Palladium Catalyzed Synthesis of *N*-Vinyl Pyrroles and Indoles

Mohammad Movassaghi* and Alison E. Ondrus

Massachusetts Institute of Technology, Department of Chemistry, Massachusetts 02139

Supporting Information

Contents:	
General Procedures	<u>S1</u>
Materials	S1-S21
Instrumentation	<u>S1</u>
Z-3-Pyrrol-1-yl-but-2-enoic acid ethyl ester (4aa, Table 1, entry 1)	<u>S3</u>
Z-3-(3-Ethyl-4-propionyl-pyrrol-1-yl)-but-2-enoic acid ethyl ester (4ab, Table 1, entry 3)	<u>S4</u>
Z-3-(4-Oxo-4,5,6,7-tetrahydro-indol-1-yl)-but-2-enoic acid ethyl ester (4ac, Table 1, entry 7)	<u>S5</u>
Z-3-(3-Cyano-indol-1-yl)-but-2-enoic acid ethyl ester (4ae, Table 1, entry 8)	<u>S6</u>
Z-3-(3-Ethyl-4-propionyl-pyrrol-1-yl)-but-2-enoic acid ethyl ester (4ba, equation 2)	S 7
E-3-(3-Ethyl-4-propionyl-pyrrol-1-yl)-but-2-enoic acid ethyl ester (4cb, Table 1, entry 12)	<u>S8</u>
E-3-(4-Oxo-4,5,6,7-tetrahydro-indol-1-yl)-but-2-enoic acid ethyl ester (4cc, Table 1, entry 14)	<u>S9</u>
E-3-Indol-1-yl-but-2-enoic acid ethyl ester (4cd, Table 1, entry 15)	S10
E-3-(3-Cyano-indol-1-yl)-but-2-enoic acid ethyl ester (4ce, Table 1, entry 16)	S11
2-(3-Ethyl-4-propionyl-pyrrol-1-yl)-cyclopent-1-enecarboxylic acid ethyl ester (4db, Table 1, entry 18)	S12
2-(4-Oxo-4,5,6,7-tetrahydro-indol-1-yl)-cyclopent-1-enecarboxylic acid ethyl ester (4dc, Table 1, entry 20)	S13
2-(3-Cyano-indol-1-yl)-cyclopent-1-enecarboxylic acid ethyl ester (4de, Table 1, entry 22)	S14
2-(3-Ethyl-4-propionyl-pyrrol-1-yl)-cyclohex-1-enecarboxylic acid ethyl ester (4eb , Table 1, entry 24)	S15
1-(3-Ethyl-4-propionyl-pyrrol-1-yl)-cyclopentene (4fb, Table 1, entry 26)	S16
Copies of ¹ H and ¹³ C NMR spectra of all the products	S17-S44

General Procedures. All reactions were performed in oven-dried or flame-dried round bottomed flasks or modified Schlenk (Kjeldahl shape) flasks. The flasks were fitted with rubber septa and reactions were conducted under a positive pressure of argon. Stainless steel syringes or cannulae were used to transfer air- and moisture-sensitive liquids. Flash column chromatography was performed as described by Still et al. using silica gel (60-Å pore size, 32–63 µm, standard grade) or non-activated alumina gel (80–325 mesh, chromatographic grade).¹ Analytical thin–layer chromatography was performed using glass plates pre-coated with 0.25 mm 230–400 mesh silica gel or neutral alumina gel impregnated with a fluorescent indicator (254 nm). Thin layer chromatography plates were visualized by exposure to ultraviolet light and/or by exposure to an ethanolic phosphomolybdic acid (PMA), an acidic solution of *p*-anisaldehyde (anis), an aqueous solution of ceric ammonium molybdate (CAM), an aqueous solution of potassium permanganate (KMnO₄) or an ethanolic solution of ninhydrin followed by heating (<1 min) on a hot plate (~250 °C). Organic solutions were concentrated on a rotary evaporators at ~20 Torr (house vacuum) at 25–35 °C, then at ~1 Torr (vacuum pump) unless otherwise indicated.

Materials. Commercial reagents and solvents were used as received with the following exceptions: Dichloromethane, diethyl ether, tetrahydrofuran, acetonitrile, and toluene were purified by the method of Grubbs et al. under positive argon pressure,² 1,4-dioxane was distilled from sodium hydride. Potassium phosphate was dried at 180 °C under vacuum (~1 torr) for 24 h then stored in a

¹ Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. **1978**, 43, 2923–2925.

² Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518–1520.

glove box. Sodium hydride was purchased as a 60% dispersion in oil and then washed four times with hexanes and stored dry in a glove box. The molarity of *n*-butyllithium solutions was determined by titration using diphenylacetic acid as an indicator (average of three determinations).³ Vinyl triflates used in this study were prepared according to literature procedures as noted below. Pyrrole was distilled from calcium hydride and stored at -10 °C in the dark. Commercially available azaheterocycles and XPhos were purchased and used as received.

Instrumentation. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on a 500 MHz spectrometer. Chemical shifts are recorded in parts per million from internal tetramethylsilane on the δ scale and are referenced from the residual protium in the NMR solvent (CHCl₃: δ 7.27, C₆H₆: δ 7.16). Data is reported as follows: chemical shift [multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant(s) in Hertz, integration, assignment]. Carbon-13 nuclear magnetic resonance spectra were recorded on a 500 MHz spectrometer and are recorded in parts per million from internal tetramethylsilane on the δ scale and are referenced from the carbon resonances of the solvent (CDCl₃: δ 77.2, benzene-*d*₆: δ 128.0). Data is reported as follows: chemical shift [multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant(s) in Hertz, assignment]. Infrared data were on a FT-IR and are reported as follows: [frequency of absorption (cm⁻¹), intensity of absorption (s = strong, m = medium, w = weak, br = broad), assignment]. Gas chromatograpy was performed on a HP-5 5% Phenyl Methyl Siloxane column.

³ Kofron, W. G.; Baclawski, L. M. J. Org. Chem. **1976**, 41, 1879–1880.

Z-3-Pyrrol-1-yl-but-2-enoic acid ethyl ester (4aa, Table 1, entry 1):

Toluene (1.90 mL) was added to an argon–purged sample of $Pd_2(dba)_3$ (17.5 mg, 19.1 µmol, 0.05 equiv), XPhos (18.2 mg, 38.1 µmol, 0.10 equiv), and rigorously anhydrous K_3PO_4 (113 mg, 534 µmol, 1.40 equiv) in a flame-dried flask. Pyrrole (**7a**, 40.0 µL, 572 µmol, 1.50 equiv) was then added and the deep red mixture was heated to 60 °C. After 30 min, triflate **5a**⁴ (100 mg, 381 µmol, 1 equiv) was added via syringe, producing a color change to forest green within approximately 10 min then to brown within an additional 1h. After 3.5h TLC analysis indicated that the reaction was complete, whereupon the mixture was allowed to cool to 23 °C, was diluted with EtOAc (10 mL), and was vacuum filtered through a plug of celite (diam. 2.5 cm, ht. 2.5 cm). The celite-plug and flask were rinsed with an additional 15-mL portion of EtOAc, and the combined organic filtrates were filtered, and were concentrated under reduced pressure to give a deep brown residue. Purification of the crude material by flash column chromatography (silica gel: diam. 3.0 cm, ht. 22 cm; 60% EtOAc–hexanes) afforded the vinyl pyrrole **4aa**⁵ (57.1 mg, 84%) as a yellow oil.

¹ H NMR (500 MHz, CDCl ₃ , 20°C):	6.90 (app t, <i>J</i> = 2.2 Hz, 2H), 6.23 (app-t, <i>J</i> = 2.2 Hz, 2H), 5.52 (q, <i>J</i> = 1.2 Hz, 1H), 4.10 (q, <i>J</i> = 7.1 Hz, 2H), 2.26 (d, <i>J</i> = 1.3 Hz, 3H), 1.20 (t, <i>J</i> = 7.1 Hz, 3H).
¹³ C NMR (125.7 MHz, CDCl ₃ , 20°C):	165.2, 147.7, 121.4, 110.1, 107.6, 60.5, 24.5, 14.4.
FTIR (neat):	2982 (w, C–H), 1718 (s, C=O), 1641 (s, C=C), 1481, 1182, 1051.
HRMS–ESI (m/z):	calcd for $C_{10}H_{13}NO_2Na [M + Na]^+$: 202.0838, found: 202.0839
TLC (7.5% EtOAc-hexanes), Rf:	0.15 (UV, anis)

⁴ For the general procedure used to prepare the vinyl triflate **5a**, see: Kim, H.-O.; Ogbu, C. O.; Nelson, S.; Kahn, M. *Synlett* **1998**, 1059–1060.

⁵ For an alternate synthesis of 4aa, see: Rainka, M. P.; Aye, Y.; Buchwald, S. L. Proc. Nat. Acad. Sci., USA 2004, 101, 5821–5823.

Z-3-(3-Ethyl-4-propionyl-pyrrol-1-yl)-but-2-enoic acid ethyl ester (4ab, Table 1, entry 3):

A mixture of toluene–dioxane (3:1, 1.90 mL) was added to an argon–purged sample of acyl pyrrole **7b**⁶ (86.5 mg, 572 µmol, 1.50 equiv), $Pd_2(dba)_3$ (17.5 mg, 19.1 µmol, 0.05 equiv), XPhos (18.2 mg, 38.1 µmol, 0.10 equiv), and rigorously anhydrous K_3PO_4 (113 mg, 534 µmol, 1.40 equiv) in a flame-dried flask and the resulting deep red mixture was heated to 60 °C. After 30 min, triflate **5a** (100 mg, 381 µmol, 1 equiv) was added via syringe, producing a color change to brown within approximately 1 min. After 1h, GC analysis indicated that the reaction was complete, whereupon the mixture was allowed to cool to 23 °C, was diluted with EtOAc (10 mL), and was vacuum filtered through a plug of celite (diam. 2.5 cm, ht. 2.5 cm). The celite-plug and flask were rinsed with a15-mL portion of EtOAc, and the combined organic filtrates were washed with water (7.5 mL) and brine (7.5 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure to yield a deep brown residue. Purification of the crude material by flash column chromatography (silica gel: diam. 3.0 cm, ht. 18 cm, 20% EtOAc–hexanes) gave the vinyl pyrrole **4ab** (91.2 mg, 91%) as a yellow oil.

¹ H NMR (500 MHz, CDCl ₃ , 20°C):	7.53 (d, $J = 2.3$ Hz, 1H), 6.60 (dt, $J = 2.3$, 1.2 Hz, 1H), 5.64 (q, $J = 1.2$ Hz, 1H), 4.13 (q, $J = 7.1$ Hz, 2H), 2.78 (qd, $J = 7.3$, 1.2 Hz, 2H), 2.75 (q, $J = 7.3$, 2H), 2.29 (d, $J = 1.2$ Hz, 3H), 1.22 (t, $J = 7.1$ Hz, 3H), 1.19 (t, $J = 7.3$ Hz, 3H), 1.17 (t, $J = 7.3$ Hz, 3H).
¹³ C NMR (125.7 MHz, CDCl ₃ , 20°C):	197.3, 164.7, 146.9, 129.3, 128.0, 123.8, 119.4, 109.8, 60.7, 33.2, 24.3, 20.2, 14.4, 14.3, 8.8.
FTIR (neat):	2971 (m, C–H), 1705 (m, C=O), 1662 (s, C=O), 1518, 1189, 1047.
HRMS–ESI (m/z) :	calcd for $C_{15}H_{21}NO_3Na [M + Na]^+$: 286.1414, found: 286.1417
TLC (40% EtOAc-hexanes), Rf:	0.42 (UV, anis)

⁶ For the synthesis of pyrroles using tosylmethylisocyanide, see: (a) van Leusen, A. M.; Siderius, H.; Hoogenboom, B. E.; van Leusen, D. *Tetrahedron Lett.* **1972**, *52*, 5337–5340 and (b) Chamberlin, K. S.; LeGoff, E. *Heterocycles* **1979**, *12*, 1567–1570.

Z-3-(4-Oxo-4,5,6,7-tetrahydro-indol-1-yl)-but-2-enoic acid ethyl ester (4ac, Table 1, entry 7):

A mixture of toluene–dioxane (3:1, 1.90 mL) was added to an argon–purged sample of 1,5,6,7-tetrahydro-4*H*-indol-4-one (**7c**, 77.3 mg, 572 μ mol, 1.50 equiv), Pd₂(dba)₃ (17.5 mg, 19.1 μ mol, 0.05 equiv), XPhos (18.2 mg, 38.1 μ mol, 0.10 equiv), and rigorously anhydrous K₃PO₄ (113 mg, 534 μ mol, 1.40 equiv) in a flame-dried flask and the resulting deep red mixture was heated to 60 °C. After 30 min, triflate **5a** (100 mg, 381 μ mol, 1 equiv) was added via syringe, producing a color change to forest green within approximately 1 min. After 2.5 h, the temperature was increased to 80 °C and the green–brown mixture stirred for 7h, at which point GC analysis indicated that the reaction was complete. The mixture was then allowed to cool to 23 °C, was diluted with EtOAc (10 mL), and was vacuum filtered through a plug of celite (diam. 2.5 cm, ht. 2.5 cm). The celite-plug and flask were rinsed with an additional 15-mL portion of EtOAc, and the combined organic filtrates were filtered, and were concentrated under reduced pressure to give a deep brown residue. Purification of the crude material by flash column chromatography (silica gel: diam. 3.0 cm, ht. 22 cm; 60% EtOAc–hexanes) afforded the vinyl indolone **4ac** (47.3 mg, 50%) as a white solid.

¹ H NMR (500 MHz, CDCl ₃ , 20°C):	6.65 (d, $J = 1.2$ Hz, 1H), 6.55 (d, $J = 1.2$ Hz, 1H), 6.01 (q, $J = 1.2$ Hz, 1H), 4.04 (q, $J = 7.1$ Hz, 2H), 2.63 (t, $J = 6.2$ Hz, 2H), 2.48 (app t, $J = 6.2$ Hz, 2H), 2.21 (d, $J = 1.3$ Hz, 3H), 2.12 (pentet, $J = 6.2$ Hz, 2H), 1.12 (t, $J = 7.1$ Hz, 3H).
¹³ C NMR (125.7 MHz, CDCl ₃ , 20°C):	194.7, 163.7, 147.0, 143.9, 121.6, 121.2, 118.1, 106.9, 60.9, 38.1, 24.9, 24.1, 22.4, 14.2.
FTIR (neat):	2944 (m, C–H), 1722 (s, C=O), 1659 (s, C=O), 1464, 1048.
HRMS–ESI (m/z) :	calcd for C ₁₄ H ₁₇ NO ₃ Na [M + Na] ⁺ : 270.1101, found: 270.1102
TLC (60% EtOAc-hexanes), Rf:	0.29 (UV, anis)

<u>Z-3-(3-Cyano-indol-1-yl)-but-2-enoic acid ethyl ester (4ae, Table 1, entry 8):</u>

Toluene (1.90 mL) was added to an argon–purged sample of 3-cyanoindole (**7e**, 81.3 mg, 572 μ mol, 1.50 equiv), Pd₂(dba)₃ (17.5 mg, 19.1 μ mol, 0.05 equiv), XPhos (18.2 mg, 38.1 μ mol, 0.10 equiv), and rigorously anhydrous K₃PO₄ (113 mg, 534 μ mol, 1.40 equiv) in a flame-dried flask and the resulting deep red mixture was heated to 60 °C. After 30 min, triflate **5a** (100 mg, 381 μ mol, 1 equiv) was added via syringe, producing a color change to olive green within approximately 3 min. After 48 h, GC analysis indicated that the reaction was no longer proceeding at an appreciable rate. The mixture was then allowed to cool to 23 °C, was diluted with EtOAc (10 mL), and was vacuum filtered through a plug of celite (diam. 2.5 cm, ht. 2.5 cm). The celite-plug and flask were rinsed with an additional 15-mL portion of EtOAc and the combined organic filtrates were washed with water (7.5 mL) and brine (7.5 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure to an orange residue. Analysis of the crude product mixture by ¹H NMR revealed the presence of unreacted starting triflate **5a**, product **7ae**, and ethyl but-2-ynoate (**5a**:**7ae**:**9a** = 30:17:5). Purification of the crude material by flash column chromatography (silica gel: diam. 3.0 cm, ht. 22 cm; 20% EtOAc–hexanes) provided the vinyl indole **7ae** (23.0 mg, 24%) as an off–white solid.

¹ H NMR (500 MHz, CDCl ₃ , 20°C):	7.78 (dd, <i>J</i> = 6.6, 1.5 Hz, 1H), 7.63 (s, 1H), 7.29–7.36 (m, 3H), 6.15 (q, <i>J</i> = 1.2 Hz, 1H), 3.90 (q, <i>J</i> = 7.1 Hz, 2H), 2.36 (d, <i>J</i> = 1.2 Hz, 3H), 0.90 (t, <i>J</i> = 7.1 Hz, 3H).
¹³ C NMR (125.8 MHz, CDCl ₃ , 20°C):	163.9, 146.1, 135.6, 134.6, 129.0, 128.1, 125.2, 123.4, 120.7, 118.8, 116.0, 112.1, 61.4, 24.5, 14.4.
FTIR (neat):	2983 (w, C−H), 2222 (s, C≡N), 1720 (s, C=O), 1660, 1535, 1217.
HRMS–ESI (m/z):	calcd for $C_{15}H_{14}N_2O_2Na [M + Na]^+$: 277.0947, found: 277.0950
TLC (35% EtOAc-hexanes), Rf.	0.33 (UV, CAM)

Z-3-(3-Ethyl-4-propionyl-pyrrol-1-yl)-but-2-enoic acid ethyl ester (4ba, equation 2):

Toluene (1.90 mL) was added to an argon–purged sample of $Pd_2(dba)_3$ (17.5 mg, 19.1 µmol, 0.05 equiv), XPhos (18.2 mg, 38.1 µmol, 0.05 equiv), and rigorously anhydrous K_3PO_4 (113 mg, 534 µmol, 1.40 equiv) in a flame-dried flask. Pyrrole (**7a**, 40.0 µL, 572 µmol, 1.50 equiv) was then added via syringe and the deep red mixture was heated to 60 °C. After 30 min, triflate **5b**⁷ (100 mg, 381 µmol, 1 equiv) was added via syringe, producing a color change to brown within approximately 10 min. After 6h, GC analysis indicated that the reaction was complete, whereupon the mixture was allowed to cool to 23 °C, was diluted with EtOAc (10 mL), and was vacuum filtered through a plug of celite (diam. 2.5 cm, ht. 2.5 cm). The celite-plug and flask were rinsed with a15-mL portion of EtOAc, and the combined organic filtrates were washed with water (7.5 mL) and brine (7.5 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure to yield a deep brown residue. Purification of the crude material by flash column chromatography (silica gel: diam. 2.0 cm, ht. 17 cm, 5% EtOAc–CH₂Cl₂) gave the vinyl pyrrole **4ba** (89.1 mg, 79%) as a yellow oil.

¹ H NMR (500 MHz, CDCl ₃ , 20°C):	6.73 (app t, <i>J</i> = 2.2 Hz, 2H), 6.22 (app t, <i>J</i> = 2.2 Hz, 2H), 5.55 (s, 1H), 4.28 (t, <i>J</i> = 5.5 Hz, 1H), 3.27 (s, 6H), 2.53 (t, <i>J</i> = 7.8 Hz, 2H), 1.64 (dt, <i>J</i> = 7.8, 5.5 Hz, 2H), 1.37 (s, 9H).
¹³ C NMR (125.7 MHz, CD ₂ Cl20C):	164.6, 150.1, 121.1, 112.0, 109.9, 103.6, 81.0, 53.3, 32.5, 30.1, 28.1.
FTIR (neat):	2978 (m, C–H), 1704 (m, C=O), 1645 (m, C=C), 1482, 1367, 1154.
HRMS–ESI (m/z) :	calcd for $C_{16}H_{25}NO_4Na [M + Na]^+$: 318.1676, found: 318.1674
TLC (20% EtOAc-hexanes), Rf:	0.34 (UV, anis)

⁷ For general procedures used to prepare the vinyl triflate **5b**, see: Comins, D. L.; Dehghani, A. *Tetrahedron Lett.* **1992**, *33*, 6299–6302 and Kim, H.-O.; Ogbu, C. O.; Nelson, S.; Kahn, M. *Synlett* **1998**, 1059–1060.

E-3-(3-Ethyl-4-propionyl-pyrrol-1-yl)-but-2-enoic acid ethyl ester (4cb, Table 1, entry 12):

A mixture of toluene–dioxane (3:1, 1.90 mL) was added to an argon–purged sample of acyl pyrrole **7b** (86.5 mg, 572 µmol, 1.50 equiv), $Pd_2(dba)_3$ (17.5 mg, 19.1 µmol, 0.05 equiv), XPhos (18.2 mg, 38.1 µmol, 0.10 equiv), and rigorously anhydrous K₃PO₄ (113 mg, 534 µmol, 1.40 equiv) in a flame-dried flask and the resulting deep red mixture was heated to 60 °C. After 30 min, triflate **5c**⁸ (100 mg, 381 µmol, 1 equiv) was added via syringe, producing a color change to brown within approximately 5 min. After 30 min, the temperature was increased to 80 °C and the brown mixture stirred for 1.5 h, at which point GC analysis indicated that the reaction was complete. The mixture was then allowed to cool to 23 °C, was diluted with EtOAc (10 mL), and was vacuum filtered through a plug of celite (diam. 2.5 cm, ht. 2.5 cm). The celite-plug and flask were rinsed with a 15-mL portion of EtOAc, and the combined organic filtrates were washed with water (7.5 mL) and brine (7.5 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure to give a deep brown residue. Purification of the crude material by flash column chromatography (silica gel: diam. 3.0 cm, ht. 24 cm; 20% EtOAc–hexanes) afforded the vinyl pyrrole **4cb** (59.8 mg, 60%) as a yellow oil.

¹ H NMR (500 MHz, CDCl ₃ , 20°C):	7.56 (d, $J = 2.3$ Hz, 1H), 6.84 (dt, $J = 2.3$, 1.3 Hz, 1H), 5.97 (q, $J = 0.9$ Hz, 1H), 4.22 (q, $J = 7.1$ Hz, 2H), 2.78 (qd, $J = 7.4$, 1.3 Hz, 2H), 2.78 (q, $J = 7.3$, 2H), 2.70 (d, $J = 0.9$ Hz, 3H), 1.32 (t, $J = 7.1$ Hz, 3H), 1.20 (t, $J = 7.4$ Hz, 3H), 1.18 (t, $J = 7.3$ Hz, 3H).
¹³ C NMR (125.8 MHz, CDCl ₃ , 20°C):	197.9, 167.2, 150.7, 131.4, 125.8, 124.7, 117.8, 105.9, 60.9, 33.7, 20.7, 16.7, 15.0, 14.7, 9.2.
FTIR (neat):	2976 (m, C–H), 1713 (s, C=O), 1640 (s, C=O), 1516, 1409, 1154.
HRMS–EI (m/z):	calcd for $C_{15}H_{21}NO_3Na [M + Na]^+$: 286.1414, found: 286.1419
TLC (25% EtOAc-hexanes), Rf:	0.39 (UV, anis)

⁸ For the synthesis of Z-vinyl triflate **5c**, see: Ohba, M.; Kawase, N.; Fujii, T. J. Am. Chem. Soc. **1996**, 118, 8250–8257.

E-3-(4-Oxo-4,5,6,7-tetrahydro-indol-1-yl)-but-2-enoic acid ethyl ester (4cc, Table 1, entry 14):

A mixture of toluene–dioxane (3:1, 1.90 mL) was added to an argon–purged sample of 1,5,6,7-tetrahydro-4*H*-indol-4-one (**7c**, 77.3 mg, 572 µmol, 1.50 equiv), $Pd_2(dba)_3$ (17.5 mg, 19.1 µmol, 0.05 equiv), XPhos (18.2 mg, 38.1 µmol, 0.10 equiv), and rigorously anhydrous K₃PO₄ (113 mg, 534 µmol, 1.40 equiv) in a flame-dried flask and the resulting deep red mixture was heated to 60 °C. After 30 min, triflate **5c** (100 mg, 381 µmol, 1 equiv) was added via syringe, producing a color change to forest green within approximately 5 min. After 30 min, the temperature was increased to 80 °C and the brown mixture stirred for 1.5 h, at which point GC analysis indicated that the reaction was complete. The mixture was then allowed to cool to 23°C, was diluted with EtOAc (10 mL), and was vacuum filtered through a plug of celite (diam. 2.5 cm, ht. 2.5 cm). The celite-plug and flask were rinsed with a 15-mL portion of EtOAc, and the combined organic filtrates were washed with water (7.5 mL) and brine (7.5 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated to a deep brown residue. Purification of the crude material by flash column chromatography (silica gel: diam. 3.0 cm, ht. 25 cm; 60% EtOAc–hexanes) gave the vinyl indolone **4cc** (68.7 mg, 73%) as a yellow oil.

¹ H NMR (500 MHz, CDCl ₃ , 20°C):	6.76 (d, $J = 3.3$ Hz, 1H), 6.64 (d, $J = 3.3$ Hz, 1H), 5.81 (q, $J = 1.1$ Hz, 1H), 4.32 (q, $J = 7.2$ Hz, 2H), 2.87 (t, $J = 6.2$ Hz, 2H), 2.62 (d, $J = 1.1$ Hz, 3H), 2.51 (app t, $J = 6.2$ Hz, 2H), 2.15 (pentet, $J = 6.2$ Hz, 2H), 1.32 (t, $J = 7.2$ Hz, 3H).
¹³ C NMR (125.8 MHz, CDCl ₃ , 20°C):	195.3, 166.5, 151.1, 143.4, 129.0, 123.6, 122.0, 114.8, 107.9, 61.2, 38.4, 24.8, 19.7, 15.0.
FTIR (neat):	2943 (w, C–H), 1712 (s, C=O), 1659 (s, C=O), 1461, 1158.
HRMS–ESI (m/z):	calcd for $C_{14}H_{17}NO_3Na [M + Na]^+$: 270.1101, found: 270.1106
TLC (65% EtOAc-hexanes), Rf:	0.38 (UV, anis)

<u>E-3-Indol-1-yl-but-2-enoic acid ethyl ester (4cd, Table 1, entry 15):</u>

Toluene (1.90 mL) was added to an argon–purged sample of indole (**7d**, 67.0 mg, 572 µmol, 1.50 equiv), $Pd_2(dba)_3$ (17.5 mg, 19.1 µmol, 0.05 equiv), XPhos (18.2 mg, 38.1 µmol, 0.10 equiv), and rigorously anhydrous K_3PO_4 (113 mg, 534 µmol, 1.40 equiv) in a flame-dried flask and the resulting deep red mixture was heated to 60 °C. After 30 min, triflate **5c** (100 mg, 381 µmol, 1 equiv) was added via syringe, producing a color change to brown within approximately 5 min. After 5h at 60°C GC analysis indicated that the reaction was complete, whereupon the mixture was allowed to cool to 23 °C, was diluted with EtOAc (10 mL), and was vacuum filtered through a plug of celite (diam. 2.5 cm, ht. 2.5 cm). The celite-plug and flask were rinsed with a 15-mL portion of EtOAc, and the combined organic filtrates were washed with water (7.5 mL) and brine (7.5 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure to give a deep brown residue. Purification of the crude material by flash column chromatography (silica gel: diam. 2.0 cm, ht. 24 cm; $3.5 \rightarrow 7.5\%$ EtOAc–hexanes) afforded the vinyl indole **4cd** (65.3 mg, 74%) as a colorless oil.

¹ H NMR (500 MHz, CDCl ₃ , 20°C):	7.70 (dq, $J = 8.4$, 0.8 Hz, 1H), 7.62 (dt, $J = 7.6$, 0.8 Hz, 1H), 7.29 (d, $J = 3.4$, 1H), 7.27 (ddd, $J = 8.4$, 7.1, 0.8 Hz, 1H), 7.18 (ddd, $J = 7.6$, 7.1, 0.8 Hz, 1H), 6.64 (dd, $J = 3.4$, 0.8 Hz, 1H), 6.12 (q, $J = 0.8$ Hz, 1H), 4.23 (q, $J = 7.1$ Hz, 2H), 2.78 (d, $J = 0.8$ Hz, 3H), 1.32 (t, $J = 7.1$ Hz, 3H).
¹³ C NMR (125.7 MHz, CDCl ₃ , 20°C):	167.3, 151.7, 135.4, 130.6, 126.2, 123.4, 121.7, 121.7, 112.9, 109.1, 105.9, 60.3, 19.0, 14.6.
FTIR (neat):	2980 (s, C–H), 1710 (s, C=O), 1633 (s, C=C), 1454, 1151.
HRMS–EI (m/z):	calcd for $C_{14}H_{15}NO_2Na [M + Na]^+$: 252.0995, found: 252.1003
TLC (7.5% EtOAc-hexanes), Rf:	0.29 (UV, anis)

<u>*E*-3-(3-Cyano-indol-1-yl)-but-2-enoic acid ethyl ester (4ce, Table 1, entry 16):</u>

A mixture of toluene–dioxane (3:1, 1.90 mL) was added to an argon–purged sample of 3cyanoindole (**7e**, 81.3 mg, 572 µmol, 1.50 equiv), $Pd_2(dba)_3$ (17.5 mg, 19.1 µmol, 0.05 equiv), XPhos (18.2 mg, 38.1 µmol, 0.10 equiv), and rigorously anhydrous K₃PO₄ (113 mg, 534 µmol, 1.40 equiv) in a flame-dried flask and the resulting deep red mixture was heated to 60 °C. After 30 min, triflate **5c** (100 mg, 381 µmol, 1 equiv) was added via syringe, producing a color change to forest green within approximately 5 min. After 2.5 h, the temperature was increased to 80 °C and the brown mixture stirred for an additional 3 h, at which point GC analysis indicated that the reaction was complete. The mixture was then allowed to cool to 23 °C, was diluted with EtOAc (10 mL), and was vacuum filtered through a plug of celite (diam. 2.5 cm, ht. 2.5 cm). The celite-plug and flask were rinsed with a 15mL portion of EtOAc, and the combined organic filtrates were washed with water (7.5 mL) and brine (7.5 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure to provide an orange residue. Purification of the crude material by flash column chromatography (silica gel: diam. 3.0 cm, ht. 24 cm; 20% EtOAc–hexanes) gave the vinyl indole **4ce** (71.9 mg, 74%) as an off–white solid.

¹ H NMR (500 MHz, CDCl ₃ , 20°C):	7.79 (dd, $J = 8.2$, 1.1 Hz, 1H), 7.78 (s, 1H), 7.67 (dd, $J = 8.4$, 0.9 Hz, 1H), 7.41 (ddd, $J = 8.4$, 7.1, 1.1 Hz, 1H), 7.37 (ddd, $J = 8.2$, 7.1, 0.9 Hz, 1H), 6.19 (q, $J = 0.9$ Hz, 1H), 4.28 (q, $J = 7.2$ Hz, 2H), 2.77 (d, $J = 0.9$ Hz, 3H), 1.35 (t, $J = 7.2$ Hz, 3H).
¹³ C NMR (125.8 MHz, CDCl ₃ , 20°C):	166.5, 150.1, 135.2, 133.5, 129.0, 125.8, 124.2, 121.0, 115.5, 114.6, 113.5, 90.6, 61.4, 19.5, 15.0.
FTIR (neat):	2983 (w, C−H), 2225 (s, C≡N), 1717 (s, C=O), 1644, 1551, 1182.
HRMS–ESI (m/z):	calcd for $C_{15}H_{14}N_2O_2Na [M + Na]^+$: 277.0947, found: 277.0951
TLC (25% EtOAc-hexanes), Rf:	0.37 (UV, CAM)

<u>2-(3-Ethyl-4-propionyl-pyrrol-1-yl)-cyclopent-1-enecarboxylic acid ethyl ester (4db, Table 1, entry 18):</u>

A mixture of toluene–dioxane (3:1, 1.90 mL) was added to an argon–purged sample of acyl pyrrole **7b** (86.5 mg, 572 µmol, 1.50 equiv), $Pd_2(dba)_3$ (17.5 mg, 19.1 µmol, 0.05 equiv), XPhos (18.2 mg, 38.1 µmol, 0.10 equiv), and rigorously anhydrous K₃PO₄ (113 mg, 534 µmol, 1.40 equiv) in a flame-dried flask and the resulting deep red mixture was heated to 60 °C. After 30 min, triflate **5d**⁹ (110 mg, 381 µmol, 1 equiv) was added via syringe, producing a color change to brown within approximately 5 min. After 30 min, the temperature was increased to 80 °C and the brown mixture stirred for 2 h, at which point GC analysis indicated that the reaction was complete. The mixture was then allowed to cool to 23 °C, was diluted with EtOAc (10 mL), and was vacuum filtered through a plug of celite (diam. 2.5 cm, ht. 2.5 cm). The celite–plug and flask were rinsed with an additional 15-mL portion of EtOAc, then the combined organic filtrates were washed with water (7.5 mL) and brine (7.5 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure to give a deep brown residue. Purification of the crude material by flash column chromatography (silica gel: diam. 3.0 cm, ht. 24 cm; 17.5→20% EtOAc–hexanes) provided the vinyl pyrrole **4db** (77.3 mg, 70%) as a yellow oil.

¹ H NMR (500 MHz, CDCl ₃ , 20°C):	7.84 (d, $J = 2.3$ Hz, 1H), 6.77 (dt, $J = 2.3$, 1.1 Hz, 1H), 4.21 (q, $J = 7.2$ Hz, 2H), 2.93 (app tt, $J = 7.6$, 2.1 Hz, 2H), 2.84 (app tt, $J = 7.6$, 2.1 Hz, 2H), 2.78 (qd, $J = 7.4$, 1.1 Hz, 2H), 2.77 (q, $J = 7.3$, 2H), 1.99 (pentet, $J = 7.6$ Hz, 2H), 1.27 (t, $J = 7.2$ Hz, 3H), 1.19 (t, $J = 7.3$ Hz, 3H), 1.17 (t, $J = 7.4$ Hz, 3H).
¹³ C NMR (125.8 MHz, CDCl ₃ , 20°C):	197.9, 165.5, 146.7, 129.5, 129.0, 124.3, 120.7, 118.1, 61.2, 37.6, 34.4, 33.6, 20.8, 20.6, 14.9, 14.8, 9.3.
FTIR (neat):	2969 (s, C–H), 1708 (s, C=O), 1666 (s, C=O), 1518, 1199, 1063.
HRMS–ESI (m/z):	calcd for $C_{17}H_{23}NO_3Na [M + Na]^+$: 312.1570, found: 312.1566
TLC (25% EtOAc-hexanes), Rf:	0.44 (UV, anis)

⁹ For the synthesis of vinyl triflate 5d, see: Jasperse, C. P.; Curran, D. P. J. Am. Chem. Soc. 1990, 112, 5601–5609.

<u>2-(4-Oxo-4,5,6,7-tetrahydro-indol-1-yl)-cyclopent-1-enecarboxylic acid ethyl ester (4dc, Table 1, entry 20):</u>

A mixture of toluene–dioxane (3:1, 1.90 mL) was added to an argon–purged sample of 1,5,6,7-tetrahydro-4*H*-indol-4-one (**7c**, 77.3 mg, 572 µmol, 1.50 equiv), $Pd_2(dba)_3$ (17.5 mg, 19.1 µmol, 0.05 equiv), XPhos (18.2 mg, 38.1 µmol, 0.10 equiv), and rigorously anhydrous K₃PO₄ (113 mg, 534 µmol, 1.40 equiv) in a flame-dried flask and the resulting deep red mixture was heated to 60 °C. After 30 min, triflate **5d** (110 mg, 381 µmol, 1 equiv) was added via syringe, producing a color change to olive green within approximately 10 min. After 30 min, the temperature was increased to 95 °C and the green–brown mixture stirred for 3.5 h, at which point GC analysis indicated that the reaction was complete. The mixture was then allowed to cool to 23 °C, was diluted with EtOAc (10 mL), and was vacuum filtered through a plug of celite (diam. 2.5 cm, ht. 2.5 cm). The celite–plug and flask were rinsed with an additional 15-mL portion of EtOAc, and the combined organic filtrates were washed with water (7.5 mL) and brine (7.5 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure to provide a deep brown residue. Purification of the crude material by flash column chromatography (silica gel: diam. 3.0 cm, ht. 22 cm, 60% EtOAc–hexanes) gave the vinyl indolone **4dc** (63.7 mg, 62%) as an off–white solid.

¹ H NMR (500 MHz, CDCl ₃ , 20°C):	6.62 (d, $J = 3.4$ Hz, 1H), 6.58 (d, $J = 3.4$ Hz, 1H), 4.08 (q, $J = 7.1$ Hz, 2H), 2.84 (app tt, $J = 7.6$, 2.5 Hz, 2H), 2.80 (app tt, $J = 7.6$, 2.5 Hz, 2H), 2.64 (t, $J = 6.3$ Hz, 2H), 2.48 (app t, $J = 6.3$ Hz, 2H), 2.11 (pentet, $J = 6.3$ Hz, 2H), 2.07 (pentet, $J = 7.6$ Hz, 2H), 1.11 (t, $J = 7.1$ Hz, 3H).
¹³ C NMR (125.7 MHz, CDCl ₃ , 20°C):	194.7, 163.9, 146.7, 144.3, 128.4, 122.1, 121.6, 106.5, 60.9, 38.1, 37.7, 32.4, 24.1, 22.7, 20.5, 14.2.
FTIR (neat):	2948 (m, C–H), 1710 (s, C=O), 1660 (s, C=O), 1499, 1464, 1237.
HRMS–EI (m/z):	calcd for $C_{16}H_{19}NO_3Na [M + Na]^+$: 296.1257, found: 296.1248
TLC (65% EtOAc-hexanes), Rf:	0.22 (UV, anis)

2-(3-Cyano-indol-1-yl)-cyclopent-1-enecarboxylic acid ethyl ester (4de, Table 1, entry 22):

A mixture of toluene–dioxane (3:1, 1.90 mL) was added to an argon–purged sample of 3cyanoindole (**7e**, 81.3 mg, 572 µmol, 1.50 equiv), $Pd_2(dba)_3$ (17.5 mg, 19.1 µmol, 0.05 equiv), XPhos (18.2 mg, 38.1 µmol, 0.10 equiv), and rigorously anhydrous K₃PO₄ (113 mg, 534 µmol, 1.40 equiv) in a flame-dried flask and the resulting deep red mixture was heated to 60 °C. After 30 min, triflate **5d** (110 mg, 381 µmol, 1 equiv) was added via syringe, producing a color change to olive green within approximately 10 min. After 30 min, the temperature was increased to 95 °C and the green–brown mixture stirred for 2.5 h, at which point GC analysis indicated that the reaction was complete. The mixture was then allowed to cool to 23 °C, was diluted by the addition of EtOAc (10 mL), and was vacuum filtered through a plug of celite (diam. 2.5 cm, ht. 2.5 cm). The celite–plug and flask were rinsed with an additional 15-mL portion of EtOAc, and the combined organic filtrates were washed with water (7.5 mL) and brine (7.5 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated to yield a deep brown residue. Purification of the crude material by flash column chromatography (silica gel: diam. 3.0 cm, ht. 22 cm, 25% EtOAc–hexanes) gave the vinyl indole **4de** (18.9 mg, 17%) as an off–white solid.

¹ H NMR (500 MHz, CDCl ₃ , 20°C):	7.77 (m, 1H), 7.69 (s, 1H), 7.27–7.37 (m, 3H), 3.97 (q, $J = 7.2$ Hz, 2H), 2.98 (app tt, $J = 7.6$, 2.5 Hz, 2H), 2.93 (app tt, $J = 7.6$, 2.5 Hz, 2H), 2.16 (pentet, $J = 7.6$ Hz, 2H), 0.89 (t, $J = 7.2$ Hz, 3H).
¹³ C NMR (125.7 MHz, CDCl ₃ , 20°C):	163.7, 145.4, 135.5, 135.1, 128.1, 127.7, 124.6, 123.0, 120.2, 115.5, 112.3, 88.4, 61.0, 36.9, 32.5, 20.7, 13.9.
FTIR (neat):	2978 (w, C–H), 2221 (s, C≡N), 1710 (s, C=O), 1536, 1461, 1213.
HRMS–ESI (m/z):	calcd for $C_{17}H_{16}N_2O_2Na [M + Na]^+$: 303.1104, found: 303.1095
TLC (25% EtOAc-hexanes), Rf:	0.23 (UV, anis)

2-(3-Ethyl-4-propionyl-pyrrol-1-yl)-cyclohex-1-enecarboxylic acid ethyl ester (4eb, Table 1, entry 24):

Toluene (1.90 mL) was added to an argon–purged mixture of acyl pyrrole **7b** (86.5 mg, 572 μ mol, 1.50 equiv), Pd₂(dba)₃ (17.5 mg, 19.1 μ mol, 0.05 equiv), XPhos (18.2 mg, 38.1 μ mol, 0.10 equiv), and rigorously anhydrous K₃PO₄ (113 mg, 534 μ mol, 1.40 equiv) in a flame-dried flask and the resulting deep red mixture was heated to 60 °C. After 30 min, vinyl triflate **5e**¹⁰ (110 mg, 381 μ mol, 1 equiv) was added via syringe, producing a color change to burgundy within approximately 15 min. After an additional 2.5 h, the reaction temperature was raised to 110 °C and the deep brown mixture stirred for 2 h, at which point GC analysis indicated that the reaction was complete. The mixture was then allowed to cool to 23°C, was diluted with EtOAc (10 mL), and was vacuum filtered through a plug of celite (diam. 2.5 cm, ht. 2.5 cm). The celite–plug and flask were rinsed with an additional 15-mL portion of EtOAc, and the combined organic filtrates were washed sequentially with water (7.5 mL) and brine (7.5 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure to give a deep brown residue. Purification of the crude material by flash column chromatography (silica gel: diam. 3.0 cm, ht. 24 cm, 20% EtOAc–hexanes) gave vinyl pyrrole **4eb** (105 mg, 91%) as a yellow oil.

¹ H NMR (500 MHz, CDCl ₃ , 20°C):	7.22 (d, $J = 2.3$ Hz, 1H), 6.77 (dt, $J = 2.3$, 1.1 Hz, 1H), 3.99 (q, $J = 7.1$ Hz, 2H), 2.77 (qd, $J = 7.5$, 1.1 Hz, 2H), 2.71 (q, $J = 7.4$, 2H), 2.46 (m, 4H), 1.82 (dtd, $J = 8.8$, 6.0, 2.7 Hz, 2H), 1.73 (dtd, $J = 8.8$, 6.0, 2.7 Hz, 2H), 1.17 (t, $J = 7.5$ Hz, 3H), 1.16 (t, $J = 7.4$ Hz, 3H), 1.01 (t, J = 7.1 Hz, 3H).
¹³ C NMR (125.8 MHz, CDCl ₃ , 20°C):	197.7, 169.2, 141.0, 129.4, 127.1, 126.1, 123.9, 120.1, 61.7, 33.6, 31.2, 27.1, 22.9, 22.1, 20.6, 14.9, 14.6, 9.5.
FTIR (neat):	2937 (m, C–H), 1710 (s, C=O), 1659 (s, C=O), 1516, 1282.
HRMS–ESI (m/z) :	calcd for $C_{18}H_{25}NO_3Na [M + Na]^+: 326.1727$, found: 326.1731
TLC (35% EtOAc-hexanes). <i>Rf</i> :	0.38 (UV, anis)

¹⁰ For the synthesis of vinyl triflate **5e**, see: Li, S.-J.; Dieter, R. K. J. Org. Chem. **2003**, 68, 969–973.

1-(3-Ethyl-4-propionyl-pyrrol-1-yl)-cyclopentene (4fb, Table 1, entry 26):

Toluene (1.90 mL) was added to an argon-purged sample of acyl pyrrole 7b (86.5 mg, 572 μmol, 1.50 equiv), Pd₂(dba)₃ (17.5 mg, 19.1 μmol, 0.05 equiv), XPhos (18.2 mg, 38.1 μmol, 0.10 equiv), and rigorously anhydrous K₃PO₄ (113 mg, 534 µmol, 1.40 equiv) in a flame-dried flask and the resulting deep red mixture was heated to 60 °C. After 30 min, triflate 5f¹¹ (82.4 mg, 381 µmol, 1 equiv) was added via syringe, producing a color change to green within approximately 10 min. After 1 h, the temperature was increased to 110 °C and the brown mixture stirred for 16 h, at which point GC analysis indicated that the reaction was complete. The mixture was then allowed to cool to 23 °C, was diluted with EtOAc (10 mL), and was vacuum filtered through a plug of celite (diam. 2.5 cm, ht. 2.5 cm). The celite-plug and flask were rinsed with an additional 15-mL portion of EtOAc, then the combined organic filtrates were washed with water (7.5 mL) and brine (7.5 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure to give a deep brown residue. Purification of the crude material by flash column chromatography (silica gel: diam. 2.0 cm, ht. 23 cm; 7.5% EtOAc-hexanes) provided the vinyl pyrrole 4fb (60.4 mg, 72%) as a white solid.

¹ H NMR (500 MHz, CDCl ₃ , 20°C):	7.35 (d, $J = 2.1$ Hz, 1H), 6.71 (dt, $J = 2.1$, 1.0 Hz, 1H), 5.58 (app pentet, $J = 2.2$ Hz, 1H), 2.77 (qd, $J = 7.4$, 1.0 Hz, 2H), 2.74 (m, 2H), 2.74 (q, $J = 7.4$ Hz, 2H), 2.50 (app tq, $J = 7.3$, 2.2 Hz, 2H), 2.07 (app pentet, $J = 7.4$, Hz, 2H), 1.18 (t, $J = 7.4$ Hz, 3H), 1.16 (t, $J = 7.4$ Hz, 3H).
¹³ C NMR (125.7 MHz, CDCl ₃ , 20°C):	197.3, 139.6, 129.6, 124.6, 123.4, 117.9, 111.9, 33.1, 31.8, 30.9, 22.3, 20.2, 14.5, 9.0.
FTIR (neat):	2967 (m, C–H), 1648 (s, C=O), 1519 (s, C=C), 1206.
HRMS–ESI (m/z) :	calcd for $C_{14}H_{19}NONa [M + Na]^+: 240.1359$, found: 240.1367
TLC (10% EtOAc-hexanes), <i>Rf</i> :	0.22 (UV, anis)

¹¹ For the synthesis of vinyl triflate **5f**, see: (a) Pfeifer, W. D.; Bahn, C. A.; Schleyer, P. v. R.; Bocher, S.; Harding, C. E.; Hummel, K.; Hanack, M.; Stang, P. J. J. Am. Chem. Soc. 1971, 93, 1513-1516 and (b) Stang, P. J.; Treptow, W. Synthesis 1980, 283-284.

250 6-88 840.27 4638.5 3623.1

t t dad

2.000

q

Cdc

Page S17 / S44

Eto Me

C. & VT	499 .747	TH NC	5	YYY	3	10000		1.0	E	DCESSING	1.00		ft	131072	6 9																							
DEC	dfrq	~ dovr	- dof		× dana	dimf	dsed	dres	honio	PRC	9	wtfile	proc	fn	math		Verr	vexp	vbs	vit																		
 SAMPLE	APT 30 2005 t CDC13	data/export/	Vassag/Mao/	okle/Hao_043	11161_13C. f1	d d	NOT LICE	125.673	C13	0.869	65536	37718.1	not used	15	*** 	28	2.5	3.000	615.5	10001	955	not used	LAGS	-	c	7	SPLAY nn	-1256.8	31414.8	295		220	125.66	00.000	3.2000	, 99	1.000	ud.
0, 1	solven1	file /c	home/ac		INA_CUU		1004		5 •	, c		3.4		S	2 2 4 4 1 1 1 1		2		5	Į.	alock	galn	ι . .	-	<u> </u>			۶p	d X	SN	0			11	. f	ŗ	1ns af cdr	111 111

.

e×p2 s2pul

DEC. & .	
toppedabout yothe 333 toppedabout yothe 333 toppedabout toppedabout toppedabout toppedabout	κ.
2pul AMPLE Feb 12 2005 ata/export/3 vassag/Mao/~ vassag/vassag/Mao/~ vassag/vassag/Mao/~ vassag/mao/~ vassag/	18 LAGS used LAGS used N SPLAY 7 5260.4 6246.5 6246.5 6246.5 102.5 102.5 102.5 Ph
Control of the second s	

	DEC. & VT dfrq 499.756 dn 499.756 dpwr 34 doof 0 dof yy	dam 10000 daf 10000 dseq 1.0 homo n PROCESSING n 1b roccessing vifile	ft fn 131072 math 131072 werr werr wbs wnt	
exp1 s2pu]	SAMPLE date Feb 12 2005 solvent CDC13 file /data/export/~ home/movassag/Mao/~ bullvinkle/Mao/_ bullvinkle/Mao/_21~	205_A0II074_13C.fi~ ACQUISITION d sfrq 125.676 t 0.869 np 65536 sw 37718.1	bs 10 15 15 15 15 15 15 15 15 15 15 15 15 15	11 1 dp y dp y dp y dp y dp y sp J1SPLAY sp -1256.7 wp 31415.4 vs 56 vs 56 vs 1255.66 hzmm 1255.66 hzmm 1255.66 hzmm 1255.66 tf 60 th 120.00 tf 60 th 1 th 1 th 1

Page S21 / S44

	DFC & VT	dfra 125.677	dn C13	dpwr 34	dof 1498.1	dm nnr	dma	dmf 10000	dseq	dres 1.0	homo r	PROCESSING	wtfile	proc ft	fn 65536	math		WELL	wexp	wbs	wnt															
exp1 s2pu]	SAMPLE	date Feb 15 2005	solvent CDC13	file /data/export/~	home/movassag/Mao/~	bu 1 Iwink le/Mao_021~	5-5_AOII051_1H.fid	ACULTSITION	strq 499.758	TH HI	at 3.277	np 65536	SW 9998.8	fb not used	bs 4	tpwr 56	PW 8.2	dl 2.000	tof 1498.1	nt 20	ct 20	alock n	galn notused FLAGS	1)	dp <	hs nn	DISPLAY	sp -250.1	Wp 6246.8	VS 11	sc 0	AC 220	12.22 33.57	th 7	ai cdc ab 2.000	

Page S22 / S44

	DEC. & VT	dfrq 499.756	dn H1	dof 34	dm vvv	dam adam	dmf 10000	dseq		1b 1.00	wtfile	proc ft	fn 131072	math f		Verr	wexp	VDS	WIL																	
exp1 s2pul	SAMPLE	date Feb 15 2005	solvent cuci3 file /data/evnort/∞	home/movassag/Mao/~	bullwinkle/Mao_021~	505_ADII051_13C.fi~	P	ACTUISTION	at D.869	np 65536	sw 37718.1	fb not used	bs 16	55	נףער 58 ביר 58		41. 3.000	101 015.5		alock n	gain not used	FLAGS	11 n	L L	dp hs	DISPLAY	sp -1256.7	WP 31415.4	vs 917	0.0	NC 250	10°°C7T 8111211	rfl 6304.1	rfp *	ins 1.000	

Eto NC NC Me

	DEC. & VT dfrq 500.233 dn H1	~ dpwr 37 ~ dof -500.0		dseq	dres 1.0	homo PRICESSTNG	1b 0.30	wtfile	proc ft	TN 1310/2 math 1310/2		VELL	Vexp																	
s2pu1	SAMPLE Feb 15 2005 nt CDC13	/data/export/ movassag/Mao/ /Mao_021505_4	52083 13C. Fid 0UIST TON	125.796	C13	1.736	37735.8	not used	~~~		6.9	0.763	631.4	896 8		not used	L LAUS	E	= >	" <u>"</u>	DISPLAY	-1258.3	01440.1 0375	0	250	125.79	500.00	9686.0	4 4	Л ЛЛ Т
exp1	date solvei	file home/i rorkv	OIIO	sfrq	t 1	at np	NS.	fb	sa	towr	h	d1	tof nt	ct:	a lock	gain				hs r	-	sp	4 V	s c	×C ×C	h zmm	1S rf1	d L	th 1	sui

Page S25 / S44

Page S26 / S44

.

exp1	s2pul	
	SAMPLE	DEC. & VT
date	Feb 15 2005	dfra 125.795
solvei	nt CDCl3	dn C13
file	exp	dpwr 37
AC	NOITISIUC	dof 0
sfrq	500.235	dm nnn
tn	H	dam C
at	3.200	dmf 10000
du	64000	dseq
sw	10000.0	dres 1.0
Ę p	not used	n nomon
sq	4	PROCESSING
ss	-	wtfile
tpwr	59	proc ft
٨d	9.8	fn 131072
(p	2.000	math f
tof	1498.2	
nt	20	werr
ct	20	wexp
alock	E	vbs
gain	not used	wnt
:	FLAGS	
	c	
ŗ	c	
dp	Y	
sų	uu	
	DISPLAY	
sp	-250.2	
۲p	6252.8	
٢S	62	
SC	0	
U A	250	
hzma	40.00	
is	119.21	
r f l	4632.8	
rfp t	3636.7	
inc		
	nh c.u.u	
1	Ĩ	

mqq

-

...

.

Page S30 / S44

o PROCESSING 0.30 ¥ 10000 1.0 n 131072 f 37 -500.0 DEC. & VT 9 500.233 > ī expire date Feb 15 2005 dfrq solvent CBC13 dn file /dta/export/~ dpwr home/movassag/Mac/~ dpwr home/movassag/Mac/~ dof rocky/Mac/ 021505_A~ dm ACQUISITION dmf sfrq 125.796 dseq in 1.736 hom mp 137010 sw 37735.8 it not used w 8 r lb Wtfile Proc fn math werr wexp whs wht DISPLAY -1258.3 31448.1 3026 n not used FLAGS 0 250 125.79 500.00 15911.8 9686.0 53 6.9 0.763 631.4 1e+06 616 ᅂᇆᆞᅎᅙᅭ 1.000 exp1 s2pu]

4cc

0 OEt

0=

Me

0∕∕0Et 4cd

exp1 s2pu1

DEC. & VT 125.674 125.674 125.674 135.674 1498.1 1000 1000 dfrq dof dof dmm dmf verr vexp whs wnt $\begin{array}{c} \text{SAMPLE} \\ \text{date} & \text{APr} & 25 & 2005 & \text{di} \\ \text{solven} & \text{corcl} & \text{di} \\ \text{solven} & \text{corcl} & \text{di} \\ \text{home} & \text{corcl} & \text{di} \\ \text{bome} & \text{movassag/Mac/} & \text{di} \\ \text{bome} & \text{movassag/Mac/} & \text{di} \\ \text{bome} & \text{solven} & \text{di} \\ \text{solven} & \text{solven} & \text{solven} & \text{solven} \\ \text{solven} & \text{solven} & \text{solven} & \text{solven} & \text{solven} \\ \text{solven} & \text{solven} & \text{solven} & \text{solven} & \text{solven} & \text{solven} \\ \text{solven} & \text{solven} & \text{solven} & \text{solven} & \text{solven} & \text{solven} \\ \text{solven} & \text{solven} & \text{solven} & \text{solven} & \text{solven} \\ \text{solven} & \text{solven} & \text{solven} & \text{solven} & \text{solven} & \text{solven} \\ \\ \text{solven} & \text{solve$ n not used FLAGS 2.000 r -250.1 6246.8 32 0 250 4.87 840.27 1015.4 드드거들 DISPLAY ď cqc is rfp ins ai i t r d b d b d b

_		 	 	
				-
9				
ă.				
4d				
cqc				

220

exp2	s 2p	u]	
-	SAM	IPLE	DEC. & VT
date solve	nt Ap	r 30 2005 CDC13	dfrq, 499.747 dn H1
file	/dat	a/export/~	dpwr 34
	ink'	issag/mao/~ e/Man 043~	dof U U VVV
0 0 5 A	0II1	64_13C.fi~	atime at the second sec
		р ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	dmf 10000
e fra	ernh	105 672	
,		C13	
at		0.869	PROCESSING
du		65536	1b 1.00
3 K		37718.1	wtfile
fb		not used	proc ft
bs		16	fn 131072
ss		-	math f
tpwr		58	
M		7.5	VELT
d 1		3.000	wexp
tof		615.5	wbs
цt		10000	wnt
ن		1168	
a loci	J	5	
gain	FL/	not used AGS	
7	;	-	
Ļ		E	
dp		~	
hs	U T C		
,			
		0.0C21-	
1.u		CVP	
S S		250	
hzmm		150.87	
is		500.00	
ŗ		6304.2	
1 1 1 1 1 1 1		⊃ «	
i ns		1.000	
ai	gc	hh	

.

Page S32 / S44

	L N N		Me	OCE -		4ce																 		
	DEC. & VT dfrq 125.677 dn 513 34	dof 1498.1 dm nnn dmm w	dmf 10000 dseq	dres 1.0 homo n	PROCESSING wtfile	proc ft fn 65536	math f	WELL Wexd	wbs wnt															
exp5 s2pul	SAMPLE date Feb 5 2005 solvent CDC13 file /data/export/~	home/movassag/Mao/~ bullwinkle/Mao_020~ 505_A0TT084_1H_fid	ACQUISITION SFrq 499.758	tn H1 at 3.277	np 65536 sw 9998.8	bs not used	tpwr 56 pw 8.2	d1 2.000 tof 1498.1	nt 18 ct 18	alock notuced	FLAGS	<u> </u>	DISPLAY	sp –258.1 wp 6246.8	55	vc 250	15 33.57	rfl 1002.0 rfp 0	th 7 ins 2.000	nm cdc ph				

.

wdd

-

- രപ

- M

4

പ

g

∞

c)

10

11

Ace Ace

SAM	PLE	DEC. & VT
date Fe	b 15 2005	dfrq 500.233
solvent	CDC13	dn H1
file /dat	a/export/~	dpwr 37
home/mova	ssag/Mao/~	dof -500.0
rocky/Mao	021505 A~	dm <
01108	4_13C.fid	dman v
ACQUIS	NOITI	dmf 10000
sfrq	125.796	dseq
tn	C13	dres 1.0
at	1.736	homo n
du	131010	PROCESSING
sw	37735.8	1b 0.30
fb	not used	wtfile
bs	¢	proc ft
SS	1	fn 131072
tpwr	53	math
Md	6.9	
dl	0.763	werr
tof	631.4	WexD
nt	10000	wbs
t	896	wnt
alock	c	
gain	not used	
FLA	GS	
=	E	
'n	E	
dp.	Y	
hs	uu	
DISP	LAY	
sp	-1258.3	
Wp	31448.1	
vs Vs	3159	
sc	0	
×C ×C	250	
hzmm	125.79	
is	500.00	
[f]	15911.8	
rfp 	9686.0	
сп 	£ 000	
	1.00U	
ai pn		

.

-	
	_
-	
-	~
1	
۲	
F	
r	
-	
F	
F	
F	-
F	-
-	4
+	-
F	
+	
+	
-	
4	
F	
-	
-	
H	G
-	1
-	
-	
F	
-	
F	
F	
F	
F	0
-	ŝ
	_
-	2
F	F
F	Ŧ
	1
	1
	1
	16
	16
	1 14
	10 18
	10 11
	200 18
	200 14
	200 14
	200 14
	200 14
<u> i</u>	200 14
<u> i</u>	200 14
	0 200 14
	20 200 14
	220 200 14
	220 200 14
	220 200 14
	220 200 14
	220 200 14
	220 200 14
	220 200 14
	220 200 14
	220 200 14
	220 200 14

exp1	s2pu]	
	SAMPLE	DFC & VI
date	feb 15 2005	dfrq 125.795
solve	nt CDC13	dn C13
file.	/data/export/~	dpwr 37
home/	movassag/Mao/~	dof 0
rocky	/Mao_021505_A~	գա ար
	U11 U6/ 14.710	dimme dimit
sfra	500.235	dsen 2000
tu	H1	dres 1 0
at	3.200	homo
đu	64000	PROCESSING
ΝS	10000.0	wtfile
f b	not used	proc ft
bs	4	fn 131072
S S	-	math f
tpwr	59	
Å	9.8	VELL
11	2.000	vexp
tof	1498.2	wbs
Ľ	20	wnt
ಕ	20	
alock	c	
gain	not used	
	FLAGS	
=	-	
ŗ	E	
8 -	Y	
SU	DTSPLAY	
u s	-250 4	
	6246.3	
s>	61	
sc	0	
Ň	250	
mmzd	3.57	
1s	119.21	
	4632.8	
đ t	3636.7	
ins	2.000	
	hq	

.

.

3 n -

0= 4dc 0= щ SAMPLE SAMPLE DEC. & VT class of the solvent to the solvent of th 1.0 ft 65536 f n not used FLAGS 드드거듭 -250.4 6246.5 6246.5 250 40.00 33.57 1002.5 2.000 DISPLAY Чđ exp1 s2pul u u u u

.

DEC. & VT 499.755 H1 34
 dfrq2
 drg2
 drg

 dmn2
 dmn2
 1

 dmn2
 10000

 dmn2
 10000

 dmn2
 10000

 dres2
 1.0

 dres2
 1.0

 dres3
 1.0

 dm13
 0

 dm13
 10000

 dm13
 10000

 dm13
 1.0

 dm14
 1.0
777 70000 0 1.0 c ft 131072 f DEC2 dfra dn ds eq dres homeo math ver vexp vbs vnt dm n dm f Ę ģ date feb 12 2005 solvent CDC13 di file / dat/more CDC13 di 9 / Mao/Macg 021205.Ard 011088 dist ACQUISTT000 1225.676 di sfrq 011517100 125.676 di at 0.865 di at 0. DISPLAY -1257.2 dr 31415.3 r 677 SAMPLE Feb 12 2005 Feb 12 2005 Feb 12 2005 Feb 12 2005 not used FLAGS 250 125.66 500.00 5304.1 1.000 ᇢᇢ expl s2pul ď çqç

exp1 s2pu]		
SAMPLE date feb 12	2005	DEC. & VT dfra 125.677
solvent C	0013	dn C13
home/movassan/		dof 1408 1
bullwinkle/Mao	021~	
205_A0II089_1H	.fid	Amm and
ACQUISITION	5	dmf 10000
	86/.	dseq
	11	
np 6	5536	PROCESSING
sw 99	98.8	wtfile
fb not	used	proc ft
bs	4	fn 65536
tpwr	56	math f
Md	8.2	
d1 2	.000	Werf
tof 14	98.1	wexp
nt	18	wbs
ct	18	wnt
alock	5	
gain not	used	
1 LHUS		
	-	
Ę.	c	
dp 1	7	
ns ntspi Av		
5n 01010	50.4	
4P WD 62	46.54	
^S	35	
sc	0	
×C	250	
hzmana 4	0.00	
1s 3	3.57	
rf1 46	35.5	
rtp 36 th	33.2	
ins 2	000	
nm cdc ph		

.

1 Me 0× 4eb 0= Me Et0

	DEC. & VT dfra 500 222	dn H1 H1	dof -500.0	eb v	dmf 1000	dseq	dres 1.0	homo n DDACECCINA	10 LACESSING	wtfile 5:55	proc ft	fn. 131072	math f		WELL	Wexp whs	wnt															
<pre><pre>xp1 s2pul</pre></pre>	SAMPLE ate Feb 15 2005	olventCDC13 ile /data/evnort/~	me/movassag/Mao/~	0CKY/Mao_021505_A~ ntrnsf 130 fia	ACQUISITION	rq 125.796	C13	131010	37735.8	not used	ŝ			8.0 0 70 0		10000	736	ock	in not used	L LAUS	c	γ	DISPLAY	-1258.3	31448.1	2	250	mm 125.79	500.00 15411 F	p 9686.0	5 1 000	, ph
പ	ΰ	ōч	ž	ĩ.		s -	5	σĒ	ŝ	╤.	ñ,	v +	5	27	+	5 2	5	ø	ŏ	4	 		÷	5	3 2	20	š.	Ę	ሮኒ		2.E	: 5

