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ABSTRACT

Through an elegant geometrical interpretation, the multi-fractal analysis quantifies the spatial and temporal irregularities of the
structural and dynamical formation of complex networks. Despite its effectiveness in unweighted networks, the multi-fractal
geometry of weighted complex networks, the role of interaction intensity, the influence of the embedding metric spaces and
the design of reliable estimation algorithms remain open challenges. To address these challenges, we present a set of reliable
multi-fractal estimation algorithms for quantifying the structural complexity and heterogeneity of weighted complex networks.
Our methodology uncovers that i) the weights of complex networks and their underlying metric spaces play a key role in
dictating the existence of multi-fractal scaling and ii) the multi-fractal scaling can be localized in both space and scales. In
addition, this multi-fractal characterization framework enables the construction of a scaling-based similarity metric and the
identification of community structure of human brain connectome. The detected communities are accurately aligned with the
biological brain connectivity patterns. This characterization framework has no constraint on the target network and can thus
be leveraged as a basis for both structural and dynamic analysis of networks in a wide spectrum of applications.

1 Multi-fractal Analysis of Sierpinksi Fractal Network
Preliminaries: Before we present the analytical study of multi-fractality of Sierpinski network, we first formally introduce the
definition of the Sierpinski family of our interest. For succinctness of statement, we introduce the following definitions:
⋄ Let b ∈ N be a positively integer-valued number and s ∈ (0,1] be a real number.
⋄ Let G = (V,E) be a network where V denotes the collection of nodes and E denote the collection of links.
⋄ Let D(vi,G) denote the degree of vi in network G and W (ei, j) be the weight of link ei, j
⋄ A tree is an undirected connected acyclic network G.
⋄ Given G = (V,E) is a tree, let L : V → V be a mapping function such that D(vi,G) = 1,∀vi ∈ L (V ) ⊂ V . L (V ) is also
known as the set of leaf nodes of G.

Thus, we can formally introduce the definition as,
Definition 1 (Sierpinski network): A family of Sierpinski networks is an infinite set of trees S = {G0,G1, ...Gn, ...} subject
to the following constraints:

(1) G0 = (V0,E0) where |V0|= 1 and E0 = /0.
(2) For any k ≥ 1, ∆Gk := Gk \Gk−1 = (∆Vk,∆Ek) where ∆Vk = Vk \Vk−1 and ∆Ek = Ek \Ek−1 such that the following

conditions are all met:
(2.1) D(vi,∆Gk) = 1,∀vi ∈ ∆Vk
(2.2) |∆Vk|= |∆Ek|
(2.3) ∀vi ∈ ∆Vk, ∃v j ∈ L (Vk−1) such that ei, j ∈ ∆Ek
(2.4) For k = 1, D(vi,Gk) = b and for k > 1, D(vi,Gk) = b+1, ∀vi ∈ L (Gk−1).
(2.5) For k = 1, W (ei, j) =W0, ∀ei, j ∈ ∆Ek. For k > 1, W (ei, j) = sW (ei′, j′),∀ei, j ∈ ∆Ek and ∀ei′, j′ ∈ ∆Ek−1.

As Definition 1 states, the family of Sierpinski networks is constructed in an iterative fashion where the origin of the
family is a single n0 in G0 and any member Gk−1 is a subgraph of its successor Gk. By definition, a new family member Gk
is introduced through the insertion of new nodes in ∆Vk and links in ∆Ek to its predecessor Gk−1. The construction of ∆Vk
and ∆Ek is regulated by constraints (2.1)-(2.5). The constraints (2.1), (2.2) and (2.3) state each newly added node has one
and only one link to the leaf nodes of Gk−1. Constraint (2.4) defines the growth rule of the Sierpinski family where each leaf
node in Gk−1 creates links to exactly b nodes in Gk. Constraint (2.5) decides the scaling factor of link weights between two
generations. It is noted that we define the weights W (ei, j) for an empty link set E−1 for maintaining the consistency of the



iterative definition.
To study the multi-fractality of Sierpinski network S , we first need to map the network onto a metric space where the

distance between a pair of nodes is defined as follows:

di, j = min{wp
i,k1

+wp
k1,k2

+ ...+wp
kn, j} (1)

where wl,m = W (el,m) and link set {ei,k1 ,ek1,k2 , ...,ekn, j} represents a path between vi and v j. The distance between a pair of
nodes is thus decided by the path that minimizes the summation in Eq.(1). The exponent p is a constant decided based on the
context of the network. Since p is fixed for a specific type of network considered, it is always possible to define w′

l,m = wp
l,m.

Thus we will assume p = 1 without loss of generality.
Lemma 1 (Diameter of Gk): The diameter Dm,k of Gk ∈ S is given by,

Dm,k = 2W0(
1− sk

1− s
) (2)

Proof: Due to the symmetry of Gk and constraint (2.5), the longest path length is twice the distance between vi ∈ L (Vk) and
n0. Thus,

Dm,k = 2d(vi,n0) = 2(W0 + sW0 + s2W0 + ...+ sk−1W0) = 2W0
1− sk

1− s
(3)

□

Lemma 2 (Size of Gk): The network size |Vk| of Gk ∈ S is given by,

|Vk|=
1−bk+1

1−b
(4)

Proof: According to the growth rule (2.4), b ∗ |L (Vk−1)| nodes will be newly introduced in the k−th iteration. As a conse-
quence, the size of Gk can be calculated through the summation of a geometric progression,

|Vk|= 1+b+b2 + ...+bk =
1−bk+1

1−b
(5)

□

To analytically investigate the multi-fractality of Sierpinkski family S , we consider a box covering method M that tiles the
Gk ∈ S ,∀k ∈ N with boxes {Bi(l)}. For improving the clarity of the paper, we herewith formally introduce the following
definitions:
Definition 2 (Box): A box B(l) is a subset of V such that for any pair of nodes vi and v j ∈ B(l), di, j ≤ l.
Definition 3 (Compact box): A box B(l) is compact if and only if di, j > l holds for ∀vi ∈ B(l) and ∀v j ∈V \B(l).
Definition 4 (Box covering method): A non-overlapping box covering strategy M is a partition of G such that ∪Bi(l) = V
and Bi(l)∩B j(l) = /0,∀i ̸= j.
Definition 5 (Optimal box covering): A non-overlapping box covering strategy M is optimal if there does not exist M ′ such
that |M ′|< |M | .
Theorem 1 (Optimal box covering): A box covering strategy M is optimal if Bi(l) is compact for ∀Bi(l) ∈ M .
Proof: Assume the optimal box covering is M ′ and M is compact. For arbitrary choice of a node v j, ∃Bi(l) ∈ M such
that v j ∈ Bi(l). Since M ′ is a partition of G, hence ∃Bi′(l) such that v j ∈ Bi′(l) ∈ M ′. Given M ′ is optimal, let us assume
Bi′(l)\Bi(l) ̸= /0 such that ∃vk ∈ Bi′(l) and vk /∈ Bi(l). Equivalently, ∃vk ∈V \Bi(l) such that d j,k ≤ l. Consequently, Bi(l) is
not compact. This contradicts our assumption. Therefore, Bi(l) = Bi′(l). Since our choice of v j is arbitrary, we have M =M ′.

□

It should be noted that a compact M is not a necessary condition for optimality of M . Theorem 1 states that an optimal
solution is compact as long as such a compact M exists. To give some intuition, let us consider a network with 4 nodes
connected. Assume the link weight is uniformly set to 1 and the size of the box l to cover the network is 2. Obviously, the
optimal covering strategy M requires 2 boxes. One covers the three nodes and the other covers the rest. No single box of size
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2 can cover the entire network as the longest path is 3. Therefore M is trivially optimal. However, the boxes are not compact
based on the Definition 3 as there always exists a node vi to which the shortest path of v j ∈ G is smaller than l. Therefore,
compactness is a stronger property of a covering method than its optimality.

Theoretically, the generalized fractal dimension via box-covering method is given by

Dbc(q) = liml→0
ln(∑i(Mi(l)/M0)

q)

ln(l/L)
1

q−1
(6)

Eq.(6) holds only if the box covering strategy M is optimal. Interestingly, we are able to present a stronger box-covering
strategy for Sierpinski family S and prove its compactness (hence optimality) conditioned on the value of s which is the
scaling factor of link weights.
Optimal box covering for Sierpinski S : The covering strategy starts with choosing how box size should be scaled in order
to calculate the limit in Eq.(6) via a linear regression. In contrast to geometric fractal object that is well defined on Euclidean
space, the complex network, once mapped to a metric space, has a limited resolution in a sense that we can not learn how
the measure distribution ∑i((Mi(l))/M0)

q changes over continuously scaled box sizes l. To address this problem for the
considered Sierpinski family S , we choose to grow the box size l by accumulating the unique link weights.

Formally, let us consider Gk = (Vk,Ek) ∈ S where W (Ek) denotes the universal set of all its link weights. Let us define a
strictly ordered set W> = {w1,w2,w3, ...,wn} on Gk such that wi ∈W (Ek),∀wi ∈ W> and wi < w j if i > j. We define box-size
growth rule as a set L ={l j|l j = 2∑n

i= j+1 wi, j ≤ n−1}. Once we set up the growth rule, the subsequent covering procedure
can be stated as:
1. Given l j, cover the subgraph in Gk rooted on a node vi ∈ ∆Vj with a single box B(l j) of size l j.
2. Repeat 1 for all the nodes in ∆Vj.
3. Cover every other node in Gk with a box of size l j.
4. Steps 1-3 yield a box-covering strategy Mopt .
Lemma 3 (Optimality of box covering): Mopt is a compact optimal covering for S if s < 1/3.
Proof: First, let us prove that a box of size l j is able to cover the subgraph rooted on any node vi ∈ ∆Vj. Let us denote the
diameter of the subgraph of Gk rooted on vi as Dm,k−i. Given Gk is a tree such that the Dm,k−i can be calculated as:

Dm,k−i = 2(sk−1W0 + ...+ s jW0) = 2
sk − s j

s−1
W0 (7)

By definition, we know for Gk ∈ S

l j = 2
n

∑
i= j+1

wi (8)

Where wi = si−1W0 and n = k. Thus l j = Dm,k−i such that the subgraph rooted on vi ∈ ∆Vj can be covered with a single box.
Next, let us prove for any node vi ∈ ∆Vp where p < j, it requires one and only one box B(l j) to cover it. We rewrite Eq.(8)

as,

l j =
2s

1− s
W0s j−1 − 2sk

1− s
W0 (9)

The link weight between the node vi ∈ ∆Vj and vi′ ∈ ∆Vj−1 is equal to w j =W0s j−1. Given s ∈ (0,1], the step 3 holds if l j < w j.
A sufficient condition for that is

2s
1− s

< 1 <=> s < 1/3 (10)

Given that w j < w j−1 < ... < w0 =W0, no two nodes vi and vi′ ∈Vj−1 can be covered by a box B(l j) if s < 1/3.
To finish our proof, we need to show that Mopt is compact. The proof follows the fact that for any box Bm(l j) ∈ Mopt , the

minimal distance between a node vi ∈ Bm(l j) and a node vi′ outside the box di,i′ is no less than w j while w j > l j. Thus, Bm(l j)
is compact for any such box in Mopt so that Mopt is compact. By Theorem 1, the covering strategy Mopt is optimal.

□

Covering S by Mopt simply yields,

N(B(l j)) = |∆Vj|+ |Vj−1|= b j +b j−1 + ...+b0 =
b j+1 −1

b−1
(11)
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We set up the basis on which we can analytically derive the multi-fractal spetrum. It requires to calculate the limit in Eq.(6).
We consider mass distribution Mi(l j)/M0 as our probabilistic measure. It is noted that we have two types of equally sized
boxes B(l j). Box type I covers every single node in Vj−1 and the other covers the rest. The number of nodes they cover is
given by,

M(l j) =

{
bk− j+1−1

b−1 , Box type I
1, otherwise

(12)

The probability measure µ(B1) and µ(B2) are calculated as,

µ(B1) =
M(l j)

M0
=

bk− j+1 −1
bk+1 −1

(13)

µ(B2) =
1

M0
=

b−1
bk+1 −1

(14)

Assume 1 ≪ j < k,

µ(B1)
q = b−q j (15)

µ(B2)
q = b−qk (16)

Thus,

∑µ(Bi(l j))
q = b(1−q) j +b j−qk−1 (17)

If we have limk→∞
j→∞ j/k = O(1), which implies if we grow the Sierpinski network at the same speed as we shrink the box size l.

We can simply write Eq.(17) as b(1−q) j given j → ∞ such that the partition function τ(q) is obtained by,

τ(q) = lim j→∞
j(1−q)ln(b)

( j−1)ln(s)+ ln(A)
= (1−q)

ln(b)
ln(s)

(18)

Eq.(18) suggests the partition function τ(q) is a linear function of q. In other words, the Sierpinski network S converges to
a perfect mono-fractal if we were able to measure G∞ given the scaling factor s < 1/3. In such case, the network could be
characterized by a single fractal dimension D = ln(b)/ln(s).

In practice, k is always finite. Let us assume that we are learning the scaling dependence from a scaling range jmin < j <
jmax and k is big enough to approximate G∞ in the sense that j ≪ k and k ≫ 1. If q > 0, we expect τ(q) stays as a linear
function of q as this is same as the case discussed. However, τ(q) will be affected by the value of k when q is negative. This
translates to the fact that we will observe τ(q) is a non-linear function of q that behaves different when it crosses the point
q = 0.

Of particular note, such non-linearity of τ(q) has been reported in numerous prior works in which the studied Sierpinski
network meets the mentioned conditions but is interpreted as multi-fractality. However, we argue that the observed non-
linearity of τ(q) observed does not necessarily imply multi-fractality. The limited size of the graph considered with a small
scaling factor could also be source of it, which does not mathematically link to multi-fractality.

2 Quantitative Analysis of Finite Resolution and Link Weight Distribution
Estimation error analysis and stairway effect: To quantitatively perform error analysis in a more general case, let us denote
Y = {y1,y2,y3, ...,yN} and X = {x1,x2,x3, ...,xN} as observation of output and input from a linear system. Let us assume
the existence of a strictly linear dependency between Y and X and observations are perfect, i.e., error-free. Trivially, linear
regression can give perfect estimate of the slope θ0 if only observations in Y and X are considered. As the observations are not
made continuously thus we can always insert fake observations as noise between any actual observations xi and xi+1. Let us
introduce fake observations Yf = {y′ik |y

′
ik = yi,k ∈ [1,n]} and X f = {xik |xik = k ∗ (xi+1 − xi)/n+ xi,k ∈ [1,n]}. More precisely,
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we are inserting fake observation pairs (Yf ,X f ) between xi and xi+1 such that a small staircase is created because we assume
all fake y observations of same value as yi. Thus, the optimization problem can be written as :

argmin
θ∗

i

∑
k=1

(yk −θ ∗xk)
2 +

in

∑
k=i1

(yi −θ ∗xk)
2 +

N

∑
k=i+1

(yk −θ ∗xk)
2 (19)

For one dimensional linear regression, it can be shown that the slope of the fitted line θ is given by

θ =
∑i(xi − x̄)(yi − ȳ)

∑i(xi − x̄)2 (20)

By introducing the fake observations, both x̄ and ȳ are affected and the new averages can be calculated as,

x̄′ =
Nx̄+ n

2 (xi + xi+1)

N +n
(21)

ȳ′ =
Nθ x̄+nθxi

N +n
(22)

To simplify our analysis, we assume 1 ≪ n ≪ N such that x̄′ ≈ x̄ and ȳ′ ≈ ȳ. Therefore, we can write Eq.(20) as,

θ ′ = θ
∑N

j=1(x j − x̄)2 +∑n
k=1(xi − x̄+δk)(xi − x̄)

∑N
j=1(x j − x̄)2 +∑n

k=1(xi − x̄+δk)2
(23)

where δ = (xi+1 − xi)/n. Denote σ2
x = ∑N

j=1(x j − x̄)2 and σi = xi − x̄. We have,

θ ′ = θ
σ2

x +σi ∑k(σi +δk)
σ2

x +∑k(σi +δk)2 = θ
σ2

x +nσ2
i +δσin(n+1)/2

σ2
x +nσ2

i +δσin(n+1)+δ 2n(n+1)(2n+1)/6
(24)

Given n ≫ 1 and δ = (xi+1 − xi/n), we define Ws = xi+1 − xi as the width of the ”staircase” such that,

|θ ′| ≈ |θ
σ2

x +n(σ2
i +σi

1
2Ws)

σ2
x +n[σ2

i +σi(
1
3W 2

s +Ws)]
|= F(σi,Ws,n)|θ | (25)

From Eq.(25), we can make the following observations:
i) The slope changing factor F(σi,Ws,n) is a function of three factors: the deviation of xi from the average of observations

{xi}, the width of the staircase and the number of fake observations inserted. The impact of the staircase on the estimation of
the slope is decided by the location of the staircase, i.e., the sign of σi. When σi > 0 or the start of staircase xi is greater than
x̄, F(σi,Ws,n) is greater than 1 thus |θ ′| is smaller than |θ |. The introduction of fake observations, i.e., the staircase, will lead
to underestimated (overestimated) slope of the fitted line given θ0 is positive (negative). However, when σi < 0, the influence
is reversed. Of particular note, the stair effect does affect the estimate if σi = 0.

ii) When σi > 0, the biased estimate decreases(increases if σi < 0) as the width of the staircase Ws grows. This is aligned
with our intuition that if the value of fake observations {yik} get stuck at yi over a very long x horizon, the fitted line tends to
approach a line parallel with x-axis.

iii) Given fixed Ws and xi, the number of fake observations n is proportional to deviation of θ from its actual value as
the changing rate of the linear term in denominator of Eq.(25) is always greater than that in the numerator, rendering it a
monotonically decreasing(increasing) function of n when σ > 0 (σ < 0).

To verify our theoretical findings, we use the same linear system y = 50− 0.4x and measure the estimation errors as a
function of staircase location, number of fake observations and the width of staircase. Figure 1 shows the variation of the
estimation error against different inserting locations of a staircase with number of fake observations ranging from 10 to 100
given a fixed Ws = 100. As predicted by our analysis, the sign of (|θ ′|− |θ0|)/|θ0| changes across x̄ = 100 and its amplitude
exhibits an almost asymmetrical pattern where the error shrinks to zero as xi approaches x̄ (σi → 0) and becomes bigger
otherwise. Given a fixed xi, the increase of number of fake observations n will further bias the estimates. Figure 2 shows the
influence of the width of the staircase which coincides with our analytical prediction.
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Figure 1. Relative error of estimate of θ0 as function of insertion location of staircase and number of fake observations
considered.

3 Phase Transition Characterized by Multi-fractal Free Energy Discontinuity
The transition point where the skewness of link distribution experiences a quick rising when scaling factor s decreases below
a turning point suggests that a critical exponent can be potentially associated to this point to describe a transition from a
mono-fractal phase to a multi-fractal phase (when considering networks of limited size) of Sierpinski fractal network. Based
on the multi-fractal analysis of Sierpinski fractal network (see Lemma 3 in Supplementary Material Section 1), the Sierpinski
fractal network converges to a perfect mono-fractal if the Sierpinski network grows at the same speed as we shrink the box
size l. The growth rate of the Sierpinski network is fundamentally determined by the scaling factor s. Therefore, we expect
that a proper choice of s in a given network Gi of limited size will serve as a phase transition point where Sierpinski network
family turns from a mono-fractal to a multi-fractal as a result of violating our assumptions, i.e., identical growth rate as the
box size in a graph of unbounded size.

In fact, we can analyze this transition from the perspective of thermodynamic free energy and investigate whether there
exists a discontinuity in the derivatives of free energy function associated with the multi-fractal spectra of Sierpinski fractal
networks [1]. Ehrenfest classification [3] labels the phase transition by the lowest derivative of the free energy that is dis-
continuous at the transition. For instance, the first order phase transition exhibits a discontinuity in the first derivative of the
free energy with respect to some thermodynamic variable. In analogy to this thermodynamic concept, the free energy of a
multi-fractal is defined as the mass exponent τ(q;s) that characterizes the scaling dependence of partition function Z(l,q;s)
on the size l of each partition (See [1,2] for detailed analysis).

Z(l,q;s) = ∑
i

µ(Bi(l);s)q ∼ (
l
L
)τ(q;s) (26)

We consider s in the partition function and mass exponent as they are determined by the scaling factor s if we fix the size
of given Sierpinski fractal network. Similarly as thermodynamics classifies the phase transitions based on the behavior of the
thermodynamic free energy as a function of other thermodynamic variables, we introduce a set of experiments to investigate
the first-order phase transition of the free energy of Sierpinski fractal network as function of s. In the experimental setting,
we choose G4 from the Sierpinski fractal network family. G4 has 364 nodes with a copy factor b = 3. We consider a series of
decreasing scaling factor si = 0.95i where i ≥ 1 being the index of the scaling factor. As a case study, we measured the τ(q;si)
against different si with a fixed q =−2 . We plot τ(q;si) against si to study the existence of discontinuity in Figure 3.

Figure 3.(a) suggests a sudden transition in the free energy of Sierpinski fractal network G4 when we decrease scaling
factor s below s = 0.7738. This can be further verified in the Figure 3.(b) where the first-order derivative of the free energy τ
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Figure 2. Relative error of estimate of θ0 as function of width of staircase and the number of fake observations considered.

has a numerical singular point between s = 0.7738 and s = 0.7351. These two observations lead us to believe the existence of
first-order discontinuity in the free energy function of Sierpinski G4, i.e., the first-order phase transition. To further corroborate
our claim that this phase transition suggests a change from mono-fractal phase to multi-fractal phase of Sierpinski fractal
network, we investigate the dependence of free energy (mass exponent) τ(q) on distorting exponent q on the interested range
of s between 0.9025 to 0.7351 and report it in Figure 4. By definition, the free energy (mass exponent) τ(q) of a mono-fractal
exhibits linear dependence on q as opposed to a non-linear dependence on q for a multi-fractal. We can observe that the free
energy τ(q) changes from a linear dependence behavior on q for s greater than 0.7351 to a nonlinear dependence as a function
of q for s = 0.7351. This indicates G4 stays a mono-fractal before this critical point and then transits to a multi-fractal beyond
it. This observation coincides with Figure 3 and altogether they experimentally verify our claim that there exists a critical
scaling factor s that leads to a phase transition. It should be also noted that this critical point might not precisely coincide with
the transition point of skewness of link distribution and it is also influenced by the size of the network (e.g., the critical s for
G4 analyzed in the experiment might not coincide with that of G5).

Reference
1. Lee, Jysoo, and H. Eugene Stanley. ”Phase transition in the multifractal spectrum of diffusion-limited aggregation.” Physical
review letters 61.26 (1988): 2945.
2. Katzen, Dahn, and Itamar Procaccia. ”Phase transitions in the thermodynamic formalism of multifractals.” Nuclear Physics
B-Proceedings Supplements 2 (1987): 517-520.
3. Jaeger, Gregg. ”The Ehrenfest classification of phase transitions: introduction and evolution.” Archive for history of exact
sciences 53.1 (1998): 51-81.

7/8



0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Scaling factor

-0.2

0

0.2

0.4

0.6

F
ir
s
t-

o
rd

e
r 

d
e
ri
v
a
ti
v
e
 d

/d
s

Scaling factor

-6.2

-6

-5.8

-5.6

-5.4

-5.2

-5

-4.8

F
re

e
 e

n
e

rg
y

0 2. 0 3. 0 4. 0 5. 0 6. 0 7. 0 8. 0 9. 1

a) b)

Figure 3. First-order phase transition of the free energy τ as function of scaling factor s in Sierpinski fractal network
G4 with copy factor b = 3. (a) The free energy of G4 exhibits a discontinuous behavior between s = 0.7738 and s = 0.7351.
(b) The observed possible discontinuity in the first-order derivative of free energy τ .
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