

Fig. S1. RNA-Seq data analysis and validation in human CSCs. A. Heat map of data from cells treated with DMSO (0.1%) or PGE₂ (100 nM) for 1 or 24 h. Data represent hierarchical clustering of differentially expressed genes with False Discovery Rate (FDR) < 0.05, log₂ fold change > 1.5, normalized to 1 h DMSO. **B.** Principal component analysis demonstrating Biological Coefficient of Variation (BCV) of different treatment groups. Volcano plots providing FDR values and fold change for all gene transcripts in PGE₂-treated hCSCs at 1 h (*Left*) or 24 h (*Right*). Differentially expressed genes with FDR< 0.05 are indicated in red. **C.** Validation of RNA-Seq data. Six different genes were selected by fold-change in different pathways significantly altered by PGE₂. (a) Data from RNA-Seq analysis at 24 h expressed as Fragments Per Kilobase of exon per Million fragments mapped (FPKM). (b) Relative quantification of mRNA in hCSCs prepared from non-pregnant (**qPCR NP-hCSC**) or (c) pregnant (**qPCR P-hCSC**) cervices treated with either DMSO or PGE₂ (100 nM) for 24. Data represent relative mean mRNA levels ± SD of triplicates normalized to GAPDH mRNA levels. **P* < 0.05 compared with DMSO treated controls. RFE (AU), Relative Fold Expression (Arbitrary Units)

Fig. S2. PGE₂-mediated gene regulation is Ca²⁺-dependent. Genomic browser snapshots of PGE₂-mediated upregulation of *C-FOS* (**A**) and *DUSP1* (**B**) from RNA-seq dataset. **C**, **D**. Relative expression of Ca²⁺-responsive genes *C-FOS* and *DUSP1* in hCSCs treated with PGE₂ (100 nM) for different times quantified by RT-qPCR. Data represent relative mean mRNA levels \pm SD of triplicates after normalizing to GAPDH. **P* < 0.01 compared with 0 h time point. ANOVA, RFE (AU), Relative Fold Expression (Arbitrary Units). **E**. 15-PGDH mRNA levels in

hCSCs after treatment with DMSO, PGE₂ (50 nM) or 8-Bromo-cAMP (2 μ M), PGE₂ + adenylate cyclase inhibitor (ACi, 10 μ M) or PKA inhibitor (RpCAMPS 5 μ M), or PI3K inhibitors Wortmannin (1 μ M) or LY94002 (1 μ M). Data represent relative mean mRNA levels ± SD of triplicates after normalizing to *GAPDH* repeated in 3 cell preps. **P* < 0.01 compared to DMSO treated controls. Pathway inhibitors did not differ from PGE₂ alone, ANOVA followed by Tukey's test for multiple comparisons. RFE (AU), Relative Fold Expression (Arbitrary Units)

Fig. S3. Calcium ionophore A23187 mimics PGE₂ mediated effects in hCSCs. Relative levels of *15-PGDH*, *COX-2*, *DUSP1* and *C-FOS* mRNA in hCSCs treated with (A) increasing concentrations of the Ca²⁺ ionophore A23187 for 24 h, or (B) A23187 (1 μ M) as a function of time. Data represent relative mean mRNA levels ± SD of triplicates after normalizing to GAPDH mRNA. **P* < 0.01 compared with 0 h time point. RFE (AU), Relative Fold Expression (Arbitrary Units).

Fig. S4. HDACi treatment blocks PGE₂-mediated 15-PGDH gene repression both before and after PGE₂ treatment. 15-PGDH mRNA levels in hCSCs treated with DMSO or PGE₂ (A, 100 nM) or A23187 (C, 1 μ M) for 24 h followed by treatment with HDACi [TSA (1 μ M)/SAHA (2.5 μ M)/HDAC-42 (1 μ M)] for 12 h (**delayed** treatment), or with DMSO or HDACi [TSA (1 μ M)/SAHA (2.5 μ M)/HDAC-42 (1 μ M)] for 6 h followed by treatment with PGE₂ (**B**, 100 nM) or A23187 (**D**, 1 μ M) for 12 h (**primed** treatment). Data represent relative mean mRNA levels ±

SD of triplicates after normalizing to GAPDH mRNA levels. *P < 0.05 ANOVA, RFE (AU), Relative Fold Expression (Arbitrary Units)

Fig. S5. Reciprocal regulation of 15-PGDH and HDAC4 by PGE₂. A. HDAC4 and 15-PGDH mRNA after treatment with PGE₂ (100 nm) as a function of time in minutes or hours as indicated. **B.** Misoprostol (100 nM) and butaprost (100 nM, EP2-selective agonist) increase HDAC4 mRNA (24h). Data represent relative mean mRNA levels \pm SD of triplicates after normalizing to GAPDH mRNA levels in at least 3 cell preps. **P* < 0.05 ANOVA, RFE (AU), Relative Fold Expression (Arbitrary Units)

Fig. S6. PGE2 increases HDAC4 levels via EP2 receptor. Densitometric quantitation of immunoblots of HDAC4 protein in hCSCs pretreated with DMSO or PF-04418948 (2 μ M) followed by DMSO or PGE₂. **P* < 0.05 compared with PGE₂ treatment alone, Student's *t* test. N = 3

Fig. S7. HDAC2 and Sirtuins (Class III HDACS) do not regulate 15-PGDH gene in hCSCs. A. mRNA levels of *HDAC2* and *15-PGDH* in hCSCs transfected with negative siRNA control or HDAC2-specific siRNA. B. Data represents Fragments Per Kilobase of exon per Million fragments mapped (FPKM) of sirtuins expressed in hCSCs treated with DMSO or PGE₂ (100 nM) for 1 or 24 h mined from RNA-Seq dataset. GAPDH and RPLP0 are shown as controls (1/100th FPKM values). **P* < 0.05 compared with corresponding DMSO control. C. 15-PGDH mRNA levels in hCSCs treated with indicated concentrations of sirtuin inhibitor Aristoforin for

24 h. Data represent relative mean mRNA levels ± SD of triplicates after normalizing to GAPDH mRNA levels in at least 3 cell preps. Relative Fold Expression (Arbitrary Units)

Fig. S8. PGE₂ does not alter HDAC4 gene expression in SK-MEL5 and MCF7 cells. HDAC4 mRNA levels quantified by RT-qPCR in SK-MEL5 melanoma cells or MCF7 breast cancer cells treated with increasing concentrations of PGE₂ as indicated for 24 h. Data represent relative mean mRNA levels \pm SD of triplicates after normalizing to GAPDH mRNA levels. RFE(AU), Relative Fold Expression (Arbitrary Units)

Fig. S9. 15-PGDH is an HDAC4 target gene in hCSCs. A. mRNA levels of HDAC4 (**Aa**) and 15-PGDH (**Ac**) and protein levels of HDAC4 (**Ab**) in hCSCs transfected with control negative siRNA or two different HDAC4 siRNAs (^aAmbion; ^bSanta Cruz Biotechnologies) for 56 h. **P* < 0.001 compared to si-Neg. Student's *t* test. N = 3. **B.** mRNA levels of HDAC4 (**Ba**) and 15-PGDH (**Bc**) and protein levels of HDAC4 (**Bb**) in hCSCs infected with control adenovirus or HDAC4-expressing adenovirus for 48 h followed by incubation in serum-free medium for 24 h. Arrows indicate two immunoreactive proteins **P* < 0.001 compared with control adenovirus infected cells. Student's *t* test. RFE (AU), Relative Fold Expression (Arbitrary Units)

Fig. S10. HDAC5 does not regulate 15-PGDH gene expression in hCSCs. mRNA levels of HDAC5 and 15-PGDH in hCSCs transfected with negative siRNA control or HDAC5 specific siRNA. Data represent relative mean mRNA levels \pm SD of triplicates after normalizing to GAPDH mRNA levels. *P = 0.00002 compared with siNeg transfected cells. ANOVA, RFE(AU), Relative Fold Expression (Arbitrary Units)

Fig. S11. HDAC4 mediated repression of *15-PGDH* **is de-phosphorylation dependent. A.** Relative mRNA levels of 15-PGDH (**a**) and HDAC4 (**b**) in hCSCs treated with DMSO, KN-62 (5 μ M), KN-93 (5 μ M), or PGE₂ (100 nM) for 24 h. **B**. Levels of *15-PGDH* (**a**) and *HDAC4* (**b**) mRNA in hCSCs treated with DMSO, C2 ceramide (50 μ M) or PGE₂ (100 nM) for 24 h. **C**, **D**. 15-PGDH mRNA levels in hCSCs pretreated with DMSO or okadaic acid (OA, 100 nM) for 1 h followed by treatment with DMSO or KN-93 (5 μ M) for 23 h. Data represent mean mRNA levels \pm SD of triplicates after normalizing to GAPDH mRNA levels. **P* < 0.01 compared with DMSO treatment. Student's *t* test. N = 3 in at least 3 cell preps. RFE (AU), Relative Fold Expression (Arbitrary Units). **OA**, okadaic acid

Fig. S12. 16,16-dimethyl PGE₂ induces HDAC4 and represses 15-PGDH gene expression and has adverse fetal effects in pregnant mice. A. HDAC4 and 15-PGDH mRNA levels in hCSCs treated with increasing concentrations of 16,16-dimethyl PGE₂ as indicated for 24 h. **P* < 0.01 compared with DMSO treatment. ANOVA followed by Dunnett's with time 0 as control, n = 3. B. Female reproductive tract dissected on d15, 6 h after treatment for assessment of health of pups and gross morphological changes in cervix and uterus. Arrow indicates pale ischemic pups; V, vagina; B, bladder

	Early Gestation Nonripe cervix n = 4	Not in labor Nonripe cervix n = 7	Not in labor Ripe cervix n = 8	Labor Dilated cervix n = 8
Gestational age (mean ± SEM)	13 ± 0.8	35 ± 1.3	37.4 ± 0.82	38.9 ± 0.6
Parity, median [range]	3 [1,4]	2 [1-3]	2 [1,5]	3 [1-4]
Bishop score Median [range]	2 [1,2]	3 [2,4]	6.5 [5-8]	8 [7,10]
Surgical indications	1 fetal demise, failed attempt at dilation 1 molar pregnancy desiring hysterectomy 2 repeat C/S; fetal demise; placenta invading uterine scar	5 repeat C/S; placenta previa/accreta 1 primary C/S placenta previa 1 repeat C/S; uterine atony	4 repeat C/S; placenta previa/accreta 1 term molar pregnancy 3 repeat C/S; uterine atony	2 placenta percreta 2 fetal distress; uterine hemorrhage 1 failure to progress; hemorrhage 1 repeat C/S leiomyomas 1 abruptio placentae 1 primary C/S breech;

Supplementary Table 1. Clinical characteristics of pregnant women from who samples were obtained for analysis.

S. No.	Gene	Sequence/Catalog #
1	COL6A6 ^a	Hs01029204_m1
2	ITGA9 ^a	Hs00979865_m1
3	C7 ^a	Hs00940408_m1
4	CHRM4 ^a	Hs00265219_s1
5	BDKRB1 ^a	Hs00664201_s1
6	HTR2A ^a	Hs01033524_m1
7	ADCY2 ^a	Hs01058848_m1
8	15-PGDH	5'GCCGGTTTATTGTGCTTCAAA3' & 5' TCTCACACCACTGTTCATAAGATTAG 3'
9	PTGES ^a	Hs01115610_m1
10	COX-2	GAATCATTCACCAGGCAAATT & TCTGTACTGCGGGTGGAACA Probe FAMTCCTACCACCAGCAACCCTGC
11	DUSP1 ^a	Hs00610256_g1
12	C-FOS ^b	QHsaCED0046695
13	HDAC4 ^a	Hs01041638_m1
14	HDAC5 ^a	Hs00608366_m1
15	HDAC2 ^a	Hs00231032_m1
16	GAPDH	5'GGAGTCAACGGATTTGGTCGTA3' & 5'CAACAATATCCACTTTACCAGAGTTA3'

Supplementary Table 2: Sequences and Catalog numbers for primers used in RT-qPCR

^aThermoFisher Scientific; ^bBIO-RAD