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Methods.

Sequence and structure data. Structural domain defini-
tions for the seed structures of the evolutionary profiles (EPs)
were taken from the SCOP database, version 1.65 (2). The
ASTRAL database (3), which mirrors the Protein Data Bank
(PDB), divides each PDB chain into separate files correspond-
ing to each domain, and the ASTRAL PDB-style files were
used as a source of coordinates. If the SCOP domain defi-
nition was not available for a particular protein, we used a
structural alignment to the most closely related homolog avail-
able to define a SCOP-like domain from the PDB chain. A QR
factorization-based representative set of structures was derived
from all the available structures as described in (1, 4).

Sequences in the EPs were extracted from the well curated
Swiss-Prot database (5). The sequences from structure repre-
sentatives in each of the EPs were used in a BLAST search
(6) over the Swiss-Prot database to find the set of all close se-
quence homologs with E-value < 10−5. More distant sequences
within the homologous group that could not be found using the
initial BLAST search were found by using sequence hits from
the initial search as seeds in a second BLAST search. In these
searches, enzyme names were used to find the appropriate E-
value cutoffs, i.e., all top Blast hits were included until the
search hit proteins outside of the homologous group as indi-
cated by their enzyme names, giving typical E-value cutoffs in
the range 10−3 to 10−1. For example, the only known structure
of the PheRS α-chain is from the bacterial organism Thermus
thermophilus (PDB code 1PYS). The initial BLAST search
readily identified all known bacterial orthologs, but only re-
covered a few of the known archaeal and eukaryotic sequences.
In a second round of BLAST, representatives of the eukary-
otic and archaeal hits were used queries to retrieve additional
orthologs from these domains of life. Sequence alignments of
the proteins from Swiss-Prot to the closest homolog with a
known structure were used to provide structural domain def-
initions for the protein sequences, and a representative set of
these sequence domains were used to supplement the structural
alignments.

Generation of multiple alignments. Structural align-
ments were computed using the multiple structural alignment
program STAMP (7), which uses a dynamic programming pro-
cedure in combination with linear-least squares fitting to find
the rigid body rotation that simultaneously minimizes the Cα-
Cα distance and local main chain conformation for each pair
of aligned proteins. While the algorithm does not include
sequence dependent information, it uses a progressive multi-
ple alignment procedure with a hierarchical clustering analysis
based on structural similarity. The quality of the resultant
multiple structural alignment depends to some degree on a set
of initial alignments that STAMP computes by “scanning” a
selected protein domain against all others in the data set. In
difficult alignment cases, e.g., distantly related or highly sym-
metrical structures, we developed a heuristic algorithm to at-
tempt each scan domain and take the initial alignments from
the scan domain that produced the highest alignment scores
on average. The initial alignments were executed with the
following STAMP parameters: -scan true -npass 2 -slide
5 -scanscore 6, and the final multiple structural alignments
were computed with default parameters. The original ver-
sion of STAMP systematically misaligns N- and C-terminal

residues, but this has been repaired and will be made freely
available through a new multiple structural alignment feature
in the next release of the molecular visualization program VMD
version 1.8.3 (8). There are fluxional regions in the structures
of some proteins, e.g., mobile loops, and the structural align-
ment of these regions depends on the conformation in which the
fluxional region was crystallized. These portions of the align-
ments were manually corrected to improve the quality of the
alignment by comparing them with the sequence-based align-
ments of closely related sequences, i.e., those with sequence
identities of >30%. The structure-based QR factorization (4)
was used to select the representatives of known structure from
the multiple structural alignment of all known structures in
each given protein family or superfamily.

Currently, structural information is not available for each
evolutionarily distinct subgroup in a protein family. Sequences
were selected to supplement the structural alignments to gener-
ate complete evolutionarily profiles for each homologous group
of proteins. All sequence alignments were performed with the
progressive multiple alignment procedure in CLUSTAL W (9).
The progressive alignment method does not ensure the opti-
mal alignment except for a small number of sequences, so the
resulting alignments were manually checked and adjusted in
regions that were clearly mis-aligned. The alignment qual-
ity reduces for diverse sequences when the alignment is based
on sequence-based methods alone. Sequence alignments were
performed for subgroups, with pairwise sequence percentage
identity at >30%. For the AARSs, this cutoff corresponds to
homologous groups with the same enzymatic specificity. The
class II AARS family, therefore, was divided into 12 subgroups
while the lipocalins superfamily was divided into 15 subgroups.
Profile-to-profile alignments in CLUSTAL W were used to align
proteins from different domains of life for groups displaying
canonical or basal canonical phylogenetic patterns. The multi-
ple sequence alignments were generated with the CLUSTAL W
parameters: -infile= -align -outfile= for multiple align-
ments or -profile1= -profile2= -profile -outfile= for
profile-to-profile alignments. Sequence-based QR was applied
to these subgroups individually. So that the more accurate
structural alignment information would be included in the evo-
lutionary profiles, a constraint was implemented in the QR fac-
torization, see Theory and Methods, that ensured the represen-
tative proteins of known structure were retained as members
of the EP. The resulting sequence representatives are added to
the structure-based profile as discussed below.

Except in the case of the HisA-HisF family, in which the
alignments were purely sequence-based, the final alignments
used to construct the evolutionary profiles were based on the
combination of sequence and structure representatives. The
QR factorization-based sequence representatives were added to
the structural alignments using the profile-to-sequence align-
ment method of CLUSTAL W (9). The CLUSTAL W param-
eters used for supplementing the structural alignments (pro-
file 1) with sequences (profile 2) was: -profile1= -profile2=
-sequences. If required, these alignments were manually cor-
rected.

Phylogenetic analysis. Trees were drawn using either the
neighbor-joining program in Phylip (10) or the unweighted
pair group method using arithmetic averages (UPGMA) (11),
as implemented in MATLAB 6.5 (Mathworks, Natick, MA).
Distance-based sequence trees were computed using sequence
identity, normalized by the length of the shortest sequence, as
well as sequence similarity according to the PAM substitution



model in protdist (10). Simple distance-based phylogenetic
methods were used because the QR factorization is based on
an orthogonal encoding of the amino acids and is thus most
similar to the pairwise sequence identity metric. Amino acids
can be numerically encoded, using artificial neural networks,
to reflect the amino acid similarities in a particular substitu-
tion matrix, as in (12, 13), but we leave this application as
well as the application of more sophisticated models of protein
evolution, such as maximum-likelihood phylogenetic analysis,
for future work. We have previously demonstrated a congru-
ence between sequence and structure-based phylogenies (1, 4)
with the application of a measure of structural similarity be-
tween homologous proteins, QH , which was used to construct
the structure-based phylogeny shown in Figure 2.

Database searches. BLAST (6) and HMMER
(http://hmmer.wustl.edu/) (14) were used for database
searches over the Swiss-Prot, TrEMBL and the National
Center for Biotechnology Information’s NRDB (15). BLAST
uses a position specific scoring matrix (PSSM) profile while
HMMER gives a probabilistic treatment, based on a hidden
Markov model, for finding amino acids in a given position of
the alignment. The main difference between the PSSM-based
BLAST approach and the probabilistic HMMER approach is
the position-dependent gap penalties in HMMER. HMMER
requires approximately 100-fold more computational time than
BLAST for an identical database search. The performance of
the EPs is typically compared to that of the corresponding
Pfam profiles. The Pfam profiles were downloaded from the
Pfam 15.0 database (http://pfam.wustl.edu/) (16), and they
are computed based on two alignments; the seed alignment
and the full alignment, a redundant alignment formed from all
the proteins belonging to a particular family in the Swiss-Prot
and TrEMBL databases (5).

Homology modeling for putative class II CysRS in
a methanogenic archaeon. Database searches using HM-
MER (14) of the genomes of the archaeal organisms M. jan-
naschii (17), M. thermoautotrophicus and M. kandleri ob-
tained from Swiss-Prot (5) with the single complete evolu-
tionary profile (QR 40% sequences and structure) for the
class II AARS confidently placed the sequences YG60 METJA
(in M. jannaschii), O27545 (in M. thermoautotrophicus), and
Q8TY66 (in M. kandleri) among the hits for the 10 class
II AARSs expected in these genomes. These sequences
were found within the trusted cutoff for the profile with the
YG60 METJA having an E-value score between those for
PheRS α-chain and GlyRS α-chain. The PheRS β-chain and
AlaRS are found in the database search with an E-value score
greater than that for GlyRS α-chain. The program Modeller
(18) was used to build a homology model of the putative class
II CysRS, YG60 METJA, based on the structure of the α-
chain of PheRS from T. thermophilus, PDB code 1pys chain A,
with loop optimization set at the maximum level. The initial
alignment was performed using the profile-to-profile method
of CLUSTAL W of the putative class II CysRS group to the
structural alignment of PheRS α-chain, PheRS β-chain, GlyRS
α-chain, and AlaRS. These four synthetases form a group that
are structurally similar. This alignment was manually modi-
fied based on the agreement of secondary structure prediction
from PSIPRED (19) and the secondary structure elements in
the structural alignment. A number of insertions, specific to
the putative class II CysRS group, were found which are not
present in the α-chain PheRSs. The larger insertions were re-

moved from the final model as these regions do not have an
appropriate template for modeling.

Householder transformation. QR factorization performs
a series of orthogonal transformations designed to convert the
matrix A to upper triangular form. The Householder transfor-
mation is based on the reflection of a given vector such that
the desired component(s) of the vector are removed. In other
words, while transforming to an upper triangular form, the
components of the vector below the diagonal are annihilated
(made equal to zero). The Householder transformation H1 de-
scribed in Figure 5, is constructed for the vector a such that

H1a = a −
(
2vT a
vT v

)
v in which v = [0 a2]

T − α [1 0]T and

α = −sign (a1) ‖a2‖2. For a detailed description of the House-
holder transformation see (20). This transformation eliminates
all of the below diagonal elements of a, but preserves the Eu-
clidean norm of a by moving all of the magnitude of a into
the component a′1. The geometric and matrix interpretations
of the Householder transformation are shown in Fig. 5.

The model problem shown in Fig. 5 can be thought of as a
multiple alignment of three one-dimensional “proteins”, each
two residues in length with no gapped positions. The pivot-
ing operation is performed to find the “protein” which is most
linearly independent of the representative set already formed.
This is done after the kth step by finding the protein with the
maximum Euclidean norm (or a Frobenius-like p-norm for the
multidimensional representation described in the text) of the
sub-matrix. The cosine of the angle between two proteins is
proportional to the dot product of the two proteins. The angle
between two proteins is hence a measure of the number of iden-
tical residues that the two proteins have in the same position
of the multiple alignment. An alternative formulation of linear
independence can be in terms of the angle that the “protein”
makes with the space of the representative set already formed.
In this case, given that a is chosen as the first representative,
c would be chosen as the second representative protein. An
advantage of the QR factorization, especially in the higher di-
mensional representation for real proteins, is that it uses linear
independence from the space formed by k proteins to choose
the (k + 1)th protein. While pairwise comparisons are a good
measure of linear independence of a pair of vectors, the linear
independence of three or more vectors can not be measured
just by pairwise comparisons.

Parameter search. The goal of the QR algorithm is to pro-
vide an ordering of the sequences in a multiple alignment,
ranked by their decreasing linear independence of the previous
proteins in the ordering. The ordering can be used to define
a non-redundant and representative subset based either on a
arbitrary identity threshold or on a desired number of represen-
tative sequences. The isoleucyl-tRNA synthetases (IleRSs), for
example, are known to display the canonical phylogenetic pat-
tern (21), indicating distinct, well separated and largely mono-
phyletic groups of the Archaea, Eucarya, and Bacteria. The
canonical pattern is so robust among the IleRSs that as well
as being documented with sequence signature and maximum-
likelihood phylogenetic analysis (21), it is also apparent in a
simple UPGMA dendrogram, based on sequence identity, as
shown in Fig. 6a. In this case, therefore, an unbiased, yet rep-
resentative profile would be three or multiples of three, with
equal number of members spanning all the evolutionarily dis-
tinct groupings and the QR order must represent this. How-
ever, the number of sequences of the IleRS in the Swiss-Prot



database is biased towards the bacterial domain of life with 32
of the 49 proteins belonging to bacterial organisms. For the
test case shown in Fig. 6a, we have taken equal number of
proteins belonging to the three domains of life. At a percent-
age threshold value of 40%, there are three distinct groupings
with the three domains of life being represented once and the
representative set taken with 40% threshold should have three
proteins, one from each domain of life. This is an example of
a general property that the QR ordering must obey: at any
similarity threshold the maximum number of sequences, with
pairwise similarity values below threshold, are chosen as the
members of the representative set. If the QR factorization
produces an ordering which obeys the above property for any
arbitrary similarity threshold, then the ordering is said to be
“allowed.”

To visualize this property, we introduce the notion that a
phylogeny or dendrogram has distinct threshold regions, which
are defined by the emergence of a new branch as the threshold
increases along the sequence identity scale. The dendrogram
in Fig. 6a has eight distinct threshold regions. The first dis-
tinct threshold can be applied in the range from the initial
bifurcation, which splits the sequences into two groups, i.e.,
(1,4,8) and (2,6,7,3,5,9), to the second bifurcation, which splits
the latter group into two subgroups, (2,6,7) and (3,5,9). The
range for the second threshold begins with the formation of
these three groups and ends at the branch which splits group
(1,4,8) into two groups, (1) and (4,8), and the other thresh-
old regions are defined similarly. In summary, each region is
associated with a range of cutoff values, represented by Icuti
where the ith threshold separates the proteins into i groups.
When the threshold Icuti is applied, the QR order is defined
as allowed if the first i proteins in the QR order represent the
i different groups defined at that cutoff, for all i. All other
orderings, which can be obtained if, for example, the gaps are
weighted too heavily in comparison to the aligned positions,
are defined as forbidden. The two adjustable parameters, one
of which is the gap scaling parameter, must be defined, there-
fore, such that the QR factorization gives allowed orderings for
all possible thresholds. Fig. 6a and b show dendrograms for
the training sets used to parameterize the QR factorization,
and in both trees the sequences are numbered according to an
allowed QR ordering. In Figure 6a, for example, when Icut2
is applied to the ordering, proteins 1 and 2 represent groups
(1,4,8) and (2,6,7,3,5,9), respectively. Similarly, when Icut3 is
applied, proteins 1, 2, and 3 represent groups (1,4,8), (2,6,7),
and (3,5,9) and so on for all distinct thresholds up to Icut9.
This ordering is allowed for all distinct thresholds and is, thus,
an allowed ordering.

Our implementation of the multidimensional QR factoriza-
tion of the alignment matrix depends on two parameters, the
gap scaling constant γ and the ordering p-norm. In order
to determine an appropriate value for these parameters, two
training sets were used, which exhibited well-defined phyloge-
netic topology, implying a phylogeny that is robust with re-
spect to different tree methods [UPGMA, neighbor joining or
maximum likelihood (21)] and distance metrics (similarity or
identity). The parameters can also be tuned to give allowed
orderings for trees based on more sophisticated phylogenetic
methods. Sequences of first training set were selected from the
IleRSs, which display the Rossmann fold, with a three layer
α-β-α topology and a core made from five parallel β-strands.
The proteins of the second training set were selected from the
lipocalin fold type, which is a β-barrel made from anti-parallel
β-sheets. The second training set was made from a superfam-

ily of proteins while the first training set was made from the
closely related IleRS. The second training set has many gaps
while the first training set has very few gaps.

The results of the parameter search are given in Fig. 6c and
d . QR factorization is carried out for each pair of candidate pa-
rameters over the given ranges. At each value the of candidate
parameters, the QR ordering is evaluated to be either forbid-
den or allowed. The parameter space plots show a large region
of overlap where allowed orderings are consistently achieved for
both training sets. At low γ values, the gaps are assigned small
weights in comparison with the weights assigned to the amino
acids, resulting in forbidden orderings for the superfamily level
alignments of the lipocalins. In general, the alignment of pro-
teins in the lipocalin superfamily contains more gaps than the
IleRS training set. At high gap weights (γ > 2), the pattern of
gaps dominates the QR ordering and forbidden orderings result
for the more closely related sequences of the IleRS training set.
In general, the superfamily alignment lipocalins favor large gap
penalties while the family alignment from IleRS favor smaller
gap penalties. The parameters used for this study are taken
from the overlapping region and are γ = 1.0 and p = 2. Note
that these values are optimal for an orthogonal encoding of the
amino acids and can change when the description of the amino
acid is altered.

Further Results.

Phylogenetic tree of HisA-HisF family and performance
of family profiles with HMMER search. In Fig. 7, the
major evolutionarily distinct groups are labeled with brackets,
and the thirteen members of the representative set, which form
the best performing EP, i.e., QR 40% in Fig. 1, are labeled by
their organism name and their rank in the QR order (purple
numbers). Although the group of putative, duplicated HisF
proteins appears over-sampled, the relationships in this group
are more distant than are the relationships between sequences
within the other subgroups. The tree includes all members of
the HisF-HisA family found in Swiss-Prot, and the bias towards
the bacterial organisms in this family is evident.

Fig. 8 shows ROC50 plots for HMMER searches over the
Swiss-Prot database for a variety of profiles of the HisA-HisF
family. The database search results show that for closely re-
lated families, BLAST performs comparably to HMMER. A
profile search with HMMER is, however, 100 times more com-
putationally expensive than the corresponding BLAST profile
search.

A superfamily level profile of the lipocalins. Proteins of
the lipocalin superfamily transport ligands docked to a buried
hydrophobic pocket inside its β-barrel fold and have been in-
tensely studied in protein folding experiments. The lipocalin
fold has a single superfamily composed of three member fami-
lies: the retinol binding protein-like family, fatty acid protein-
like family, and the thrombin inhibitor family. The diversity
of the proteins in the lipocalin superfamily is so large that the
sequences cannot be aligned properly by sequence-based meth-
ods alone. The members of the lipocalin superfamily can be
aligned properly using structure-based information as shown
in Fig. 10. From the currently available structures, however,
a purely structure-based EP of 20 sequences was constructed.
For the lipocalin member subfamilies lacking structure data,
QR factorization-based sequence representatives were used to
supplement the multiple structure alignment. With a 50% se-
quence identity threshold applied to the QR ordering of the



combined sequence-structure alignment, 54 proteins are re-
quired to span the evolutionary space of the lipocalin super-
family. In order to examine the effect of the enhanced align-
ment quality provided by the structure-based alignment on the
database search results, a third EP was built in which these 54
sequences were re-aligned using CLUSTAL W (9). As shown
in Fig. 9, once again the sequence supplemented EP outper-
forms both the Pfam full and seed alignment-base profiles, and
does so with 3-fold fewer sequences than the Pfam seed pro-
file. Interestingly, while the EP based on the sequence supple-
mented structure alignment performs the best, comparable per-
formance is observed in the EP based on the same sequences,
but realigned with CLUSTAL, which finishes a near second.
In a study by Panchenko and Bryant (22), it was shown that
the main advantage of using a profile based on a higher quality
seed-alignment is the improved accuracy of the alignment of
the databases sequences to the profile.

SUPERFAMILY is a database of hidden Markov models
(HMM) profiles for each of the superfamilies in SCOP and is
similar in spirit to Pfam (23). For each entry in the database
fifty HMMs are given, each one built from a different seed se-
quence. The SUPERFAMILY protocol suggests that for a sin-
gle superfamily level database search, fifty separate database
searches should be performed and the results summed. Al-
though Gough et al. (23) have documented some improvement
with this protocol, here we are testing the efficacy of a single
profile in a single database search. The first lipocalin superfam-
ily HMM (model no. 0016667) in the list of fifty was chosen
for comparison to the EPs. In addition to the HMMs, the
SUPERFAMILY database provides multiple alignments of the
sequences of a representative set of structures belonging to the
superfamily. These sequences are selected on a sequence iden-
tity threshold of 40% and the different alignments are based
on each of the fifty HMMs. Performance of a profile based on
this alignment, corresponding to model no. 0016667, is also
shown in Fig. 9. Neither SUPERFAMILY profiles perform as
well as the EP based on only the known structures in a single
database search. A depiction of structural conservation among
the lipocalin superfamily members is shown in Fig. 10.

Class II AARS overlap and performance of EPs with
BLAST. The class II AARSs are a diverse family of proteins
that cannot be aligned using sequence-based methods alone.
The class II AARSs, however, share significant structural sim-
ilarity and can be aligned using structure-based methods. In
Fig. 11a, the structural cores of the class II AARSs are shown.
The structural core is measured by using a metric of structural
similarity at each site which is explained in more detail in ref.
3. The class II AARSs have been divided in to three subclasses
based on structural similarity (1). The class II AARSs belong
to the α + β-fold with a prominent antiparallel β-sheet.

In Fig. 11a, the secondary structure elements of the class II
AARSs are clearly visible. The structural core of the subclass
IIA AARSs, which includes the dimeric GlyRS, HisRS, ProRS,
SerRS, and ThrRS, is shown in Fig. 11b. In addition to the
major secondary elements of the class II AARSs, a small β-
hairpin (top of Fig. 11b) and a small β-sheet (bottom of Fig.
11b) are also conserved among the subclass IIA AARSs. These
two structural elements seem to be an idiosyncratic insertion
which is conserved at the more closely grouped subclass level
and is not conserved at the diverse family level of the class
II AARSs. Similarly, Fig. 11c shows the structural core of
the class IIB AARSs, comprising AARSs specific for aspartate
(D), lysine (K) and asparagine (N). In addition to the common

structural core of the class II AARSs, a small helix is conserved
in the class IIB AARSs (top of Fig. 11c). Finally, Fig. 11d
displays the structural core of the subclass IIC AARSs, that
are all uniquely tetrameric and specific for glycine (G), alanine
(A) and phenylalanine (F). Interestingly, there is a deletion of
a β-hairpin in some members of the subclass IIC group that is
highly conserved in all other class II AARS (top-right corner
of Fig. 11a). This β-hairpin is involved in the dimerization of
the class IIA AARSs and class IIB AARSs and is not conserved
among the tetrameric class IIC AARSs.
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