, whereas StAR gene expression kicks in until a few minutes later.

We can estimate the delays in the genomic pathway by taking into account the gene and hnRNA
lengths, together with the processivity rate of the RNA Pol II and the ribosome. The StAR gene,
for instance, is known to encode a hnRNA which is 4643 b long. As mentioned before, the maximum
processivity rate of the RNA Pol II in mammalian tissue culture cells is estimated at 71.6nt/sec =
4.3 kb/min [Darzacq et al., 2007], which means the StAR hnRNA would take ∼ 1.08min to be
transcribed. This transcriptional delay would be unusually short, and we should note that additional
processes occur during transcript elongation, such as cumulative pauses of ∼ 4min in average for
polymerases on genes. After accounting for stalling effects on a variety of genes, the same study
reports an average processivity rate for RNA Pol II as small as 6.3nt/sec. However, we must
keep in mind that these measurements are subject to high variability, depending on the gene, the
physiological conditions, and the cell type. For instance, in rat kidney cells the reactivation of serum
responsive genes following serum deprivation suggests a synthetic rate of 1.1–1.4 kb/min [Femino
et al., 1998], whereas a more recent study performed on mouse ES cells determined that the RNA
Pol II elongation rates ranged between 0.5 to 4 kb/min [Jonkers et al., 2014]. In summary, several
studies where measurements were taken by different techniques and in different conditions place the
RNA Pol II elongation speed between 18 and 72nt/sec [Swinburne and Silver, 2008], with most
studies reporting values in the lower half of this range. Here, we will assume an average value of
30nt/sec = 1.8 kb/min.

Using this average processivity rate, the stAR transcriptional delay would be of 2.58min. Re-
garding transcript editing, we find the duration of an average splicing event has been estimated to
last ∼ 30 sec [Hnilicová and Staněk, 2011]. Considering the NCBI reports the StAR gene in Rattus
norvegicus has 6 introns 11, we can estimate it takes ∼ 3min for stAR hnRNA to mature into StAR
mRNA, assuming introns are removed sequentially instead of simultaneously and neglecting tran-
script export to the translation site. Regarding translation, a ribosome progression rate of 5.6± 0.5

11http://www.ncbi.nlm.nih.gov/gene/25557
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codons per second in Mus musculus has been reported [Ingolia et al., 2011]. Considering a newly
synthesised StARp37 precursor protein would have ∼ 336 aa in length (the 32 kDa form is 284 aa
long 12), we can estimate a translation delay of ∼ 1min assuming a “rule of thumb” of 100-110 Da
per average amino acid [Phillips et al., 2009]. Following this, we estimated the delays for StAR gene
expression as

τStAR = 5.58min, τStARp37 = 1min.

Likewise, the SF1 gene in rats is known to encode a hnRNA which is 20825 b long. Using the
same average RNA Pol II processivity rate as before, we estimate it would take ∼ 11.57min to be
transcribed. As the transcript has 6 introns in total 13, we can estimate ∼ 3min for hnRNA to
mature into mRNA, assuming introns are spliced sequentially and not simultaneously. Regarding
translation, and considering the rat SF1 polypeptide is 462 aa in length 14, we can estimate a
translation delay of ∼ 1.38min. Following this, we estimated the delays for the SF1 gene expression
as

τSf1 = 14.57min, τSF1 = 1.38min.

Lastly, the Dax1 gene in rats is known to encode a hnRNA which is 4129 b long. Using the
same average RNA Pol II processivity rate as before, we estimate it would take ∼ 2.29min to
be transcribed. As the transcript has only 1 intron in total 15, we can estimate ∼ 0.5min for
dax1 hnRNA to mature into Dax1 mRNA. Regarding translation, and considering the rat DAX1
polypeptide is 472 aa in length 16, we can estimate a translation delay of ∼ 1.4min. Following this,
we estimated the delays for Dax1 gene expression as

τDax1 = 2.79min, τDAX1 = 1.4min.

2.4 Degradation Rates

For simplicity, we’ll assume that immature, uncapped, non-polyadenylated hnRNAs will have a
degradation rate an order of magnitude faster than their mature mRNA counterparts. This results in
half-lives for hnRNAs of ∼ 20min, comparable to those estimated previously for primary transcripts
in a model of RNA metabolism in mammalian cells [Jackson et al., 2000]. However, after comparing
the model predictions with our data, we required to slightly adjust some of our estimations. This
likely arises from previously unaccounted context-dependent degradation processes, as we will see
in what follows.

Dax1 mRNA half-life is reported by [Ragazzon et al., 2006] to be 3hrs. This value corresponds
to a degradation rate of γDax1 = 3.85× 10−3min−1. After fitting the model to data regarding the
hnRNA half-life and considering a protein half-life of 6hrs [Osman et al., 2002], we arrive to the
following estimates for the Dax1 gene:

γdax1 = 1.5× 10−2min−1, γDax1 = 3.85× 10−3min−1, γDAX1 = 1.93× 10−3min−1.

To the best of our knowledge, there is no data available regarding Sf1 mRNA stability. Nonethe-
less, we can assume that, because its mRNA is ∼ 400 bases longer than the Dax1 transcript, it
degrades at a slower rate. Thus, after calculating a longer half-life in proportion to its length
as compared to the Dax1 transcript, we estimated a degradation rate for the Sf1 mRNA of
3.18×10−3min−1. This rate, however, had to be expressed in different units after the model fitting to
data suggested that this degradation was better represented through a Michaelis-Menten mechanism.
Thus, the Sf1 degradation rate was set to γSf1 = 2.03×10−14Mmin−1. The sf1 hnRNA degrada-
tion rate, in contrast, was assumed an order of magnitude larger than its mRNA counterpart. In the
proper units, this was set as γsf1 = 3.18×10−2min−1. Regarding the SF1 protein, previously [Jacob
et al., 2001] and [Chen et al., 2007] have estimated its half-life between 2.5−4hrs, corresponding to

12http://www.uniprot.org/uniprot/P97826
13http://www.ncbi.nlm.nih.gov/gene/83826
14http://www.uniprot.org/uniprot/P50569
15http://www.ncbi.nlm.nih.gov/gene/58850
16http://www.uniprot.org/uniprot/P70503
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a degradation rate within the range 2.89×10−3min−1 to 4.62×10−3min−1. However, we must take
into account the PKA-mediated stabilisation effects of ACTH upon SF1. For instance, [Æsøy et al.,
2002] found a significant reduction in SF1 protein amount in transfected COS-1 cells in the absence
of PKA-Cα overexpression measured 4hrs post chase (mean± SEM = 23.7± 4.64%, P = 0.0022),
compared with the amount of SF1 protein after 1hr, which was set to 100%. In contrast, no signifi-
cant reduction in SF1 protein amount was observed after 4hrs in cells cotransfected with PKA-Cα
(mean±SEM = 77.2±9.5%, P = 0.143). Thus, it seems that the turnover of transiently expressed
SF1 was decreased by coexpression of PKA-Cα. Solving the differential equation for first order
degradation, we find the degradation rate is given by:

γ =
1

t
ln

x0
x(t)

(26)

which we can use to calculate γPKA−
SF1 = 8 × 10−3min−1 and γPKA+

SF1 = 1.44 × 10−3min−1. Here,
we will use the first value, as by including the function g−SF1(ACTH) in the turnover term in Eq. 11
we account for the PKA-mediated stabilising effects of ACTH stimuli. Thus, for the SF1 gene, in
the absence of ACTH stimulation, we will have:

γsf1 = 3.18× 10−2min−1, γSf1 = 2.03× 10−14Mmin−1, γSF1 = 8× 10−3min−1.

The available information regarding StAR mRNA stability is a bit controversial, especially since
two isoforms have been reported, each with different half-lives and the possibility of selective degra-
dation in steroidogenic cells [Duan and Jefcoate, 2007]. As before, we could make an estimation
based on its transcript length being twice as long as the Dax1 mRNA. Following this, we estimated
a degradation rate of 1.98 × 10−3min−1. However, at the moment of fitting the model to data
from the ACTH i.v. pulse experiment, we found that this degradation rate had to be approximately
twice as large. Accordingly, we have modified it to γStAR = 3.96 × 10−3min−1. Likewise, the
value of the stAR hnRNA degradation was adjusted after fitting the model to data and was fixed
at γstAR = 1 × 10−1min−1. The increase in the γStAR degradation rate, when compared to the
value we originally estimated for StAR mRNA is also supported by experimental evidence showing
this gene contains three conserved AU-rich (AURE) element motifs known to mediate fast mRNA
turnover [Zhao et al., 2005; Duan and Jefcoate, 2007]. Moreover, the measured half-life for the 3.5 kb
StAR mRNA isoform corresponds to a degradation rate of 3.3× 10−3min−1, which is close to our
estimated value.

The estimation of the StARp37 protein turnover rate requires careful examination. According
to [Arakane et al., 1997], the StAR protein has a short half-life, but a specific value is not reported.
The half-life reported by [Ragazzon et al., 2006] is ∼ 5hrs, with the primary source being [Granot
et al., 2003]. However, this value refers to mitochondrial 30 kDa StAR, which lacks the N-terminus
mitochondrial targeting sequence and it’s not involved in cholesterol import into mitochondria. This
sequence is cleaved upon the StAR 37 kDa import into mitochondria, a process that influences the
rate of the StARp37 precursor cytosolic proteasome degradation, according to [Granot et al., 2003].

Both [Arakane et al., 1998] and [Granot et al., 2003] estimate that the StARp37 precursor has a
half-life of ∼ 15min. However, this estimate accounts only for proteasome-assisted degradation, and
the authors suggest that a fast import of the precursor into mitochondria would decrease the time it
remains active. This would effectively increase the precursor’s lability when both degradation and
translocation processes are accounted for, thus decreasing the half-life to ≤ 5min [Manna et al.,
2009; Clark and Hudson, 2015]. This is consistent with previous estimations of StARp37 exhibiting
a half-life of 5min in mouse Y1 cells [Artemenko et al., 2001], and of 3− 4min in rat adrenal cells
incubated at 37 ℃ [Epstein and Orme-Johnson, 1991].

How then is it possible for adrenal cells to exhibit such a fast steroidogenic response while depend-
ing upon a precursor protein that is so labile? As it turns out, PKA-mediated ACTH stimulation
induces rapid phosphorylation of the precursor StARp37, thus stabilising it in the cytosol and en-
hancing its activity. In other words, ACTH stimulation increases the residence time of StARp37 in
the cytosol, thus increasing the rate of cholesterol import into mitochondria and enabling the fast
response of the adrenal to synthesise CORT.
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In summary, we have that when mitochondrial import is blocked, the half-life of the StAR pre-
cursor is 15min, corresponding to γStARp37 = 4.62 × 10−2min−1; but when both mechanisms are
blocked the precursor accumulates in the cytosol and its half-life increases up to 6.5hrs, correspond-
ing to a much lower turnover rate of µStARp37 =(((((γStARp37 +((((εStARp37 = 1.78× 10−3min−1 [Granot
et al., 2003]. In contrast, when both protein degradation and mitochondrial import are fully func-
tional, and in the absence of ACTH stimulation, the protein is extremely labile, with a half-life of
∼ 3.5min, corresponding to µACTH−

StARp37 = γStARp37 + εStARp37 = 1.98 × 10−1min−1 [Epstein and
Orme-Johnson, 1991]. However, upon PKA-mediated phosphorylation of the precursor after ACTH
stimulation, the StARp37 stabilises and its effective turnover rate drops by two orders of magnitude
down to µACTH+

StARp37 = γStARp37 + εStARp37 = 1.49× 10−3min−1 [Clark and Hudson, 2015]. Thus

µACTH−
StARp37 = 1.98× 10−1min−1

µACTH+
StARp37 = 1.49× 10−3min−1

The transition from a very high to a very low turnover rate for StARp37 is represented in the
second term in Eq. 18 by introducing the function g−StARp37(ACTH) (Eq. 19), which modulates
the removal rate µStARp37. As the decrease in the turnover rate upon ACTH stimulation is quite
large, we can fix the parameter as µStARp37 = 1.98 × 10−1min−1 when no ACTH stimulation is
present and let the function g−StARp37(ACTH) stabilise StARp37. Summarising for the StAR gene,
the turnover rates are:

γstAR = 1× 10−1min−1, γStAR = 3.96× 10−3min−1, γStARp37 = 1.98× 10−1min−1.

Though the half-life of intra-adrenal corticosterone (ACORT ) has not been measured directly,
given its rapid export to the bloodstream we can assume it has a faster removal rate than its plasma
counterpart. Assuming a half-life of 1min, we estimate a turnover rate of

µACORT = 6.93× 10−1min−1

Lastly, for the phosphorylated glucocorticoid receptor (pGR), we find from [Bodwell et al., 1998]
that the mouse GR is very stable, with a half-life of ∼ 18hrs (reduced down to 8 − 9hrs upon
dexamethasone stimulation). However, we’re interested in the half-life of the active, phosphorylated
form of GR. This is likely to be much more short-lived, but nonetheless has not been measured.
For the sake of simplicity, we assume it’s half-life is the same as that of ACORT , which implies a
turnover rate of

γpGR = 6.93× 10−1min−1

2.5 Half-Maximum Constants

The half-maximum constants (big K’s) are arbitrary parameters that nonetheless capture the sensi-
tivity of a process (e.g. synthesis or degradation) affecting the dynamics of a molecular species Y as
a function of the concentration of another species X. As the molecular mechanisms underlying these
processes are often unknown, we model them as Michaelis-Menten and Hill type functions. In the
latter case, when the Hill coefficient is high enough, these K’s could also be interpreted as activation
thresholds. Though arbitrary, their relative values are informative of how sensitive different nodes
within the adrenal SRN are to common external stimuli (e.g. ACTH and cytokines).

Half-maximum constants were estimated manually after observing the system’s time evolution
and correcting our model for the timescales at which the peak of the transient response, together
with the rising and decreasing phases, followed the experimental data. The estimated K’s are
listed in Table B and represented graphically in Fig. S9. The half-maximum constants that are
neither dependent on ACTH nor cytokines, but are rather involved in Dax1, Sf1 and StAR mRNA
degradation, in ACORT and pGR synthesis, and in regulation of Dax1 and StAR gene promoters,
were also fixed manually to values close to the range observed during their circadian dynamics.

Of particular interest are the constants KACTH−lo
Dax1 and KACTH−hi

Dax1 which, respectively, represent
the lower and upper near half-maximum constants for a non-monotonous regulatory function (Eq. 5)
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that models dose-dependent effects of ACTH upon Dax1 mRNA stability (Fig. S4). We hypothesise
that this dose-dependent degradation of Dax1 mRNA could be a post-transcriptional regulatory
mechanism such as stress-induced non-sense mediated mRNA decay [He and Jacobson, 2015].

Basal Transcription Rates

σdax1 = 6.65× 10−13Mmin−1 σsf1 = 1.32× 10−13Mmin−1 σstAR = 5.91× 10−13Mmin−1

Transcription, Translation and Activation Rates

kdax1 = 1.33× 10−11Mmin−1

kDax1 = 1.04min−1

kDAX1 = 0.71min−1

kACORT = 6.39× 10−12Mmin−1

ksf1 = 2.64× 10−12Mmin−1

kSf1 = 0.21min−1

kSF1 = 0.73min−1

kGR = 1× 10−12Mmin−1

kstAR = 1.18× 10−11Mmin−1

kStAR = 0.93min−1

kStARp37 = 1min−1

Degradation Rates

γdax1 = 1.5× 10−2min−1

γDax1 = 3.85× 10−3min−1

γDAX1 = 1.93× 10−3min−1

µACORT = 6.93× 10−1min−1

γsf1 = 3.18× 10−2min−1

γSf1 = 2.03× 10−14Mmin−1

γSF1 = 8× 10−3min−1

γpGR = 6.93× 10−1min−1

γstAR = 1× 10−1min−1

γStAR = 3.96× 10−3min−1

µStARp37 = 1.98× 10−1min−1

Delays

τDax1 = 2.79min

τDAX1 = 1.4min

τSf1 = 14.57min

τSF1 = 1.38min

τStAR = 5.58min

τStARp37 = 1min

Half-Maximum Constants

KACTH
dax1 = 90 pgml−1

KACTH−lo
Dax1 = 30 pgml−1

KACTH−hi
Dax1 = 1000 pgml−1

KACTH
sf1 = 30 pgml−1

KACTH
SF1 = 70 pgml−1

KACTH
stAR = 70 pgml−1

KACTH
StARp37 = 70 pgml−1

KACORT = 4.5AU

KG = 0.76AU

KD = 5.7× 10−5M

KSf1 = 1× 10−8M

KSF1 = 6.2× 10−7M

KStAR = 1× 10−8M

KStARp37 = 4× 10−8M

KIL6
dax1 = KIL6

Dax1 = KIL6
DAX1 = 500AU

KIL6
sf1 = 1000AU

KIL6
Sf1 = KIL6

SF1 = 100AU

KIL6
StAR = 2500AU

KIL6
StARp37 = 500AU

KIL1β
stAR = 200AU

KTNFα
stAR = KTNFα

StAR = 60AU

KTNFα
pGR = 20AU

Table B: Kinetic rates and other estimated parameter values.
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3 Crosstalk Between the Adrenal SRN and the Immune Path-
way

Stimulation of rats with the bacterial lipopolysaccharide (LPS) endotoxin elicits a strong response
not only at the HPA level but also on the immune system. In particular, LPS induces cytokines
TNFα, IL1β and IL617, which are known to act upon targets of the adrenal SRN and among
themselves.

A previous mathematical model by [Malek et al., 2015] suggested a way in which LPS, TNFα
and IL6 may interact with ACTH and CORT to mediate the adrenal response to inflammation.
However, such a model assumed direct interactions of these cytokines upon ACTH, ignoring the
steroidogenic pathway within adrenal cells. LPS effects on the immune system are more complex
and start with the recruitment of macrophages to the adrenal cortex. This increases levels of TNFα
in a first stage (peak at 60min), and of IL1β and IL6 (in T-lymphocytes) in a second stage (peaks
at 120min) [Givalois et al., 1994]. While it is believed that the first stage is amplified through a
positive feedback, in the second one IL1β and IL6 are known to inhibit rising levels of TNFα.
Moreover, though CORT is known to inhibit both IL1β and IL6, it has been proposed that IL1β
is involved in the initial activation of CORT production, whereas IL6 sustains it [Givalois et al.,
1994; Kanczkowski et al., 2013]. These interactions between LPS and cytokines, together with the
crosstalk between the immune pathway and the adrenal SRN (Table C), is summarised in Fig. S8.

Even though the interactions among cytokines are complex, we know that the output of the
internal crosstalk within the immune pathway upon an LPS challenge delivers the measured levels
of TNFα, IL1β and IL6 (Fig. S7a-c). Thus, we can ignore the interactions within the immune
pathway as long as we account for the effects of cytokines upon specific targets of the adrenal SRN.
This effectively means that, during an LPS challenge, in addition to an ACTH input we will now
use the time course of these cytokines as input functions. The task becomes complex as soon as we
realise that the experimental evidence available comes from different cell types and animal models
(Table C).

3.1 Model Equations for the SRN with Cytokine Interactions

We explored different network architectures and arrived to the scenario depicted in Fig. 5, which is
associated to the following set of model equations, where the cytokine effects are shown in red:

˙dax1 = σdax1 + kdax1fdax1(SF1, pGR)g−dax1(ACTH)φdax1(IL6)− γdax1dax1,

˙Dax1 = kDax1dax1τDax1
φDax1(IL6)− γDax1Dax1g∓Dax1(ACTH),

˙DAX1 = kDAX1Dax1τDAX1
φDAX1(IL6)− γDAX1DAX1,

˙sf1 = σsf1 + ksf1g
+
sf1(ACTH)φsf1(IL6)− γsf1sf1,

˙Sf1 = kSf1sf1τSf1
φSf1(IL6)− γSf1hSf1(Sf1),

˙SF1 = kSF1Sf1τSF1
φSF1(IL6)− γSF1SF1g−SF1(ACTH),

˙stAR = σstAR + kstARfstAR(SF1, DAX1)g+stAR(ACTH)φstAR(TNFα)φstAR(IL1β)− γstARstAR,
˙StAR = kStARstARτStAR

φStAR(TNFα)φStAR(IL6)− γStARhStAR(StAR),

˙StARp37 = kStARp37StARτStARp37
φStARp37(IL6)− µStARp37StARp37g−StARp37(ACTH),

˙ACORT = kACORT fACORT (StARp37)− µACORTACORT,
˙pGR = kGRfpGR(ACORT )φpGR(TNFα)− γpGRpGR.

17The hyphen in TNF-α, IL-1β, and IL-6 labels was dropped to avoid confusion with a minus sign.
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where

φdax1(IL6) =
KIL6
dax1

KIL6
dax1 + IL6

, φstAR(TNFα) = 1 +
TNFα

KTNFα
stAR + TNFα

,

φDax1(IL6) =
KIL6
Dax1

KIL6
Dax1 + IL6

, φstAR(IL1β) = 1 +
IL1β

KIL1β
stAR + IL1β

,

φDAX1(IL6) =
KIL6
DAX1

KIL6
DAX1 + IL6

, φStAR(TNFα) = 1 +
TNFα

KTNFα
StAR + TNFα

,

φsf1(IL6) =
KIL6
sf1

4

KIL6
sf1

4
+ IL64

, φStAR(IL6) =
KIL6
StAR

KIL6
StAR + IL6

,

φSf1(IL6) =
KIL6
Sf1

4

KIL6
Sf1

4
+ IL64

, φStARp37(IL6) =
KIL6
StARp37

KIL6
StARp37 + IL6

,

φSF1(IL6) =
KIL6
SF1

KIL6
SF1 + IL6

, φpGR(TNFα) =
KTNFα
pGR

KTNFα
pGR + TNFα

.

As before, the half-maximum constants for the cytokine effects upon targets of the adrenal SRN
can be understood as sensitivities. These were estimated by manually fitting the model predictions
to experimental data from the LPS challenge experiments. The values are listed in Table B and
represented graphically in Fig. S9d-f.

Cytokine Target Sign Cell type/species Reference

TNFα StAR mRNA/protein – Rat testis Leydig tumor cells (LC-540) [Sadasivam et al., 2015]

StAR mRNA/protein – Mouse macrophage cell line (RAW264.7) [Ma et al., 2007]

DAX1 protein + Rat testis Leydig tumor cells (LC-540) [Sadasivam et al., 2015]

StAR mRNA + Human adrenocortical cells (NCI-H295R) [Tkachenko et al., 2011]

Cortisol – Bovine Zone Fasciculata cells [Barney et al., 2000]

pGR – Human Airway Smooth Muscle cells [Bouazza et al., 2012]

IL1β StAR mRNA + Human adrenocortical cells (NCI-H295R) [Tkachenko et al., 2011]

IL6 StAR mRNA/protein + Bovine Zona Fasciculata cells [McIlmoil et al., 2016]

Dax1 mRNA/protein – Bovine Zona Fasciculata cells [McIlmoil et al., 2016]

SF1 mRNA/protein + Bovine Zona Fasciculata cells [McIlmoil et al., 2016]

StAR mRNA/protein – Bovine Zona Reticularis cells [McIlmoil et al., 2015]

Dax1 mRNA/protein + Bovine Zona Reticularis cells [McIlmoil et al., 2015]

SF1 mRNA/protein – Bovine Zona Reticularis cells [McIlmoil et al., 2015]

StAR mRNA + Human adrenocortical cells (NCI-H295R) [Tkachenko et al., 2011]

Cortisol + Bovine Zona Fasciculata cells [Barney et al., 2000]

LPS StAR 30 kDa – Rat testis Leydig cells [Allen et al., 2004]

[Held Hales et al., 2000]

StAR 30 kDa + Rat adrenal cells [Held Hales et al., 2000]

StAR 37 kDa + Rat testis Leydig tumor cells [Allen et al., 2004]

StAR + Mouse Y1 cells [Calejman et al., 2011]

Corticosterone + Rat adrenal cells [Calejman et al., 2011]

Table C: Cytokine effects upon targets within the adrenal SRN.
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3.2 Scaling Model Outputs of Cytokine Targets

Even though our model predicts the time evolution of hnRNA, mRNA, and protein concentrations,
these predictions are inherently qualitative. This is mainly because we have approximated the
mechanisms underlying gene regulation through Hill type functions and, to a lesser degree, because
our model doesn’t account for regulatory processes affecting mRNA and protein stability.

However, in order to make our model predictions comparable to the experimental data (expressed
in pg/µg for ACORT and as fold induction for all other variables), we have implemented a variable
change to express the model predictions in terms of dimensionless arbitrary units. To do this
consistently, all x state variables in the model were transformed according to the formula:

x̂ =
x− xt=0

xmax − xmin
σx + offset

where xt=0 is the value of x at the time the pulse is given, xmax and xmin are the maximum and
minimum value of the response, and σx is a scaling factor. The offset value was set to 1 for all state
variables with data reported as fold induction, except for ACORT, which experiments reported as
pg/µg and for which we set an offset of 25, following the baseline observed in ACTH i.v. pulse
experiments.

The scaling factors were adjusted to reproduce the data of the ACTH i.v. pulse experiment, and
these remained invariant when the model was used to predict the high s.c. ACTH pulse and LPS
challenge data without cytokines (Table D). The only scenario where scaling factors were allowed
to vary was after modifying the existing model to account for cytokine effects. Interestingly, in this
latter case most scaling factors remain invariant, except for those multiplying variables targeted by
cytokines. As before, this is because we have used Hill type functions to approximate the mechanisms
by which these pro-inflammatory cytokines interact with targets of the SRN.

Variable
ACTH small ACTH high LPS challenge LPS challenge

i.v. pulse s.c. pulse without cytokines with cytokines

ACORT 300 300 300 300

pGR 3.5 3.5 3.5 0.4

dax1 hnRNA 0.9 0.9 0.9 0.9

Dax1 mRNA 0.4 0.4 0.4 0.8

DAX1 protein 0.1 0.1 0.1 0.6

sf1 hnRNA 0.6 0.6 0.6 0.6

Sf1 mRNA 0.5 0.5 0.5 0.1

SF1 protein 0.2 0.2 0.2 0.2

stAR hnRNA 3 3 3 3

StAR mRNA 2 2 2 2

StARp37 protein 0.1 0.1 0.1 2

Table D: Scaling factors σx. Values in red correspond to non-statistically significant data. All scaling factors
remain invariant in the model, except when the model is modified to account for cytokine inputs (last column)

and only on molecular species targeted by cytokines (Fig. 5).
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