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SI Appendix

1 Theory

1.1 Kullback-Leibler optimal coupling between experimental and simulation
ensembles

Given data from a simulation ensemble with equilibrium distribution π and an unknown experimental
ensemble with equilibrium distribution π̂, we wish to find an expression of π̂ in terms of π which
minimizes their Kullback-Leibler functional subject to the appropriate constraints. Performing this
optimization is consistent maximum entropy principle. We requireK experimentally measured quantities
to have expectation values according to π̂ that match corresponding unknown expectation values m̂ and
that π̂ is normalized. We enforce these constraints using K + 1 Lagrange multipliers - we get:

S = −
∑

i

π̂i ln

(
π̂i
πi

)
+
∑

k

λk

(∑

i

π̂i(ek)i − m̂k

)
+ µ

(∑

i

π̂i − 1

)

∂S

∂π̂i
=

∑

k

λk(ek)i − ln

(
π̂i
πi

)
− 1 + µ = 0

π̂i = πi exp

(∑

k

λk(ek)i

)
exp(µ)⇒ exp(µ) =

1∑
i πi exp (

∑
v λv(ev)i)

by normalization

π̂i =
πi exp (

∑
v λv(ev)i)∑

i πi exp (
∑
v λv(ev)i)

(1)

where λk has to be chosen such that the constraint on the measurable quantities is satisfied, and exp(µ)
was chosen as to ensure π̂ is normalized

1.2 Augmented likelihood functional
In the main text we present the maximum likelihood minimum Kullback-Leibler divergence functional
where the well-known transition probability matrix likelihood has been augmented by a factor introducing
the experimental measurements ok with experimental uncertainties σ2

k = 1/2wk:

L ∝


∏

i,j

p
cij
ij



(∏

k

exp
(
−wk(m̂k − ok)2

)
)
. (2)

Without loss of generality we define the symmetric matrix xij = πipij . In the following we use the matrix
elements xij as variables, and express the transition probabilities pij and equilibrium density πi in terms
of xij : pij = xij/πi , and πi =

∑
j xij .

At a first inspection of Eq. 2, the first factor appears to only depend on the simulation quantities,
and the second factor depends on the experimental quantities. However, the factors are coupled through
the minimum Kullback-Leibler expression (eq. 1). To make this more explicit we insert expression (1)
into the augmented likelihood (3):
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L ∝


∏

i,j

(
xij
πi

)cij


(∏

k

exp

(
−wk(

∑

i

π̂i(ek)i − ok)2

))
=


∏

i,j

(
xij
πi

)cij





∏

k

exp


−wk



∑n
s=1(ek)sπs exp

(∑K
v=1 λv(ev)s

)

∑n
s=1 πs exp

(∑K
v=1 λv(ev)s

) − ok




2




 . (3)

If we maximize (3) w.r.t. π, pij and λk we obtain a Markov model integrating both simulation and
experimental data: an Augmented Markov Model (AMM). Depending on our particular situation we
propose two different algorithms to maximize eq. 3.

1.2.1 Estimation: the ideal case

If ok is within the support of ek for all K observations, the two factors in the likelihood functional (eq.
2) decouple. Therefore we can estimate π first using the reversible estimator of transition probability
matrices [1, 2], and then estimate the Lagrange multipliers λv such that π̂ ·ek = ok. Then we compute π̂
using (eq. 1) and compute the AMM by estimating a transition probability matrix with the stationary
distribution constrained to be π̂ [3].

1.2.2 General fixed point iteration algorithm

In most practical cases mk will not be within the support of ek for all K observations. In this case we
need to devise a fixed point iteration algorithm. We start with the log-likelihood:

LL =
∑

i,j

cij log xij −
∑

i

ci log πi −
∑

k

wk



∑n
s=1(ek)sπs exp

(∑K
v=1 λv(ev)s

)

∑n
s=1 πs exp

(∑K
v=1 λv(ev)s

) − ok




2

where ci =
∑
j cij . Both xij and λi are unknown, and we want to find these such that the likelihood is

maximized.
Taking derivatives of LL with respect to xij , by using the fact that xij = xji and πi =

∑
j xij (that

is: ∂πi

∂xkj
= δik + δjk), we obtain:

∂LL

∂xij
=
cij + cji
xij

− ci
πi
− cj
πj
−Qij(λ, π) (4)

where

Qij(λ, π) =
∂

∂xij

∑

k

wk



∑n
s=1(ek)sπs exp

(∑K
v=1 λv(ev)s

)

∑n
s=1 πs exp

(∑K
v=1 λv(ev)s

) − ok




2

=

= 2
∑

k

wkSk(λ, π)Rk,ij(λ, π)

with

Sk(λ, π) =

∑n
s=1(ek)sπs exp

(∑K
v=1 λv(ev)s

)

∑n
s=1 πs exp

(∑K
v=1 λv(ev)s

) − ok = m̂k − ok

2



and

Rk,ij(λ, π) =
∂

∂xij
Sk(λ, π)

=
∂

∂xij

∑n
s=1(ek)sπs exp

(∑K
v=1 λv(ev)s

)

∑n
s=1 πs exp

(∑K
v=1 λv(ev)s

)

=
(ek)iπi exp

(∑K
v=1 λv(ev)i

)
+ (ek)jπj exp

(∑K
v=1 λv(ev)j

)

∑n
s=1 πs exp

(∑K
v=1 λv(ev)s

)

−

[
πi exp

(∑K
v=1 λv(ev)i

)
+ πj exp

(∑K
v=1 λv(ev)j

)]∑n
s=1(ek)sπs exp

(∑K
v=1 λv(ev)s

)

(∑n
s=1 πs exp

(∑K
v=1 λv(ev)s

))2 .

The above expression is related to the fluctuations of the observables in the Markov states. It can be
recast in more compact form in terms of the experimental state probabilities, π̂i, by using expression (1)
and m̂k:

Rk,ij(λ, π) = (ek)iπ̂i + (ek)j π̂j − (π̂i + π̂j) m̂k = π̂i ((ek)i − m̂k) + π̂j ((ek)j − m̂k)

and

Qij(λ, π) = 2
∑

k

wkSk(λ, π)Rk,ij(λ, π) = 2

K∑

k=1

wk (m̂k − ok) [π̂i ((ek)i − m̂k) + π̂j ((ek)j − m̂k)] .

This expression is consistent with the intuition that if an observable is not expected to vary significantly
across the different microstates of the system, its experimental measurement is not very useful to correct
the statistics.

By taking the derivatives of LL with respect to λi, we obtain:

∂LL

∂λi
= −2

∑

k

wk
∂

∂λi



∑n
s=1(ek)sπs exp

(∑K
v=1 λv(ev)s

)

∑n
s=1 πs exp

(∑K
v=1 λv(ev)s

) − ok




2

= −2
∑

k

wkSk(λ, π)Gk,i(λ, π) (5)

with Sk(λ, π) defined above and

Gk,i(λ, π) =
∂

∂λi
Sk(λ, π) =

=
∂

∂λi

∑n
s=1(ek)sπs exp

(∑K
v=1 λv(ev)s

)

∑n
s=1 πs exp

(∑K
v=1 λv(ev)s

) =

=

∑n
s=1(ek)s(ei)sπs exp

(∑K
v=1 λv(ev)s

)

∑n
s=1 πs exp

(∑K
v=1 λv(ev)s

) +

−

(∑n
s=1(ek)sπs exp

(∑K
v=1 λv(ev)s

))(∑n
s=1(ei)sπs exp

(∑K
v=1 λv(ev)s

))

(∑n
s=1 πs exp

(∑K
v=1 λv(ev)s

))2 .

The above expression also takes a more compact form in terms of the corrected densities, and it’s related
to the covariance of the observables over the Markov states:

Gk,i(λ, π) =

n∑

s=1

(ek)s(ei)sπ̂s −
(

n∑

s=1

(ek)sπ̂s

)(
n∑

s=1

(ei)sπ̂s

)
= m̂ki − m̂km̂i
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where m̂ki =
∑n
s=1(ek)s(ei)sπ̂s.

Setting the derivatives ∂LL
∂xij

equal to 0 and solving for xij yields the equations:

cij + cji
xij

=
ci
πi

+
cj
πj

+Qij(λ, π)

or
xij =

cij + cji
ci
πi

+
cj
πj

+Qij(λ, π)
. (6)

These equations are not easily solved directly, as the expression on the right hand side of (6) is also a
non-trivial function of xij . However, they can be solved iteratively, as discussed below. From (6) we can
construct the fixed point iteration for π:

πi =
∑

j

xij =
∑

j

cij + cji
ci
πi

+
cj
πj

+Qij(λ, π)
(7)

Setting to ∂LL
∂λi

to 0 and solving for λi yields:

∑

k

wkSk(λ, π)Gk,i(λ, π) = 0 (8)

which can be updated with a Newton step.

1.2.3 Estimation algorithm

The equations above lead to the following algorithm:

1. Initialize π using the reversible transition probability matrix estimator with cij and set all λi = 0.

2. Iterate until convergence:

(a) Update π for fixed {λi} (thus, fixed π̂ and {m̂k}) using fixed-point step (Eq. 7).

(b) Update {λi} for fixed π using a Newton step (Eq. 8).

(c) Compute updated π̂ and {m̂k} for fixed π with updated {λi} (Eq. 1 and m̂k).

3. Compute P̂ = arg maxP (C | π̂, P ), i.e. maximum likelihood MSM for given stationary distribu-
tion, π̂.

1.2.4 Implementation details

Covergence of the Lagrange multiplier λl is when the change
∣∣∣∣
m̂

(i+1)
l −m̂(i)

l

σl

∣∣∣∣ < 5%, where m̂(i)
l is m̂l in the

i-th iteration and σl is the experimental uncertainty. When the Lagrange multipliers have converged, π
and π̂ are updated until the change in LL is less than 10−3.

1.3 Special case of the augmented likelihood functional: state counts only
In some simulation cases, including generalized ensemble methods (meta-dynamics/local-elevation, replica
exchange etc) and Markov chain Monte Carlo methods, we only have access to unbiased state counts, ci.
In these cases the first factor of the likelihood functional reduces to a categorial distribution:

L ∝
(∏

i

πcii

)(∏

k

exp
(
−wk(m̂k − ok)2

)
)
. (9)

We can maximize this for π and λv through the log-likelihood:

LL =
∑

i

ci log πi −
∑

k

wk



∑n
s=1(ek)sπs exp

(∑K
v=1 λv(ev)s

)

∑n
s=1 πs exp

(∑K
v=1 λv(ev)s

) − ok




2

, (10)

we get
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∂LL

∂πi
=

ci
πi
−
∑

k

wk




(ek)iπi exp
(∑K

v=1 λv(ev)s

)

∑n
s=1 πs exp

(∑K
v=1 λv(ev)s

) − ok




2

=
ci
πi
− 2

∑

k

wkπ̂i(m̂k − ok)[(ek)i − m̂k]

πi =
ci

2
∑
k wk(m̂k − ok)π̂i[(ek)i − m̂k]

.

Similarly, for the Lagrange multipliers we get,

∂LL

∂λv
=

∑

k

wk




(ek)iπi
exp

(∑K
v=1 λv(ev)s

)

∑n
s=1 πs exp

(∑K
v=1 λv(ev)s

) − ok




2

0 = 2
∑

k

wk(m̂k − ok).

Iterating these two equations will until convergence will allow us to get an estimate of π̂. Alternatively, if
unbiased samples of π can be recovered from the sampling approach, we may use an importance sampling
scheme to generate samples from π̂ [4].

1.4 Bayesian error estimation in AMMs
Following convergence of the Lagrange multipliers, errors of AMM are estimated through Markov Chain
Monte Carlo sampling. We assume a sparsity inducing prior on the transition probabilities and sample
stationary distributions conditioned on the transition counts, C [5], the estimated Lagrange multipli-
ers and experimental restraints. Effectively, we are generating samples from the following posterior
distribution

p(π̂ | C,o,σ) ∝
∏

k

N (ok | m̂k, σk)p(π | C). (11)

Here, o is the vector of experimental data with associated uncertainties σ, and N (·) denotes the normal
distribution. The posterior samples are then used to compute an ensemble of transition probability
matrices as above.

1.5 Correlated experimental errors
If knowledge of the correlation structure of experimental observables is available, these can be taken
into account by replacing the assumption of independent normal data in the experimental factor of the
likelihood, with one allowing for expression of the full covariance structure Σ: a multi-variate Normal.
In this case the likelihood becomes

L ∝


∏

i,j

p
cij
ij


 exp(−1

2
(m̂− o)TΣ−1(m̂− o)). (12)

subject to the same maximum entropy coupling functional (eq. 1). Further, m̂ and o are vectors of
predicted and experimental experimental observables and Σ is the full experimental covariance matrix.

2 SI Materials and Methods

2.1 Protein folding model system simulation and analysis details
200 trajectories of 10000 steps were generated for each model and used for the analysis shown in the
main text. Mean first passage times of folding and unfolding were computed as entering the fully folded
state starting from the fully unfolded state, and vice versa, as previously described [6]. The AMMs
were estimated using the average helicity in the ’true’ model, 59.788 with an uncertainty of 0.299, as a
restraint. The model is based upon one from Ref. [7].
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2.2 Augmented Markov model and Markov state model estimation details
of Ubiquitin

All pairwise Cα-Cα distances and φ,ψ backbone dihedral angles - the molecular features - were extracted
from two 1 ms trajectories of Ubiquitin strided into 5 nanosecond steps. The simulations were carried
out as reported previously in the CHARMM22* [8, 9] and CHARMM-h [10, 11] force fields. These
molecular features embedded into the slowest 6 time-lagged independent components (lag-time: 0.75µs)
[12] and this space was then segmented into 256 cluster using k-means clustering. Count matrices were
generated for each of the 1 ms trajectories independently (lag-time: 100 ns) which were used to estimate
the two Markov state models, implied time-scale and self-consistency checks were carried out (Fig. S1).
The augmented Markov models were estimated by maximizing the likelihood given in equation 3, using
the same count matrices used for estimation the corresponding MSMs [13]. In addition to the count
matrix, experimental residual dipolar couplings (RDC) and NH −H

α 3J couplings couplings were used
as input. The inclusion of an experimental observable, ok, involves computation of the experimental
observable in each Markov state, ek. For 3J couplings couplings the Karplus relation was used with
previously published Karplus parameters [14]. For the RDCs the frames of the MD trajectories were
superimposed to the frame which minimizes the sum of Cα RMSD to all other frames, and one alignment
tensor was estimated for each of the 36 alignment conditions as previously described [15]. Each of the
alignment tensors were then used to compute Markov state averaged RDCs. Finally, we set uncertainties,
σk, uniformly to 0.5 Hz to accommodate for any potential noise in the experiment as well as any random
errors associated with prediction of Markov state observables. Estimated AMMs were robust with
respect to variation of error parameters between 0.2 and 2.0 Hz. Bayesian error estimates, are reported
as confidence intervals of 50 posterior samples. For AMMs the samples were generated using Eq. (11)
and for MSMs they were generated as previously described [5].

2.3 Back-calculation of NMR observables
As the lag-time of the Markov models exceeds the rotational correlation time of Ubiquitin at the tem-
peratures considered here, we may accurately approximate the exact nuclear Overhauser enhancements
between a spin-pair i by eNOEi ∝ − π̂· r−6i [16]. Here, r−6i is the vector of the inter-atomic distance
to the minus sixth power between the atoms involved in the given eNOE. Expressions for cases where
this condition is not the fulfilled are given elsewhere [17]. Cross-correlated relaxation rates between
the inter-atomic vectors A-B and C-D were computed as CCR ∝ P2(cos θ) where P2(·) is the second
Lagrange polynomial and θ is the angle between the A-B and C-D vectors. This expression assumes
isotropic rotational diffusion. Expressions for anisotropic rotational diffusion are given elsewhere [18].
R1ρ relaxation dispersion data were computed as recently described [19] using the 1HN chemical shifts
computed by CAMSHIFT [20, 21].

2.4 Comparisons of Markov state models and augmented Markov models
To compare two models 1 and 2, either MSMs and AMMs, a set of microstates visited in both models,
K, is identified, the stationary distributions of each of the models were renormalized on this set yielding
the distributions ρ1 and ρ2 defined on the common set. Using the Kullback-Leibler divergence

L(ρ1, ρ2) =
∑

i∈K
ρi1 ln

ρi1
ρi2

we can compute the symmetric measure, the Jensen-Shannon divergence (JSD) as

H(ρ1, ρ2) =
1

2
(L(ρ1, %) + L(ρ2, %)) , %i =

1

2
(ρi1 + ρi2),

which measures how ’similar’ two distributions are to each other. The JSD is dominated by differences
high-density areas an will not be sensitive to subtle changes sparsely populated states. Considering the
uncertainties in the inferred models this is a desirable property as it leads to a more robust measure.
Confidence intervals were computed by using the JSD for pairs of independently sampled models; for
AMMs the scheme described above was used to generate samples, for MSMs a previously described
Bayesian scheme was used [5].
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2.5 Protein folding model system parameters

2.6 Bayes factor model selection using R1,ρ relaxation dispersion data
We use the Bayes factor [22] to evaluate whether R1,ρ data predicted by the AMMs, a, is better at
describing the experimental data r considering the experimental uncertainty σ when compared to the
MSM, m. We compute these using a numerical approximation of the integral of the likelihood of observing
the predicted R1,ρ data under a normal error model, given the data. We obtain the expression

Bayes factor ≈ log
∑

i

N (ai | r,σ)− log
∑

i

N (mi | r,σ) (13)

where the i is the index of the sampled models. AMMs are sampled according to (eq. 11) and MSMs
are sampled as previously described [5]. We here use 50 samples for each model type. The predicted
data for the AMMs and MSMs is scaled and an intercept is added according to a previously described
scheme [19], prior to the calculation of the Bayes factors.

8



3 Supporting data
2.5 Protein folding model system parameters

Figure S1: Upper: Implied time-scale as a function of MSM lag-time for CHARMM22* (left) and
CHARMM-h (right). Each colored line corresponds to the correlation timescale, computed as ⌧i =
� ⌧MSM

log |�i| where �i is the i-th largest Eigenvalue of the transition probability matrix determined using a
lag-time of ⌧MSM. Lower: Chapman-Kolmogorov test for CHARMM22* (left) and CHARMM-h (right).
Each of the panels show the (estimated (from MD data) and predicted (using a MSM with lagtime:
100 ns) transition probability between 4 meta-stable sets automatically determined using PCCA.

2.6 Bayes factor model selection using R1,⇢ relaxation dispersion data
We use the Bayes factor [22] to evaluate whether R1,⇢ data predicted by the AMMs, a, is better at
describing the experimental data r considering the experimental uncertainty � when compared to the
MSM, m. We compute these using a numerical approximation of the integral of the likelihood of observing
the predicted R1,⇢ data under a normal error model, given the data. We obtain the expression

Bayes factor ⇡ log
X

i

N (ai | r,�) � log
X

i

N (mi | r,�)

where the i is the index of the sampled models. AMMs are sampled according to (eq. 11) and MSMs
are sampled as previously described [5]. We here use 50 samples for each model type. The predicted

8

Figure S1: Upper: Implied time-scale as a function of MSM lag-time for CHARMM22* (left) and
CHARMM-h (right). Each colored line corresponds to the correlation timescale, computed as τi =
− τMSM

log |λi| where λi is the i’th largest Eigenvalue of the transition probability matrix determined using a
lag-time of τMSM. Lower: Chapman-Kolmogorov test for CHARMM22* (left) and CHARMM-h (right).
Each of the panels show the (estimated (from MD data) and predicted (using a MSM with lagtime:
100 ns) transition probability between 4 meta-stable sets automatically determined using PCCA.
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C22* MSM C22* AMM C-h MSM C-h AMM
RDCs (Q) * 0.3180.3190.316 0.2940.2940.294 0.2820.2830.281 0.2790.2790.279
3J (Hz) * 0.9990.9990.999 0.9870.9870.987 0.9420.9420.941 0.9370.9380.936

eNOEs (ρ) 0.9070.9080.907 0.9080.9090.908 0.9110.9120.911 0.9130.9130.912

CCRs (ρ) 0.420.420.41 0.410.410.41 0.460.470.45 0.480.490.48

τ1 (µs) 70.0478.0459.59 12.8314.11.88 106.27135.9880.22 22.3224.7716.17

τ2 (µs) 27.4230.924.61 11.3812.2910.16 43.3160.7535.20 17.8518.9414.61

τ3 (µs) 1315.7710.24 9.129.867.89 10.7213.578.33 13.9214.9810.13

τ4 (µs) 8.816.825.11 3.443.812.95 7.018.755.86 8.389.287.22

Table S2: Comparison of AMMs and MSMs of ubiquitin built using simulation data from the
CHARMM22* (C22*) and CHARMM-h (C-h) force fields. Agreement with residual dipolar coupling
data is computed as the average Q-factor (Q =

rms(Dexp−Dcalc)
rms(Dexp)

) [23] of experimental data from 36
alignment conditions. Individual Q-factors for all the data sets are shown in Figs. S2-S3. Agreement
with eNOE data (backbone-backbone amide proton eNOE at 307K [24]), CCR data [25] (RHN,CαHα,
308K) was computed using Pearsons correlation coefficient. The four slowest correlation timescales, are
computed as τi = − τMSM

log |λi| where λi is the i-th largest Eigenvalue of the transition probability matrix
determined using a lag-time of τMSM = 100 ns. Upper and lower bounds of a 95% confidence interval are
shown in super- and sub-scripts, respectively.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A1
0

A1
1

A1
2

A1
3

A1
4

A1
5

A1
6

A1
7

A1
8

A1
9

A2
0

A2
1

A2
2

A2
3

A2
4

A2
5

A2
6

A2
7

A2
8

A2
9

A3
0

A3
1

A3
2

A3
3

A3
4

A3
5

A3
6

Data set

0.0

0.1

0.2

0.3

0.4

Q 
fa

ct
or

C22* Ubiquitin simulation
C22* Avg. 0.315
C22*+JC+RDC Avg. 0.294

Figure S2: Agreement of MSMs(C22*) and AMMs (C22*+RDC+JC) built with the CHARMM-22*
force field with individual residual dipolar coupling (RDC) datasets. The AMMs include all RDC data
plus a NH −H

α 3J-coupling dataset from Maltsev et al.[26]. Dataset names are as in Lange et al. [27].
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Figure S3: Agreement of MSMs(C-h) and AMMs (C-h+RDC+JC) built with the CHARMM-h force
field and individual residual dipolar coupling (RDC) datasets. The AMMs include all RDC data plus a
NH −H

α 3J-coupling dataset from Maltsev et al.[26]. Dataset names are as in Lange et al. [27].
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Figure S4: Right: Predictions of residual dipolar couplings associated with the 100 largest Lagrange
multipliers. Left: the residue position of the residual dipolar couplings. Top for C22*, bottom for C-h.

12

Figure S4: Right: Predictions of residual dipolar couplings associated with the 100 largest Lagrange
multipliers. Left: the sequential distribution of the residual dipolar couplings with the 100 largest
Lagrange multipliers. Top for C22*, bottom for C-h.
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Figure S5: Comparison of experimental R1ρ data at 292K and 308K with MSMs(C-h) and AMMs (C-
h+RDC+JC) based on simulation data from CHARMM-h at 300K. The AMMs also use RDC and
3J-coupling data as described in the main text. Shaded area around the solid lines represents a 95%
confidence interval. χ2 values are computed to the sample mean (solid lines).
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Figure S6: Comparison of experimental R1ρ data at 292K and 308K with MSMs(C22*) and AMMs
(C22*+RDC+JC) based on simulation data from CHARMM22* at 300K. The AMMs also use RDC and
3J-coupling data as described in the main text. Shaded area around the solid lines represents a 95%
confidence interval. χ2 values are computed to the sample mean (solid lines).
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