Mechanism of NHC-Catalyzed Conjugate Additions of Diboron and Borosilane Reagents to α,β -Unsaturated Carbonyl Compounds

Hao Wu, Jeannette M. Garcia, Fredrik Haeffner, Suttipol Radomkit, Adil R. Zhugralin and Amir H. Hoveyda*

Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467

SUPPORTING INFORMATION

Table of Contents

General	S2
Reagents	S2–S3
Preparations and Analytical Data of Compounds (10–17 in Scheme 5)	S3–S6
Analytical Data of ¹³ C-Labeled Imidazolinium Salt 7c	
Analytical Data of Compound 43	
Analytical Data of β -Silyl Carbonyl 33c	
NMR Studies on Probing the Formation of Chiral NHC•diboron Complex	
NMR Studies on Probing the Formation of Chiral NHC•borosilane Complex	S9–S17
Kinetic Studies of Chiral NHC Catalyzed BCA and SCA Reactions	
Calculations on BDE for B–B Bonds in B ₂ (pin) ₂ and NHC•B ₂ (pin) ₂	
Calculations on Stereochemical Models for BCA and SCA Reactions	
Computational analysis of a Doubly Coordinated Diboron Complex	
X-ray Structures of Compound 15, 34 and 43	
¹ H NMR Spectra	S132–S141
References	S142

General. Infrared (IR) spectra were recorded on a Bruker FT-IR Alpha (ATR mode) spectrophotometer, v_{max} in cm⁻¹. Bands are characterized as broad (br), strong (s), medium (m), and weak (w). ¹H NMR spectra were recorded on a Varian Unity INOVA 400 (400 MHz), 500 (500 MHz) or 600 (600 MHz) spectrometer. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃: δ 7.26 ppm). ¹³C NMR spectra were recorded on a Varian Unity INOVA 400 (100 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃: δ 77.16 ppm). ¹¹B NMR were recorded on a Varian Unity INOVA 500 (128 MHz) with BF₃•(OEt)₂ resonance as the external reference (thf d_8 : δ 0.0 ppm). ¹⁹F NMR were recorded on a Varian Unity INOVA 400 (376 MHz) with CF₃COOH resonance as the external reference (thf- d_8 : δ -76.55 ppm). Data are reported as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br s = broad singlet), and coupling constants (Hz). High-resolution mass spectrometry was performed on a JEOL AccuTOF-DART (positive mode) or ESI-MS (positive mode) at the Mass Spectrometry Facility, Boston College. Enantiomeric ratios were determined by HPLC analysis (high-performance liquid chromatography) with a Shimadzu chromatograph (Chiral Technologies Chiralpak AD-H (4.6 x 250 mm)) in comparison with authentic racemic materials. Specific rotations were measured on a Rudolph Research Analytical Autopol IV Polarimeter. X-ray structures for compound 15, 34 and 43 were obtained, as described in the cif files, with a Microfocus sealed Cu tube from Incote. It is well established that the aforementioned detector allows for the determination of absolute configuration of molecules that do not have a heavy atom. The absolute configuration was verified by the flack parameter of 0.0 with a standard deviation of 2 and corroborated by Bijvoet parameter test. The melting point of compound 16 was determined using a Thomas Hoover Uni-melt capillary melting point apparatus.

Unless otherwise noted, reactions were carried out with distilled and degassed solvents under an atmosphere of dry N₂ in oven- (135 °C) or flame-dried glassware with standard dry box or vacuum-line techniques. Solvents were purified under a positive pressure of dry Ar by a modified Innovative Technologies purification system: toluene was purified through a copper oxide and alumina column; CH_2Cl_2 and Et_2O were purged with Ar and purified by passage through two alumina columns. Tetrahydrofuran (Aldrich) was purified by distillation from sodium benzophenone ketyl prior to use. Methanol and *i*-propanol were distilled over sodium. $CDCl_3$ and d_8 -thf were purchased from Cambridge Isotope Laboratories and used as received. All work-up and purification procedures were carried out with reagent grade solvents (purchased from Fisher Scientific) under air.

■ Reagents:

1,3-Bis(2,4,6-trimethylphenyl)imidazolium chloride was purchased from Aldrich and used as received.

Bis(pinacolato)diboron [B₂(pin)₂] was purchased from Frontier Scientific. It was purified by

recrystallization from hot anhydrous pentane and subsequently dried under high vacuum at 50 $^{\circ}$ C for 18 h.

Chlorodimethylphenylsilane (PhMe₂SiCl) was purchased from Aldrich and used as received.

Copper (I) cyanide was purchased from Aldrich and used as received.

2-Cyclohexen-1-one was purchased from Aldrich and distilled in vacuo prior to use.

3-Cyclopropyl-2-cyclohexen-1-one (9) was prepared following a procedure disclosed previously.¹

1,8-Diazabicyclo[**5.4.0**]**undec-7-ene** (dbu) was purchased from Aldrich and distilled *in vacuo* prior to use.

1,3-Dicyclohexylimidazolium tetrafluoroborate was purchased from Aldrich or TCI America and purified by silica gel chromatography followed by trituration from CH_2Cl_2 /hexanes prior to use.

Dimethylphenylsilylpinacolatoborane [PhMe₂Si–B(pin))] was purchased from Aldrich and distilled *in vacuo* prior to use.

Lithium bromide was purchased from Strem and used as received.

Potassium bis(trimethylsilyl)amide (KHMDS) was purchased from Aldrich and used as received.

Sodium tert-butoxide (NaOt-Bu) was purchased from Strem and used as received.

Trimethyl borate was purchased from Aldrich and used as received.

Zinc chloride (anhydrous) was purchased from Strem and used as received.

Unless otherwise noted, all the other α,β -unsaturated carbonyls, imidazolinium salts and the corresponding β -boryl (or silyl) carbonyls were reported previously.²

■ Preparations and Analytical Data for Compounds (10–17 in Scheme 5)

I. Preparations and analytical data for α,β -unsaturated carbonyls

2-Cyclopropyl-2-cyclohexen-1-one (**substrate for 12**) was prepared based on modification of a reported procedure.³ Under dry N₂ atmosphere in a flame-dried round-bottom flask, anhydrous ZnCl₂ (1.2 g, 8.8 mmol, 1.1 equiv) and 16 mL of 0.58 mol/L cyclopropyl magnesium bromide solution in thf (9.3 mmol, 1.2 equiv) were mixed. The resulting milky-white mixture was allowed to stir at 22 °C for 30 min, at which time a solution of 2-iodo-2-cyclohexen-1-one (1.7 g, 7.8 mmol, 1.0 equiv) and Pd(PPh₃)₂Cl₂ (242 mg, 0.34 mmol, 0.044 equiv) in dmf (20 mL) was added drop-wise. The mixture was allowed to stir at 22 °C for 12 h, at which time aqueous 10% (wt.) citric acid was added drop-wise to quench the excess organometallic reagent. The mixture was diluted with Et₂O, layers were separated, and the aqueous layer was washed with Et₂O twice. Combined organic layers were dried over anhydrous MgSO₄, filtered and concentrated *in vacuo* to give brown oil. Purification by silica gel chromatography (5:1 hexanes:Et₂O), followed by distillation (200 °C, high vacuum) gave 2-cyclopropyl-2-cyclohexen-1-one as a colorless oil (661 mg, 4.8 mmol, 62% yield). ¹H NMR (CDCl₃, 400 MHz): δ 6.42 (1H, dd, *J* = 4.3, 4.3 Hz), 2.45-

2.42 (2H, m), 2.33–2.29 (2H, m), 1.98–1.91 (2H, m), 1.78–1.71 (1H, m), 0.75–0.70 (2H, m), 0.38–0.34 (2H, m). The spectroscopic data match those reported previously.⁴

3-(2,2-Diphenylcyclopropyl)-2-cyclohexen-1-one (substrate for 13) was prepared following a modified procedure.⁵ Under a dry N₂ atmosphere at -20 °C, a solution of 2,2diphenylcyclopropyl magnesium bromide (0.19 mol/L in thf, 25 mL, 4.8 mmol, 0.98 equiv) was added drop-wise to the solution of CuCN (536 mg, 6.0 mmol, 1.2 equiv) and LiBr (1.0 g, 12 mmol, 2.4 equiv) in thf (5 mL). The resulting creamy yellow mixture was allowed to stir at 0 °C for 5 min. Then it was allowed to cool to -78 °C with vigorous stirring, to which a solution of 3iodo-2-cyclohexen-1-one (1.1 g, 4.9 mmol, 1.0 equiv) in thf (5 mL) was added drop-wise. The mixture was allowed to stir at -50 °C for 12 h, before excess organometallic reagent was quenched by addition of water. The mixture was diluted with water (50 mL) and saturated aqueous NH_4Cl until pH = 7, followed by addition of Et₂O. The layers were then separated, and the aqueous layer was washed with Et₂O twice. The combined organic layers were dried over anhydrous MgSO₄, filtered, and concentrated *in vacuo* to give light yellow oil. Purification by silica gel chromatography (2:1 hexanes:Et₂O) gave 3-(2,2-diphenylcyclopropyl)-2-cyclohexen-1one as a viscous colorless oil (1.0 g, 3.6 mmol, 74% yield). IR (neat): 3056 (w), 3023 (w), 2945 (w), 2867 (w), 1660 (s), 1621 (m), 1600 (m), 1494 (m), 1446 (m), 1426 (w), 1396 (w), 1378 (w), 1346 (m), 1324 (m), 1295 (w), 1191 (w), 1179 (w), 1127 (w), 1078 (w), 1038 (w), 1021 (w), 1001 (w), 968 (w), 930 (w), 882 (m), 850 (w), 812 (w), 749 (s), 696 (s), 632 (w), 616 (w), 575 (w), 550 (m), 512 (w), 452 (w), 435 (w) cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 7.30–7.15 (10H, m), 5.78 (1H, s), 2.46 (1H, dd, J = 8.0, 6.3 Hz), 2.18 (2H, dddd, J = 39.6, 16.4, 6.4, 6.4 Hz), 2.07 (1H, ddd, J = 17.6, 5.6, 5.6 Hz), 1.99 (1H, dd, J = 6.4, 6.4 Hz), 1.81 (1H, ddd, J = 18.0, 5.6, 5.6)Hz), 1.70–1.66 (2H, m), 1.63 (1H, dd, J = 8.4, 5.6 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 199.2, 163.4, 145.9, 140.0, 130.0, 128.6, 128.5, 127.8, 127.1, 126.9, 126.6, 40.3, 37.4, 33.8, 29.8, 22.5, 19.4; HRMS (DART): Calcd for C₂₁H₂₁O₁ [M+H]⁺: 289.15924, Found: 289.15900.

2-(2,2-Diphenylcyclopropyl)-2-cyclohexen-1-one (**16**) was prepared according to the procedure described for 2-cyclopropyl-2-cyclohexen-1-one. 2-Iodo-2-cyclohexen-1-one (1.5 g, 6.9 mmol, 1.0 equiv), 0.26 mol/L solution of 2,2-diphenylcyclopropyl magnesium bromide in thf (31 mL, 8.1 mmol, 1.2 equiv), anhydrous ZnCl₂ (1.4 g, 10 mmol, 1.5 equiv), Pd(PPh₃)₂Cl₂ (267 mg, 0.38 mmol, 0.055 equiv), and dmf (30 mL) gave 2-(2,2-diphenylcyclopropyl)-2-cyclohexen-1-one as a colorless crystalline solid (871 mg, 3.0 mmol, 44% yield) after purification by silica gel chromatography (10:1 to 5:1 hexanes:Et₂O) and subsequent recrystallization at -15 °C from minimal amount of CH₂Cl₂ and Et₂O, and excess pentane. m.p. = 120–121 °C. IR (neat): 3057 (m), 3022 (m), 2926 (m), 2865 (s), 2828 (m), 1670 (s), 1600 (m), 1495 (s), 1447 (s), 1430 (m), 1393 (m), 1335 (m), 1178 (m), 1147 (m), 1129 (m), 1073 (m), 1043 (m), 1024 (m), 908 (m), 770 (s), 753 (m), 704 (s), 599 (m), 552 (m), 537 (m) cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 7.60–7.58 (2H, m), 7.28 (2H, dd, *J* = 7.6, 7.6 Hz), 7.18–7.05 (6H, m), 6.17 (1H, dd, *J* = 4.0, 4.0 Hz), 2.76 (1H, app t. *J* = 7.6 Hz), 2.37 (1H, BB' of AA'BB' as app ddd, *J* = 16.4, 9.6, 4.4 Hz), 2.23 (1H, AA' of AA'BB' as app ddd, *J* = 16.4, 8.0, 4.4 Hz), 2.21–2.14 (1H, m), 1.96–1.87 (1H, m), 1.86–1.78 (1H, m), 1.71 (1H, dd, *J* = 6.4, 5.6 Hz), 1.58–1.47 (1H, m), 1.35 (1H, dd, *J* = 8.4, 5.2 Hz);

¹³C NMR (CDCl₃, 100 MHz): δ 200.2, 146.6, 144.2, 141.2, 136.7, 130.1, 129.2, 128.4, 127.9, 126.3, 126.2, 38.7, 38.3, 25.9, 25.0, 22.8, 15.8; HRMS (DART): Calcd for C₂₁H₂₁O₁ [M+H]⁺: 289.15924, Found: 289.15903.

II. Preparations and analytical data for NHC-catalyzed BCA and SCA products

3-Cyclopropyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclohexanone (10): Under dry N₂ atmosphere, in a flame-dried vial (8 x 1 cm) equipped with a stir bar, 1,3dicyclohexylimidazolium tetrafluoroborate (11 mg, 0.033 mmol, 0.096 equiv), NaOt-Bu (3.8 mg, 0.040 mmol, 0.12 equiv) and thf (2.0 mL) were subsequently added. The resulting mixture was allowed to stir at 22 °C for 2 h, at which time B₂(pin)₂ (93 mg, 0.37 mmol, 1.1 equiv) and 3cyclopropyl-2-cyclohexen-1-one (47 mg, 0.34 mmol, 1.0 equiv) were introduced. The reaction mixture was allowed to stir at 22 °C for 6 h, at which time water (2 mL) was added with vigorous stirring for 15 min. The mixture was then diluted with EtOAc (~4 mL). The layers were separated, and the aqueous layer was washed with EtOAc three times. Combined organic layers were dried over anhydrous MgSO₄, filtered and concentrated in vacuo to give a white solid. Purification by silica gel chromatography gave 3-cyclopropyl-3-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)cyclohexanone as a colorless oil (77 mg, 0.29 mmol, 85% yield). IR (neat): 3080 (w), 2978 (m), 2934 (w), 2872 (w), 1710 (s), 1447 (w), 1390 (m), 1372 (s), 1310 (s), 1281 (m), 1262 (m), 1229 (w), 1212 (m), 1167 (m), 1141 (s), 1125 (s), 1111 (m), 1088 (w), 1071 (w), 1035 (w), 1018 (w), 968 (w), 916 (m), 853 (s), 824 (w), 775 (w), 730 (s), 693 (w), 669 (m), 647 (m), 579 (w), 539 (w), 520 (w), 478 (w), 461 (w), 426 (w), 412 (w) cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 2.43 (1H, B of AB, J_{AB} = 14.0 Hz), 2.22–2.16 (2H, m), 2.05–1.90 (2H, m), 1.98 (1H, A of AB, $J_{AB} = 14.0$ Hz), 1.73–1.62 (1H, m), 1.46 (1H, app ddd, J = 12.8, 12.8, 2.4 Hz), 1.16 (12H, s), 0.72–0.65 (1H, m), 0.36–0.21 (4H, m); ¹³C NMR (CDCl₃, 100 MHz): δ 212.0, 83.6, 48.4, 41.4, 32.6, 24.9, 24.7, 24.4, 18.9, 1.5, 1.0; HRMS (ESI⁺): Calcd for C₁₅H₂₆BO₃ [M+H]⁺: 265.19750, Found: 265.19750. No products due to ring-opening of the cyclopropane ring were observed.

2-Cyclopropyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclohexanone (12): 2cyclopropyl-2-cyclohexen-1-one was subjected to the same reaction conditions as above (see compound **10**). 2-Cyclopropyl-2-cyclohexen-1-one (30 mg, 0.22 mmol, 1.0 equiv), 1,3dicyclohexylimidazolium tetrafluoroborate (14 mg, 0.044 mmol, 0.20 equiv), NaOt-Bu (4.6 mg, 0.048 mmol, 0.22 equiv.), $B_2(pin)_2$ (63 mg, 0.25 mmol, 1.1 equiv) and thf (1.5 mL) furnished 2cyclopropyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclohexanone as a colorless oil (39 mg, 0.15 mmol, 67% yield) after purification by silica gel chromatography (10:1 hexanes:Et₂O). IR (neat): 3079 (w), 2978 (m), 2931 (m), 2853 (w), 1707 (s), 1449 (w), 1406 (w), 1372 (s), 1323 (s), 1257 (m), 1213 (m), 1167 (m), 1142 (s), 1047 (w), 1019 (m), 983 (m), 971 (m), 925 (w), 905 (w), 871 (w), 852 (s), 813 (w), 735 (m), 716 (w), 688 (m), 668 (m), 578 (w), 527 (w), 441 (w) cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 2.55–2.47 (1H, m), 2.24–2.18 (1H, m), 2.03–1.88 (2H, m), 1.80-1.66 (3H, m), 1.62–1.58 (1H, m), 1.23 (6H, s), 1.22 (6H, s), 1.13–1.04 (1H, m), 0.54–0.42 (2H, m), 0.22–0.18 (1H, m), 0.14–0.09 (1H, m); ¹³C NMR (CDCl₃, 100 MHz): δ 213.3, 83.6, 83.4, 57.1, 40.4, 27.9, 25.1, 24.9, 24.5, 10.8, 5.4, 4.1; HRMS (DART): Calcd for C₁₅H₂₆BO₃ [M+H]⁺: 265.19750, Found: 265.19700.

2-(2,2-Diphenylcyclopropyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclohexanone

(14): Following the procedure described above for compound 12, 2-(2,2-diphenylcyclopropyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclohexanone was prepared in 45% yield. IR (neat): 3023 (w), 2975 (w), 2929 (w), 2860 (w), 1703 (s), 1599 (w), 1494 (m), 1446 (m), 1409 (m), 1371 (m), 1261 (s), 1228 (s), 1215 (m) cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 7.26 (m, 8H), 7.18–7.11 (m, 2H), 2.54–2.44 (m, 1H), 2.29 (d, *J* = 13.9 Hz, 1H), 2.19–2.04 (m, 2H), 2.02–1.87 (m, 2H), 1.79 (d, *J* = 2.4 Hz, 1H), 1.74 (d, *J* = 10.6 Hz, 1H), 1.70–1.56 (m, 1H), 1.50 (t, *J* = 5.6 Hz, 1H), 1.18 (dd, *J* = 8.8, 5.2 Hz, 1H), 1.08 (s, 6H), 1.05 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ 213.4, 146.9, 140.5, 130.3, 128.8, 128.5, 128.3, 126.4, 126.2, 83.5, 50.3, 40.0, 37.2, 28.1, 26.2, 24.8, 24.5, 22.4, 17.9; HRMS (DART): Calcd for C₂₇H₃₄B₁O₃ [M+H]⁺: 417.26010, Found: 417.26075. Compound 14 is air-sensitive and was found to undergo oxidation on silica gel to afford 15, of which the X-ray crystal structure was obtained.

3-(Dimethyl(phenyl)silyl)-2-(2,2-diphenylcyclopropyl)cyclohexanone (17): Under a dry N₂ atmosphere enone 16 (20 mg, 0.071 mmol, 1.0 equiv), ICy·HBF₄ (3a) (2.3 mg, 0.0071 mmol, 0.10 equiv), PhMe₂Si-B(pin) (20 mg, 0.078 mmol, 1.1 equiv), dbu (2.2 mg, 0.014 mmol, 0.20 equiv) and thf (0.11 mL) were mixed in a flamed-dried vial (8 x 1 cm) equipped with a stir bar. The resulting mixture was allowed to stir at 22 °C while H₂O (0.11 mL) was added. After the reaction mixture was allowed to stir at 22 °C for 12 h, it was diluted with Et₂O. The layers were separated, and the aqueous layer was washed with Et₂O three times. Combined organic layers were dried over anhydrous MgSO₄, filtered, and concentrated *in vacuo* to give a colorless solid. Purification by silica gel chromatography (50:1 hexanes: Et_2O) afforded 3-(dimethyl(phenyl)silyl)-2-(2,2-diphenylcyclopropyl)cyclohexenone 17 as a colorless oil (7.2 mg, 0.017 mmol, 24 % yield). No products due to cyclopropane ring opening were observed. IR (neat): 3056 (w), 3023 (w), 2927 (m), 2857 (w), 2836 (w), 1663 (m), 1600 (w), 1494 (m), 1446 (w), 1428 (w), 1369 (w), 1352 (w), 1253 (m), 1193 (m), 1171 (m), 1137 (m), 1118 (m), 1077 (w), 1023 (m) cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 7.60–7.55 (m, 2H), 7.42–7.27 (m, 5H), 7.25–7.06 (m, 8H), 2.66–2.58 (m, 1H), 2.02 (t, J = 5.8 Hz, 2H), 1.65 (dd, J = 6.9, 5.1 Hz, 1H), 1.52–1.44 (m, 1H), 1.41–1.36 (m, 2H), 1.36–1.26 (m, 1H), 1.26–1.15 (m, 1H), 1.07–0.95 (m, 1H), 0.77 (dd, J = 16.0, 5.4 Hz, 1H), 0.47 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ 147.7, 147.4, 142.1, 138.4, 133.5, 130.6, 129.7, 128.2, 128.0, 127.9, 127.9, 126.1, 125.5, 112.6, 35.1, 30.9, 30.5, 28.4, 26.4, 23.3, 22.6, 18.7, 0.16, 0.01; HRMS (DART): Calcd for C₂₉H₃₃Si₁O₁ [M+H]⁺: 425.23007, Found: 425.22897.

■ Analytical Data for ¹³C-Labeled Imidazolinium Salt 7c

¹³C-Labeled Imidazolinium Salt 7c was prepared according to the reported procedure.⁶ IR (neat): 3061 (m), 3035 (m), 2923 (w), 1618 (m), 1574 (s), 1487 (m), 1457 (m), 1444 (m), 1275 (s), 1216 (s), 1054 (s), 827 (s), 770 (s), 755 (s), 736 (s), 699 (s), 595 (m), 522 (s) cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 8.95 (d, J_{C-H} = 208.8 Hz, 1H), 7.56–7.44 (m, 6H), 7.35–7.30 (m, 6H),

7.25–7.16 (m, 6H), 7.10–7.04 (m, 4H), 6.71–6.69 (m, 4H), 4.68 (s, 2H), 2.28 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ 157.2 (¹³C labeled carbon), 139.8, 138.1, 134.6, 133.7, 131.4, 131.3, 131.0, 130.7, 129.9, 129.4, 129.3, 129.2, 128.4, 128.3, 128.1, 99.1, 75.0, 20.8; ¹¹B NMR (*d*₈-thf, 160 MHz): δ –1.7 (s); ¹⁹F NMR (*d*₈-thf, 376 MHz): δ –152 (s, 4F); HRMS (ESI⁺): Calcd for ¹²C₄₀⁻¹³C₁H₃₅N₂ [M–BF₄]⁺: 556.2828, Found: 556.2837; Specific Rotation: [α]_D²² –489.8 (*c* 1.1, CHCl₃).

■ Analytical Data for Compound 43

Formamide 43: In a N₂ filled glove box, imidazolinium tetrafluoroborate salt 7c (19.2 mg, 0.030 mmol, 1.0 equiv), KHMDS (6.0 mg, 0.030 mmol, 1.0 equiv) and thf (0.50 mL, 0.06 M solution of 7c) were charged into an oven-dried vial (8 x 1 cm) equipped with a stir bar. The mixture was moved out of the glove box and allowed to stir at 22 °C under N2 atm for 30 min. Then 1.5 mL H₂O was added into the reaction mixture, resulting in a colorless homogeneous solution. This solution was allowed to stir at 22 °C under N₂ atm for 1.75 h, before addition of Et₂O (2 mL). The layers were separated and the aqueous layer was washed with Et₂O twice. Combined organic layers were dried over anhydrous MgSO₄, filtered, and concentrated in vacuo to give a colorless oil, which was purified by silica gel chromatography (6:1 hexanes:Et₂O) to yield 16 mg (0.028 mmol, 93% yield) of formamide 43 as a viscous oil with ~15% unknown impurities. Various chromatography conditions (different eluting solvents or Al_2O_3 chromatography) as well as recrystallizations were not effective to obtain a pure sample of 43. The ¹H NMR signals of those impurities are at 7.57 (m), 5.03 (m), 4.88 (m), 3.84 (m), 3.63 (m), 1.38 (d, J = 5.6 Hz), 0.977 (d, J = 5.6 Hz) ppm. Nevertheless, the X-ray crystal structure of 43 was still obtained. IR (neat): 3406 (w), 3060 (w), 3029 (w), 2923 (m), 2854 (m), 1674 (s), 1615 (m), 1578 (m), 1570 (m), 1521 (m), 1490 (m), 1454 (m), 1442 (m), 1424 (m), 1303 (m), 1287 (m), 1263 (m), 1199 (w), 1177 (w), 1136 (w), 1073 (w), 1009 (m), 804 (m), 763 (m), 745 (m), 699 (s), 636 (w), 548 (m) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.06 (s, 1H), 7.51–7.37 (5H, m), 7.21–7.18 (1H, m), 7.08– 6.87 (14H, m), 6.58-6.33 (6H, m), 5.66 (1H, br s), 5.34 (1H, app d, J = 6.8 Hz), 4.92 (1H, br s),2.32 (3H, s), 2.26 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 164.6, 144.0, 140.8, 139.3, 138.7, 138.3, 138.2, 131.5, 130.2, 130.2, 129.8, 129.1, 128.8, 128.1, 128.1, 128.0, 127.9, 127.8, 127.4, 127.0, 126.7, 126.3, 118.0, 112.0, 62.5, 61.2, 21.9, 21.2; HRMS (ESI⁺): Calcd for C₄₁H₃₇N₂O₁ $[M+H]^+$: 573.29059, Found: 573.28998; Optical rotation: $[\alpha]_D^{21}$ –147.7 (c 0.70, CHCl₃).

Analytical Data for β-Silyl Carbonyl 33c

(*R*)-4-(Dimethyl(phenyl)silyl)-4-(4-(trifluoromethyl)phenyl)butan-2-one (33c): In dry N₂ atomsphere, imidazolinium tetrafluoroborate salt 7c (14 mg, 0.023 mmol, 7.5 mol %) was charged into an oven-dried vial (8 x 1 cm) equipped with a stir bar. Dbu was added into the vial by syringe (10 μ L, 10 mg, 0.068 mmol, 22.5 mol %), followed by addition of PhMe₂Si–B(pin) (90 μ L, 87 mg, 0.33 mmol, 1.1 equiv). The mixture was allowed to stir for ~ 5 seconds before it was added a solution of (*E*)-4-(4-(trifluoromethyl)phenyl)but-3-en-2-one (64 mg, 0.30 mmol, 1.0 equiv) in 1.0 mL thf by syringe. This was immediately followed by addition of water (18 μ L, 18 mg, 3.3 equiv). The mixture was allowed to stir for 1 h at 22 °C. Pentane (5 mL) was added to

the solution (to facilitate imidazolinium salt precipitation), and the resulting solution was dried over anhydrous MgSO₄, filtered, and concentrated *in vacuo*. The resulting clear oil was purified by silica gel chromatography (5:1 hexanes:Et₂O) to give 90 mg (0.26 mmol, 86% yield) of (*R*)-4. (Dimethyl(phenyl)silyl)-4-(4-(trifluoromethyl)phenyl)butan-2-one (**33c**). The spectroscopic data match those reported previously.⁷ The absolute configuration was assigned by analogy to β -silyl ketones previously reported.^{2c} IR (neat): 3070 (w), 2960 (w), 1718 (m), 1615 (w), 1580 (w), 1515 (w), 1419 (w), 1357 (w), 1323 (s), 1251(w), 1188 (w), 1161 (s), 1108 (s), 1067 (s), 1015 (w), 998 (w), 952 (w), 910 (w), 850 (w), 831 (w), 807 (s), 773 (s), 734 (s), 670 (m), 646 (s), 611 (s), 599 (w), 569 (w), 537 (w), 513 (w), 467 (w), 420 (w) cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.43 (overlapping d, *J* = 8 Hz, 2H), 7.42–7.33 (m, 5H), 7.02 (overlapping d, *J* = 8 Hz, 2H), 2.99 (dd, *J* = 11.0, 3.5 Hz, 1H), 2.93 (dd, *J* = 16.5, 11.0 Hz, 1H), 2.69 (dd, *J* = 16.5, 3.5 Hz, 1H), 1.97 (s, 3H), 0.25 (s, 3H), 0.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 207.4, 146.9, 146.9, 154.0, 134.2, 129.7, 128.0, 127.8, 125.2 (q, *J*_{CF} = 29.6, 14.8 Hz), 43.8, 31.7, 30.1, -4.1, -5.2; ¹⁹F NMR (376 MHz, *d*8-thf): -60 ppm (s, 3F). Optical rotation: [α]_D²² +5.6 (*c* 1.8, CHCl₃) for a sample with 87:13 er.

Enantiomeric purity was determined by HPLC analysis in comparison with authentic racemic material (96:4 er shown, Chiralpak AD-H column, 99/1 hexanes/*i*-propanol, 0.3 mL/min, 220 nm).

■ NMR Studies on Probing the Formation of Chiral NHC•diboron Complex

General procedure: In a N₂ filled glove box, an oven-dried vial (8 x 1 cm) equipped with a stir bar was charged with **7c** (39 mg, 0.060 mmol, 1.0 equiv), dbu (55 mg, 0.36 mmol, 6.0 equiv) and thf- d_8 (0.60 mL, 0.10 M solution of **7c**). The mixture was allowed to stir for 30 min at 22 °C. B₂(pin)₂(15 mg, 0.060 mmol, 1.0 equiv) was added to the vial, followed by the addition of MeOH (73 µL, 58 mg, 1.8 mmol, 30 equiv). The mixture was transferred into a Wilmad LabGlass 600 MHz Quartz NMR tube, which was sealed with a NMR cap before removal from the glove box. The ¹¹B NMR spectra were recorded subsequently.

Figure S1 shows the spectra of a series of control experiments where NHC was not present.

■ NMR Studies on Probing the Formation of Chiral NHC•borosilane Complex

General procedure: In a N₂ filled glove box, an oven-dried vial (8 x 1 cm) equipped with a stir bar was charged with **7c** (39 mg, 0.060 mmol, 1.0 equiv), dbu (55 mg, 0.36 mmol, 6.0 equiv) and thf- d_8 (0.60 mL, 0.10 M solution of **7c**). The mixture was allowed to stir for 30 min at 22 °C. PhMe₂Si–B(pin)(16 mg, 0.060 mmol, 1.0 equiv) was added to the vial, followed by the addition of H₂O (6.5 µL, 6.5 mg, 0.36 mmol, 6.0 equiv). The mixture was transferred into a Wilmad LabGlass 600 MHz Quartz NMR tube, which was sealed with a NMR cap before removal from

the glovebox. The ¹¹B NMR spectra were recorded subsequently.

Figures S2–S6 show the ¹¹B NMR spectra where either H₂O (6.0 equiv) or MeOH (30 or 2.0 equiv) was present. Unfortunately, we could not detect the formation of the chiral NHC•borosilane complex. This is probably due to significant decompositions of PhMe₂Si–B(pin) under these homogeneous solutions. Indeed, H–SiMe₂Ph was generated during the NMR experiments and detected by ¹H NMR spectrum by means of the signal that appears at 4.4 ppm. *Figure S2.* ¹¹B NMR spectra for reaction of (pin)B–SiMe₂Ph with H₂O and dbu (thf-*d*₈, 25 °C)

Figure S3. ¹¹B NMR spectra for reaction of (pin)B–SiMe₂Ph with a chiral NHC in the presence of 30 equiv MeOH and dbu (thf- d_8 , 25 °C)

Figure S4. ¹¹B NMR spectra for reaction of (pin)B–SiMe₂Ph with 30 equiv MeOH and dbu (thf-d₈, 25 °C)

Figure S6. ¹¹B NMR spectra for reaction of (pin)B–SiMe₂Ph with 2.0 equiv MeOH and dbu (thf-d₈, 25 °C)

Dimethyl(dimethyl(phenyl)silyl)boronate (37) was obtained as a mixture, through the use of a modified procedure reported for the synthesis of PhMe₂Si-B(pin).⁸ A 100 mL flame-dried Schlenk flask equipped with a stir bar was charged with Li (0.12 g, 18 mmol, 6.0 equiv) and mineral oil (5 mL) under argon. The mixture was allowed to heat to 180 °C and stirred vigorously for 10 min. The suspension was then allowed to cool to 22 °C. The Li particles were washed with thf (3 x 5 mL). Then 3 mL of thf was added into the flask. To the suspension, chlorodimethylphenylsilane (0.5 mL, 3.0 mmol, 1.0 equiv) was added drop-wise at 0 °C. The resulting suspension was allowed to stir at 0 °C for 6 h to generate dimethylphenylsilyllithium completely. To a stirred solution of trimethylborate (0.49 mL, 3.6 mmol, 1.2 equiv) in hexanes (3.0 mL) in another flame-dried Schlenk flask was added the previously prepared dimethylphenylsilyllithium solution drop-wise at 0 °C. The resulting solution was allowed to stir at 22 °C for 12 h. The mixture was filtered through a plug of celite twice, diluted with hexanes and the filtrate was concentrated in vacuo. Purification of the resulting light yellow oil by silica gel chromatography or distillation *in vacuo* resulted in complete decomposition of the desired product. The desired product also decomposed in a day at 22 °C under N₂. Thus the material was used immediately after syntesis. The presence of dimethyl(dimethyl(phenyl)silyl)boronate (37) was confirmed by HRMS (DART): Calcd for $C_{10}H_{18}Si_1O_2B_1$ [M+H]⁺: 209.11691, Found: 209.11632. Due to the instability of the compound and lack of an effective purification method, other characterization data were not available.

Scheme S1. Synthesis of PhMe₂Si-B(OMe)₂ (37)

Preparation of NHC•borosilane Complex (39): In a N₂ filled glove box, an oven-dried vial (8 x 1 cm) equipped with a stir bar was charged with imidazolinium salt 7c (19 mg, 0.030 mmol, 1.0 equiv), KHMDS (6.0 mg, 0.030 mmol, 1.0 equiv) and thf- d_8 (0.60 mL, 0.05 M solution of 7c). The resulting mixture was allowed to stir for °C. 30 min at 22 Dimethyl(dimethyl(phenyl)silyl)boronate (37) (6.2 mg as a mixture, 0.030 mmol, 1.0 equiv) was then added to the vial. The mixture was transferred into a Wilmad LabGlass 600 MHz Quartz NMR tube, which was sealed with a NMR cap before removal from the glovebox. The ¹¹B NMR spectra were recorded subsequently.

As mentioned in the manuscript, we detected a new signal (-0.4 ppm, signal **a**), which may correspond to the chiral NHC•borosilane complex **39**. Control experiment including the same chiral NHC and B(OMe)₃ indicated a different signal at 1.4 ppm (complex **40**, signal **a**, Figure S7). When an achiral imidazolium salt (**3b**) was used instead of **7c**, we also detected the NHC•borosilane complex **41** (0.1 ppm, signal **a**, Figure S8). The ¹¹B NMR spectrum of PhMe₂Si-B(OMe)₂(**37**) in a mixture is shown in Figure S9.

Figure S7. ¹¹B NMR spectrum for reaction of B(OMe)₃ with a chiral NHC (thf- d_8 , 25 °C)

SiMe₂Ph

¹¹B NMR: 32.8, 31.4 ppm

RO

R = Me, H

Figure S8. ¹¹B NMR spectrum for reaction of (MeO)₂B–SiMe₂Ph with an achiral NHC (thf-d₈, 25 °C)

ò

-10

ppm

b

30

20

10

50

40

manuscript, complex NHC•BF₃ (42) was formed during the deprotonation, which was characterized by ¹³C NMR (Figure S10), ¹¹B NMR and ¹⁹F NMR (Figure S12). The broad signals in the ¹¹B NMR and ¹⁹F NMR of complex 42 are probably due to a fast equilibrium between complex 42 and NHC + KBF₄ in the solution (Figure S12). Treatment of complex 42 with PhMe₂Si–B(OMe)₂ (37) resulted in the ¹³C-labeled NHC•borosilane complex (39), of which a new signal in the ¹³C NMR spectrum has been detected (181.2 ppm, Figure S11). However, we did not detect any ¹¹B–¹³C(carbene) coupling. This is likely because the NHC•borosilane complex formation and dissociation are reversible and occur rapidly in solution.

Scheme S2. Probing the Formation of a Chiral NHC Borosilane Complex by Spectroscopic Analysis of a ¹³C-Labeled Chiral NHC

Figure S10. ¹³C NMR spectra for a chiral NHC and its complex with BF₃

Figure S11. ¹³C NMR spectrum for a chiral NHC•Borosilane Complex

The fast equilibrium between complex 42 and NHC + KBF₄ results in the broadness of signal b and d

■ Kinetic Studies of Chiral NHC Catalyzed BCA and SCA Reactions

¹⁹F NMR pre-acquisition delay technique was used to study how the concentration of each component among the starting materials influences the rates of those reactions. For the BCA reactions, *p*-fluorophenyl substituted enone (**S1**) was chosen as the substrate, while *p*-trifluoromethylphenyl substituted enone (**6c**) as the substrate for the SCA reactions, because a significant amount of the proto-deboration product was detected in BCA reactions with **6c**. In either type of reaction, the rate of the reaction was found to be first order to [enone], $[B_2(pin)_2]$ (or [PhMe₂Si–B(pin)]) and [imidazolinium salt], while zero order to [dbu] (Scheme S3). The k_{obs} value was calculated for each transformation as well.

Scheme S3. The results of kinetic studies on NHC catalyzed BCA reactions (eq 1) and SCA reactions (eq 2)

General procedure: In a N₂ filled glove box, an oven-dried vial (8 x 1 cm) equipped with a stir bar was charged with 7a or 7c, dbu and thf- d_8 (0.60 mL). The mixture was allowed to stir for 30 min at 22 °C. B₂(pin)₂ or PhMe₂Si-B(pin) was added to the vial, followed by the addition of enone S1 or 6c. The mixture was transferred into an oven-dried NMR tube, sealed with a cap with Teflon tape and brought out of the glove box. MeOH (0.16 mL, 4.0 mmol) or H₂O (8.6 mL, 0.048 mmol) was added to the NMR tube by syringe and the tube was inverted twice for mixing. The sample was immediately inserted into the NMR spectrometer probe and ¹⁹F NMR spectra were collected every 30 seconds until the reaction reached approximately 15% conversion (initial kinetics). Substrate and product concentrations were determined by ¹⁹F NMR analysis with the BF_4 signal serving as the internal reference (-151 ppm). After each experiment, the conversion values ([enone] vs reaction time) were plotted and the curve was fitted with a second-order polynomial function through the use of Microsoft Excel. The initial rate of each reaction was determined as the coefficient of the term αx^1 (x = reaction time) of the function. By varying the concentration of one component in the reaction at a time, a series of the initial rates were obtained. Scheme S4 and S5 show the relationships between the initial rate of the reaction and the concentration of each component. Based on those results, we drew the conclusions shown in Scheme S3.

Scheme S4. The results of kinetic study on NHC catalyzed BCA reactions

In addition to the aforementioned kinetic studies, the rate law derivation was also performed according to our proposed mechanism in a simplified model.⁹ Here we used NHC-catalyzed boron conjugate additions as an example, and the similar rate law derivation can be performed for the corresponding SCA reactions. Based on the steady state assumption, the concentration of NHC•dibron complex does not change in the reaction mixture. Thus, the rate law can be derived as equation 6. Although further simplifications of the rate law can be performed based on additional assumptions (equations 7–10), we think the rate law of the NHC catalyzed BCA

reactions is probably close to equation 11. This is because the fast equilibrium between NHC + diboron and NHC•dibron complex (supported by previously mentioned ¹¹B NMR studies) probably results in $k_{.1}$ >> k_2 [enone] and k_1 [diboron]. Thus, k_1 [diboron]+ $k_{.1}$ + k_2 [enone] $\approx k_{.1}$, leading to the simplified rate law as equation 11, which is consistent with the previously mentioned ¹⁹F NMR kinetic study.

When [diboron] is low:

eq 9
$$d[pdt]/dt = \frac{k_1k_2[NHC]_0[diboron][enone]}{k_1 + k_2[enone]}$$
 The reaction is first order to diboron.

When [diboron] is high:

eq 10
$$d[pdt]/dt = \frac{k_1k_2[NHC]_0[diboron][enone]}{k_1[diboron]} = k_2[NHC]_0[enone]$$

The reaction is zero order to diboron (saturation kinetics)

In our cas coordinati	e, it is probably k_1 [diboron] + $k_{.1}$ + k_2 [enone] $\approx k_{.1}$, because of fast and reversible on of NHC to diboron. Thus, the rate law can be simplified to:
eq 11	$d[pdt]/dt = \frac{k_1 k_2 [NHC]_0 [diboron][enone]}{k_1}$
	The reaction is first order to NHC, diboron and enone.

■ Calculations on BDE for B–B Bonds in B₂(pin)₂ and NHC•B₂(pin)₂

Density Functional Theory (DFT) calculations were carried out in an effort to estimate the homolytic bond dissociation energy (BDE) for B–B bonds in $B_2(pin)_2$ and NHC• $B_2(pin)_2$. The B97-D functional and 6-31G* basis set were employed for geometry optimizations and frequency calculations. As shown in Scheme S7, the enthalpy change to break the B–B bond homolytically in $B_2(pin)_2$ is 104 kcal/mol, while the one required to break the B–B bond in NHC•diboron is 63 kcal/mol. These calculations suggest that a significant weakening of the B–B bond in $B_2(pin)_2$ occurs upon NHC coordination.

Scheme S7. Calculated BDE for B–B Bonds in $B_2(pin)_2$ and $NHC \cdot B_2(pin)_2$

4	D	1	•	>
	К.	(n	in	1
	-2	Y۲		72

Cartesian coordinates (Angstroms):						
42						
Н	2.854	-1.219	-0.824			
Н	1.357	-1.022	-1.777			
Н	2.853	-1.596	-2.573			
С	2.259	-1.637	-1.648			
Н	-2.396	-0.296	3.377			
Н	-3.075	-0.372	1.176			
Н	0.698	-2.077	-3.722			
Н	-4.557	-0.553	2.161			
С	-3.946	-1.014	1.371			
С	-2.489	-1.258	3.896			
Н	-1.678	-1.338	4.634			
Н	-4.545	-1.084	0.453			
Н	-3.452	-1.284	4.430			
Н	3.827	-3.427	-0.414			
С	1.885	-3.088	-1.299			
0	-1.154	-2.319	2.152			
0	1.164	-3.039	-0.021			
С	0.845	-3.164	-3.703			
Н	1.813	-3.402	-4.171			
В	-0.192	-3.045	-0.309			

С	3.150	-3.931	-1.118
В	-1.413	-2.771	0.867
Η	3.669	-4.044	-2.082
С	-2.403	-2.430	2.916
С	-3.497	-2.428	1.778
С	0.808	-3.706	-2.272
0	-0.456	-3.298	-1.645
Н	0.046	-3.636	-4.293
0	-2.763	-2.980	0.633
Η	2.913	-4.926	-0.723
Н	-1.430	-3.759	4.312
Н	-5.244	-2.952	2.953
С	-2.331	-3.762	3.684
С	-4.717	-3.310	2.055
Н	-5.407	-3.258	1.202
С	0.813	-5.245	-2.288
Η	-3.214	-3.892	4.326
Н	1.709	-5.629	-2.797
Η	-2.272	-4.609	2.986
Н	0.787	-5.643	-1.264
Н	-0.079	-5.594	-2.825
Н	-4.427	-4.357	2.207

2 A 1 3 А Α 37.2646 3.6209 Frequencies -- 21.6143 Red. masses -- 3.4904 56.3220 4.2094 Zero-point correction= 0.353458 (Hartree/Particle) Thermal correction to Energy= 0.373612 Thermal correction to Enthalpy= 0.374556 Thermal correction to Gibbs Free Energy= 0.306373 -821.692390 Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= -821.672236 -821.671291 Sum of electronic and thermal Free Energies= -821.739475

	Item	Value	Threshold	Converged?
Maximum	Force	0.000095	0.000450	YES
RMS	Force	0.000013	0.000300	YES

2. (pin)B• radical (S2)

Carte	esian coor	dinates (A	ngstroms):
21			
Н	7.883	0.033	4.666
Н	7.162	-0.990	6.604
Н	8.715	-0.204	7.014
С	8.172	-1.160	7.001
Н	8.719	-0.339	3.136
С	8.773	-0.435	4.229
H	8.087	-1.534	8.031
Н	9.668	0.100	4.583
0	7.599	-2.584	4.200
В	7.355	-3.524	5.162

С	8.871	-1.913	4.606		
С	8.923	-2.200	6.159		
0	8.151	-3.476	6.273		
Н	9.777	-2.515	2.745		
С	9.996	-2.598	3.818		
С	10.324	-2.439	6.721		
Н	10.939	-1.535	6.585		
Н	10.255	-2.654	7.796		
Н	10.963	-2.116	4.021		
Н	10.067	-3.662	4.082		
Н	10.818	-3.283	6.225		
		1		2	3

	А		A		A
Frequencies	99.01	41	218.629	4	231.3430
Red. masses	3.57	99	1.207	3	1.1507
Zero-point correct	ion=			0.174434	(Hartree/Particle)
Thermal correction	n to E	nergy=		0.184103	
Thermal correction	n to E	nthalpy=		0.185047	
Thermal correction	n to G	ibbs Free 1	Energy=	0.140664	
Sum of electronic	and z	ero-point 1	Energies=	-410	.763313
Sum of electronic	and t	hermal Ene	rgies=	-410	.753643
Sum of electronic	and t	hermal Ent	halpies=	-410	.752699
Sum of electronic	and t	hermal Fre	e Energies=	-410	.797082
Ttom		Valuo	Threshold	Convorged	2

	Item	Value	Threshold	Converged?
Maximum	Force	0.000042	0.000450	YES
RMS	Force	0.000012	0.000300	YES

3. NHC•B₂(pin)₂(S3)

Car	tesian	coordinates	(Angstroms):	
5 7				
N	3.932	-3.875	3.718	
В	6.204	-4.877	4.942	
С	3.526	-3.479	2.449	
С	5.184	-4.414	3.682	
С	4.555	-3.780	1.599	
N	5.554	-4.354	2.372	
Н	8.008	-1.489	7.984	
Н	7.104	-0.996	6.526	
Н	10.233	-2.518	7.812	
С	8.109	-1.127	6.952	
Н	8.621	-0.153	6.964	
0	8.196	-3.436	6.261	
С	8.908	-2.165	6.142	
С	10.311	-2.326	6.733	
Н	10.896	-1.405	6.583	
Н	10.843	-3.166	6.268	
Н	7.868	0.040	4.597	
Н	9.653	0.124	4.558	
С	8.868	-1.900	4.591	
С	8.774	-0.426	4.189	
Н	10.984	-2.093	4.049	
Н	8.747	-0.343	3.093	

H	9.827	-2.515	2.754					
В	7.371	-3.582	5.148					
0	7.637	-2.586	4.192					
Н	2.553	-3.039	2.268					
Н	4.660	-3.652	0.529					
Н	4.252	-6.646	8.151					
С	4.518	-7.186	7.229					
Н	6.542	-5.744	8.428					
Н	3.652	-7.171	6.553					
0	5.376	-5.205	6.137					
Н	4.744	-8.232	7.494					
С	5.740	-6.523	6.579					
С	6.880	-6.400	7.613					
Н	7.149	-7.381	8.033					
Н	7.764	-5.945	7.147					
Н	4.293	-6.874	4.265					
С	6.222	-7.211	5.247					
С	5.036	-7.677	4.370					
0	6.916	-6.142	4.584					
Н	4.538	-8.560	4.800					
С	7.196	-8.379	5.452					
Н	6.730	-9.163	6.070					
Н	5.419	-7.939	3.373					
Н	8.115	-8.035	5.942					
Н	7.462	-8.817	4.477					
С	3.113	-3.695	4.926					
С	6.879	-4.738	1.863					
Н	7.227	-5.603	2.436					
Н	7.571	-3.899	2.007					
Н	6.782	-4.986	0.798					
Н	3.008	-2.620	5.136					
Н	3.620	-4.206	5.752					
Н	2.121	-4.134	4.753					
		1			2		3	1
		Ā			Ā		2	,
Freq	uencies -	- 13,13	2.4		28.0149	9	41.	4303
Red.	masses -	- 3.66	89		4.1722	2	3.	6310
Zero	-point co	rrection=				0.478619	(Hartree/	Particle)
Ther	mal corre	ction to E	nerav=			0.506874	v	,
Ther	mal corre	ction to En	nthalpy=			0.507818		
Ther	mal corre	ction to G	ibbs Free	Energy=		0.421531		
Sum	of electr	onic and ze	ero-point	Energies=	-	-1126.	198115	
Sum	of electr	onic and t	hermal Ene	ergies=		-1126.	169860	
Sum	of electr	onic and the	hermal Ent	halpies=		-1126.	168916	
Sum	of electr	onic and t	hermal Fre	ee Energie	≥s=	-1126.	255203	
	Ttom		Value	шьто	abold	Conversed		
Mavi	LLEIII MUM Force)0450	ved		
RMC	Force		0 000014		0400	VEG		
1710	FOLCE		0.000002	. 0.00	,0000			

4. NHC•B(pin) radical (S4)

C 10.022 -2.583 3.834 H 10.092 -3.643 4.116

Cartesian coordinates (Angstroms):

N	3.956	-3.438	3.720				
В	5.314	-5.547	4.503				
С	3.952	-2.595	2.612				
С	4.944	-4.436	3.547				
С	4.871	-3.061	1.717				
N	5.510	-4.161	2.280				
Н	3.294	-1.735	2.561				
Н	5.127	-2.708	0.724				
Н	3.963	-7.175	7.987				
С	4.510	-7.738	7.217				
Н	5.622	-5.354	8.038				
Н	3.780	-8.222	6.555				
0	4.594	-5.857	5.679				
н	5.112	-8.514	7,714				
C	5.420	-6.788	6.434				
C	6.284	-5.959	7.403				
н	6.897	-6.608	8.046				
н	6 948	-5 285	6 842				
и П	1 512	-8 201	1 298				
C II	4.JIZ		5 200				
C C	5 513	-8 626	1 605				
	5.515	-0.020	4.005				
U Ц	0.424 5.410	-0.404	4.329				
п С	J .410	-9.494	5.720				
C II	7.000	-7.950	5.738				
H	/.5/1	-8.708	0.532				
H 	6.075	-8.930	3./11				
H 	8.264	-/.113	6.110				
H	8.181	-8.404	4.882				
C	3.402	-3.073	5.014				
C	6.282	-5.127	1.514				
H	5.637	-5.944	1.138				
H	7.059	-5.565	2.151				
H	6.746	-4.610	0.663				
Н	2.543	-2.407	4.853				
Н	4.156	-2.554	5.636				
Н	3.078	-3.976	5.543				
		1		2		3	
		A		A		A	
Frequ	uencies -	- 39.9	707	49.507	8	68.297	8
Red.	masses -	- 3.1	.681	3.543	4	2.789	4
Zero	-point com	rrection=	:		0.300481	(Hartree/Par	ticle)
Ther	mal corre	ction to	Energy=		0.318372		
Ther	mal corre	ction to	Enthalpy=		0.319316		
Ther	mal corre	ction to	Gibbs Free En	nergy=	0.255351		
Sum o	of electro	onic and	zero-point En	nergies=	-715.3	334087	
Sum o	of electro	onic and	thermal Energy	gies=	-715.3	316196	
Sum o	of electro	onic and	thermal Entha	alpies=	-715.3	315252	
Sum o	of electro	onic and	thermal Free	- Energies=	-715.3	379218	
				-			
	Item		Value	Threshold	Converged?		
Maxin	mum Force		0.000024	0.000450	YES		
RMS	Force		0.000005	0.000300	YES		

36

Calculations on Stereochemical Models for BCA and SCA Reactions

Density Functional Theory (DFT) calculations were carried out in an effort to gain more insight into the mechanism of the aforementioned NHC-catalyzed conjugate addition reactions of a B(pin) or SiPhMe₂ unit to acyclic and cyclic α,β -unsaturated carbonyl compounds. We have previously demonstrated that the B-B bond (or B-Si bond) upon coordination of a Lewis basic NHC becomes polarized (activated), whereupon the resulting nucleophilic B(pin) (or SiPhMe₂) unit of the complex readily attacks the electrophilic enone. The forming of the C-B (or C-Si) bond is, according to our kinetic studies, likely to be the turnover limiting step. Since it involves the enantioselective transfer of the B(pin) or SiPhMe₂ unit to the α , β -unsaturated carbonyl, we believe this is also the stereochemical determining step. Consequently, we decided to focus our DFT studies on this step with the intention to further understand how these catalytic reactions operate and the origin of enantioselectivity. All ground state and transition state geometries were optimized using DFT methodology. The B97-D functional and 6-31G* basis set were employed. Tetrahydrofuran solvation (or tetrahydrofuran/MeOH in boryl conjugate additions catalyzed by a chiral NHC) was modeled using the PCM model. Frequency calculations were carried out on all optimized geometries at the same level of theory to determine the whether these are minima or first-order saddle-points on the potential energy surface.

Our computational investigations began with a non-enantioselective reaction, where the boron conjugate addition to cyclohexenone is catalyzed by a small achiral NHC derived from 1,3-dicyclohexylimidazolium salt (**3a**). The transition state of the B(pin) transfer step is depicted as **A** (Scheme S8). The calculations show that the B(pin) transfer occurs in a concerted manner, that is, as the B–B bond breaks the C–B bond forms simultaneously. At the transition state, the distance between the two boron atoms is 2.05 Å, and the distance between the β carbon of cyclohexenone and the boron is 1.96 Å. The intrinsic free energy of activation ΔG^{\ddagger} is 18.0 kcal/mol.

Ground State of A

Car	tesian	coordinates	(Angstroms):	
98				
н	-4.036	5 0.114	-3.129	

С	-3.888	0.792	-2.285
Н	-2.484	-0.457	-1.317
0	-5.353	2.371	-3.285
С	-3.041	0.481	-1.272
С	-4.616	2.077	-2.337
С	-2.819	1.377	-0.080
н	-1.893	1.960	-0.240
С	-4.361	3.055	-1.182
н	-3.512	3,696	-1.487
C	-4.005	2,336	0.135
н	-5.239	3.710	-1.079
ц	_1 877	1 754	0 178
ц	-3 768	3 070	0 920
и п	-3.700	0 765	0.920
п N	-2.020	1 202	1 162
N D	0.440	1 220	-1.103
Б	0.030	-1.320	-0.330
C	0.926	2.482	-0.624
C	0.509	0.288	-0.237
C	1.276	2.217	0.669
N	1.005	0.875	0.889
Н	-4.932	-2.170	0.010
Н	-4.269	-0.748	0.859
Н	-4.305	-4.452	0.662
С	-4.553	-1.803	0.975
Н	-5.358	-1.871	1.723
0	-2.365	-2.585	0.307
С	-3.344	-2.656	1.393
С	-3.772	-4.117	1.565
Н	-4.451	-4.217	2.426
Н	-2.903	-4.771	1.721
Н	-3.881	-0.394	3.089
Н	-4.148	-1.868	4.063
С	-2.546	-2.054	2.610
С	-3.382	-1.232	3.593
Н	-2.363	-3.803	3.919
Н	-2.731	-0.830	4.384
С	-1.715	-3.107	3.364
Н	-1.095	-3.679	2.659
Н	-1.053	-2.594	4.077
В	-1.387	-1.649	0.644
0	-1.586	-1.169	1.947
Н	0.971	3.399	-1.196
Н	1.688	2.855	1.440
Н	0.474	-2.994	-4.097
С	1.295	-2.959	-3.363
Н	-1.080	-4.009	-2.443
Н	1.913	-2.077	-3.577
0	-0.033	-1.704	-1.773
н	1.914	-3.862	-3.496
С	0.716	-2.915	-1.942
Ċ	-0.233	-4,118	-1.748
н	0.275	-5.074	-1.955
н	-0.628	-4.129	-0.724
н	2.632	-0.933	-1.494
C	1,798	-2.828	-0.798
c	2,990	-1,922	-1,177
0	1,076	-2,216	0.277
H	3.597	-2.357	-1.987
		,	,

C	2.328	-4.188	-0.322				
н	2.814	-4.728	-1.152				
Н	3.631	-1.791	-0.291				
н	1.512	-4.809	0.076				
Н	3.072	-4.038	0.476				
С	0.659	0.635	-4.938				
С	-0.186	1.823	-5.441				
С	1.173	0.879	-3.505				
Н	1.510	0.452	-5.614				
Н	0.040	-0.279	-4.937				
С	-0.015	1.153	-2.566				
Н	1.855	1.747	-3.487				
Н	1.717	0.001	-3.137				
С	-0.807	2.385	-3.041				
С	-1.341	2.130	-4.465				
Н	-0.148	3.269	-3.063				
Н	-1.634	2.596	-2.349				
Н	0.459	2.716	-5.526				
Н	-0.585	1.610	-6.446				
н	-1.917	3.005	-4.806				
н	-2.037	1,274	-4,435				
C	0.779	0.147	4,646				
C	2.286	-0.022	4.930				
c	0.541	0.915	3,330				
н	0 284	0.671	5 480				
и ц	0 311	_0 8/9	1 560				
C	1 25/	-0.049	2 177				
с u	1.234	1 0/1	2 120				
п 11	0.930	1.941	2 101				
п	-0.552	0.975	3.101				
C	2./05	0.044	2.430				
H	0.825	-0.808	2.078				
C	2.995	-0./19	3./50				
Н	3.228	1.045	2.491				
Н	3.216	-0.493	1.583				
Η	2.737	0.975	5.084				
Η	2.436	-0.597	5.858				
Н	4.075	-0.811	3.947				
Н	2.594	-1.743	3.640				
Н	-0.666	0.275	-2.576				
		1		2		3	
		A		А		A	
F	requencies \cdot	13.1	939	20.195	8	27.1	962
Re	ed. masses ·	5.4	1714	6.931	9	4.3	3492
Ze	ero-point co	orrection=	=		0.849032	(Hartree/H	Particle)
Тł	nermal corre	ection to	Energy=		0.893423		
тł	nermal corre	ection to	Enthalpy=		0.894367		
тł	nermal corre	ection to	Gibbs Free E	nergy=	0.773357		
Sı	um of elect:	ronic and	zero-point E	nergies=	-1824.	698238	
Sı	um of elect:	ronic and	thermal Ener	aies=	-1824.	653847	
Sı	um of elect:	ronic and	thermal Enth	alpies=	-1824.	652903	
Sı	um of elect:	ronic and	thermal Free	Energies=	-1824.	773914	
				5			
	T+em		Value	Threshold	Converged?		
Ma	aximum Force	e	0.000019	0.000450	YES		
RI	AS Force	- e	0.000003	0.000300	YES		
10	1010	-			120		

Transition State of A

Car	tesian	coordinates	(Angstroms):	
 98				
Ν	0.832	1.315	-1.396	
В	-0.064	-1.069	-0.525	
С	1.472	2.434	-0.885	
С	0.622	0.399	-0.406	
С	1.652	2.214	0.451	
N	1.118	8 0.966	0.730	
С	-2.512	2 0.470	-0.728	
Н	-5.004	-3.079	0.342	
Н	-4.854	-1.494	1.131	
Н	-3.333	-4.797	0.533	
С	-4.615	-2.558	1.230	
Н	-5.122	-2.958	2.121	
0	-2.497	-2.284	0.099	
С	-3.098	-2.796	1.317	
С	-2.828	-4.306	1.379	
Н	-3.225	-4.732	2.315	
Н	-1.753	-4.523	1.319	
Н	-4.134	-0.867	3.188	
Н	-3.730	-2.336	4.125	
С	-2.385	-1.953	2.456	
С	-3.309	-1.475	3.581	
Н	-1.461	-3.575	3.594	
Н	-2.730	-0.866	4.293	
С	-1.158	-2.666	3.051	
Н	-0.448	-2.929	2.258	
Н	-0.657	-1.992	3.760	
В	-1.906	-1.036	0.362	
0	-1.899	-0.774	1.744	
С	-4.602	2.022	0.741	
0	-6.154	0.414	-0.183	
С	-4.952	2 0.773	-0.087	
С	-3.893	0.126	-0.810	
С	-2.194	1.799	-0.026	
Н	-4.186	-0.724	-1.428	
С	-3.125	2.079	1.166	
Н	-2.888	3.065	1.599	
H	-2.936	1.321	1.939	
Н	-5.277	2.060	1.612	
H	-4.845	2.903	0.116	
H	-1.942	0.306	-1.648	
H	-1.154	1.839	0.314	
Н	-2.310	2.604	-0.775	
H	1.742	3.275	-1.509	
H	2.103	3 2.831	1.217	
H	0.551	-2.828	-4.127	
C	1.221	-2.947	-3.262	
H	-1.386	-3.630	-2.910	
н	1.985	-2.158	-3.303	
0	-0.167	-1.536	-1.880	
н	1./19	-3.92/	-3.341	
C	0.396		-1.908	
L	-0./34	-3.000	-2.043	

Н	-0.364	-4.906	-2.185
Н	-1.370	-3.842	-1.141
Н	2.690	-1.450	-1.244
С	1.255	-2.983	-0.641
С	2.696	-2.464	-0.816
0	0.591	-2.077	0.274
Н	3.285	-3.121	-1.474
С	1.278	-4.381	-0.017
Н	1.744	-5.102	-0.707
Н	3.181	-2.424	0.171
Н	0.262	-4.723	0.219
Н	1.868	-4.358	0.913
С	1.422	0.717	-5.136
С	0.581	1.887	-5.688
С	1.786	0.947	-3.655
Н	2.340	0.586	-5.730
Н	0.842	-0.219	-5.218
С	0.502	1.159	-2.832
Н	2.433	1.836	-3.563
Н	2.337	0.085	-3.248
С	-0.319	2.352	-3.352
С	-0.682	2.115	-4.833
Н	0.271	3.281	-3.266
Н	-1.225	2.470	-2.739
Н	1.193	2.807	-5.679
Н	0.300	1.692	-6.736
Н	-1.258	2.974	-5.215
н	-1.335	1.227	-4,902
C	0.318	0.811	4.483
C	1,710	0.363	4,972
C	0.382	1.393	3.057
н	-0.106	1.565	5.166
н	-0.369	-0.050	4.488
C	1.048	0.390	2.094
н	0.965	2.329	3.081
н	-0.627	1.625	2.686
C.	2.445	-0.039	2.569
н	0.407	-0.489	2.017
c	2 351	-0.637	3 988
н	3 116	0 837	2 579
н	2.853	-0.773	1.858
ц	2.000	1 2/19	5 060
н	1,633	-0.087	5.976
н	3 355	-0 930	4 225
н	1 730	-1 555	3 948
и ц	_0 100	0 250	_2 900
11	-0.100	0.200	-2.900

2 3 1 А А Α Frequencies -- -342.3384 16.5905 25.4934 Red. masses --9.7213 4.9027 4.2430 Zero-point correction= 0.848393 (Hartree/Particle) Thermal correction to Energy= 0.891892 Thermal correction to Enthalpy= 0.892836 Thermal correction to Gibbs Free Energy= 0.775068 Sum of electronic and zero-point Energies= -1824.671940 Sum of electronic and thermal Energies= -1824.628442 Sum of electronic and thermal Enthalpies= -1824.627497

Sum of electronic	and thermal Free	Energies=	-1824.745265
Item	Value	Threshold	Converged?
Maximum Force	0.000009	0.000450	YES
RMS Force	0.000001	0.000300	YES

Next, we investigated the enantioselective boryl conjugate addition to acyclic enones. Additional noteworthy points merit mention: 1) Boryl conjugate additions catalyzed by chiral NHCs only proceed in the presence of MeOH. Experiments indicate that MeOH may play a dual role in the reaction by acting as a proton source and promoting hydrolysis of one of the pinacolato groups in $B_2(pin)_2$. Our computational studies suggest that this hydrolysis eases the coordination of the bulky, chiral NHC to the boron center. 2) Excess dbu was used instead of catalytic NaOt-Bu. Besides deprotonation of the imidazolinium salt to generate the NHC, we speculate that the protonated form of dbu (dbuH⁺) may serve as a Lewis acid to activate the carbonyl group of the enone. Two transition states (I and II) for the addition of B(pin) unit to the acyclic enone that results in the two observed enantiomeric products were optimized (Scheme S9). In the favored transition state I, the distance between the two borons is 2.22 Å and the one between the β carbon of the enone and the boron is 2.12 Å. The activation energy of I ($\Delta G^{\ddagger} = 25.8$ kcal/mol) is higher than the transition state A that involves an achiral NHC ($\Delta G^{\ddagger} = 18.0$ kcal/mol). One of the many reasons could be that the more sterically hindered chiral NHC hampers formation of the C-B bond, compared to the small achiral NHC. The unfavored transition state II is 1.4 kcal/mol higher in energy than I, probably because of the steric repulsion between the phenyl substituent of the enone and the N-aryl motif of the NHC (highlighted in II). Such interactions may also lead to the variation of the N–C–B angle from 123° to 133° in TS I and II, respectively.

 $\Delta \mathbf{G}^{\dagger} = \mathbf{25.8 \ kcal/mol}$

Π

I

000

 $\Delta \mathbf{G}^{\ddagger} = \mathbf{27.2 \ kcal/mol}$

Ground State of I and II							
Car	tesian (coordinates	(Angstroms):				
158							
Н	7.209	5.333	-5.950				
Н	8.733	6.239	-7.090				
С	7.509	5.588	-4.924				
Н	6.713	7.538	-5.479				
Н	6.840	5.032	-4.258				
С	9.643	6.515	-6.542				
С	7.356	7.132	-4.685				
Н	10.476	6.473	-7.255				
Н	9.031	8.567	-6.684				
С	8.912	5.059	-4.721				
N	9.902	5.482	-5.516				
Н	8.308	3.877	-3.184				
С	9.502	7.923	-5.924				
Н	6.825	7.277	-3.733				
N	9.128	4.186	-3.742				
Н	11.556	4.264	-5.985				
С	8.673	7.934	-4.622				
Н	10.577	2.677	-3.990				
С	11.311	5.077	-5.284				
С	10.449	3.621	-3.438				
Н	8.438	8.976	-4.357				

8.338

-5.716

H H

10.501

Н	11.941	5.944	-5.525
Н	9.292	7.537	-3.800
С	11.525	4.639	-3.831
Н	10.473	3.397	-2.364
Н	12.523	4.195	-3.728
Н	11.460	5.514	-3.167
С	4.979	2.299	-0.420
в	6.664	-0.247	-3.945
0	7.395	0.010	-5.107
B	7 3 3 8	_0 993	-2 491
C	7 375	-2 664	-2.813
N	0 220	2 200	-2.013
IN NT	6 112	-3.309	-3.037
11	10 056	-3.335	-2.430
н	10.056	0.935	-1.953
0	8./34	-0.604	-2.219
н	8.1/3	-/.583	1.739
Н	8.967	-5.276	1.187
С	7.498	-6.869	1.264
С	7.944	-5.574	0.950
Н	5.820	-8.243	1.193
С	6.177	-7.238	0.959
С	7.083	-4.658	0.330
Н	7.437	-3.657	0.091
Н	6.216	-1.851	0.309
Н	12.676	-0.732	-2.076
Н	3.198	-4.541	0.701
Н	13.819	-1.987	-2.611
Н	12.586	-2.357	-1.369
С	5.313	-6.320	0.344
С	12.777	-1.807	-2.304
С	5.753	-5.018	0.017
Н	7.880	-1.231	0.015
С	6.804	-0.987	-0.057
Н	4.292	-6.614	0.094
Н	6.599	-0.133	0.614
С	3.497	-3.941	-0.160
Н	10.910	-6.645	-0.886
С	4.821	-4.064	-0.640
Н	10.157	-2.547	-2.027
Н	1.572	-2.984	-0.343
0	6.421	-0.650	-1.378
С	11.804	-2.220	-3.388
С	2.585	-3.058	-0.744
Н	9.084	-5.057	-1.481
С	10.480	-2.549	-3.065
С	10.513	-6.627	-1.903
н	13.222	-2.053	-5.019
С	9.487	-5.734	-2.234
C	12.193	-2.288	-4.740
C	5.178	-3.276	-1.759
н	6.728	-5.618	-2.235
Н	8.420	1.243	-1.276
Н	11.830	-8.195	-2.623
H	4.847	-6.945	-2.538
C	2,967	-2.244	-1.830
č	11,028	-7,499	-2.879
c	8,974	0.782	-2,116
C	9.541	-2.879	-4.053
-			

С	4.263	-2.390	-2.341
С	6.568	-4.899	-3.049
Н	1.609	-0.569	-1.666
С	8.964	-5.705	-3.540
С	11.275	-2.670	-5.724
С	2.007	-1.245	-2.441
C	4.546	-6.373	-3.418
с н	8 676	1 319	-3 038
и п	2 513	-0 634	-3 203
n C	7 956	-0.034	-3.203
	7.000	-4.740	-3.099
C	9.931	-2.972	-5.413
C	10.512	-/.4/1	-4.185
Н	2.768	-/.551	-3.793
С	5.336	-5.289	-3.835
Н	4.574	-1.804	-3.200
Н	11.590	-2.727	-6.767
С	9.483	-6.573	-4.515
С	3.377	-6.706	-4.121
Н	1.146	-1.749	-2.911
0	5.347	0.195	-4.072
н	10.910	-8.144	-4.947
Н	7.619	-4.842	-4.964
C	4.942	-4.533	-4.954
с н	9 085	-6 536	-5 530
ц	6 820	2 579	-1 669
C II	0.020	2.375	-4.005
с п	9.020	-3.419	-0.303
н	7.408	-2.089	-5.993
C	2.989	-5.950	-5.239
Н	10.451	-4.853	-7.279
Н	8.093	2.400	-5.910
Н	5.550	-3.686	-5.272
С	6.577	0.862	-5.982
Н	5.179	-1.523	-6.109
С	5.120	0.560	-5.473
С	7.014	2.310	-5.715
С	7.733	-2.880	-6.665
С	9.458	-4.420	-7.404
С	3.775	-4.860	-5.655
н	2.078	-6.206	-5.784
н	3.565	-0.940	-5.620
н	4 533	2 586	_4 917
Ċ	1 189	-0 668	-6 151
U U	7 900	0 705	-7 684
п 11	7.900	0.703	-7.004
н	6.047	-0.562	-7.040
C	0.840	0.497	-7.443
C	4.157	1.748	-5.520
Н	3.176	1.444	-5.126
Н	6.476	3.009	-6.372
Н	3.478	-4.265	-6.521
С	6.892	-3.337	-7.690
Н	4.246	-0.460	-7.204
C	8.615	-4.878	-8.427
Н	6.212	1.110	-8.102
Н	4.024	2.089	-6.559
Н	5.894	-2.907	-7.802
н	8.963	-5.660	-9.105
С	7.325	-4.341	-8.572
Н	6.665	-4.700	-9.363

Н	1.411	0.039	2.906							
Н	2.574	-1.322	1.157							
С	2.128	0.510	2.231							
С	2.779	-0.256	1.249							
Н	1.896	2.485	3.104							
С	2.402	1.887	2.344							
С	3.700	0.346	0.383							
Н	4.207	-0.243	-0.383							
С	3.325	2.491	1.486							
С	3.994	1.729	0.492							
Н	3.531	3.557	1.587							
С	5.406	3.595	-0.443							
С	6.423	4.068	-1.384							
0	6.880	3.346	-2.297							
Н	6.095	6.188	-1.551							
С	6.893	5.505	-1.211							
Н	7.077	5.732	-0.149							
Н	7.801	5.696	-1.797							
Н	5.022	4.332	0.265							
Н	5.429	1.597	-1.130							
		1			2				3	
		A			A				A	
Free	quencies	11.19	58		14.	2595	5	1	7.3692	
Red	. masses	5.44	44		5.	4240)		4.8245	
Zero	o-point c	orrection=					1.315344	(Hartre	e/Partic	cle)
The	rmal corr	ection to E	lnergy=				1.392892			
The	rmal corr	ection to E	Inthalpy=	=			1.393836			
The	rmal corr	ection to G	Sibbs Fre	ee Ene	ergy=		1.195678			
Sum	of elect	ronic and z	ero-poir	nt Ene	ergies=		-3280.	109200		
Sum	of elect	ronic and t	hermal H	Energi	ies=		-3280.	031652		
Sum	of elect	ronic and t	hermal H	Enthal	lpies=		-3280.	030707		
Sum	of elect	ronic and t	hermal H	Free E	Energies=		-3280.	228866		
	Item	l	Valı	ıe	Thresho	ld	Converged?)		

	ltem	value	Thresnold	convergea
Maximum	Force	0.000022	0.000450	YES
RMS	Force	0.000002	0.000300	YES

Transition State of I

Cartesian coordinates			(Angstroms):	
158				
Н	3.890	3.060	7.855	
Н	5.444	4.300	5.701	
Н	4.514	1.743	8.868	
С	4.396	2.082	7.827	
Н	2.588	0.912	7.606	
Н	4.018	3.393	3.937	
Н	6.263	3.204	7.549	
Н	5.264	4.387	3.143	
Н	3.201	1.578	6.095	
С	3.511	1.096	7.036	
С	5.875	3.540	5.037	
С	5.093	3.467	3.719	
С	5.816	2.253	7.235	
----------	---------	---------	---------	
Н	6.931	3.794	4.857	
N	5.819	2.244	5.756	
Н	6.481	1.454	7.587	
С	4.159	-0.265	6.702	
н	4.382	-0.812	7.630	
C	5 545	2 2/9	2 006	
c	5 624	2.240	5 0 9 0	
с 11	2 4 2 2	1.095	5.009	
н 	3.422	-0.860	0.143	
H 	4.852	2.032	2.084	
Н	6.552	2.410	2.490	
Ν	5.559	1.057	3.765	
С	5.475	-0.201	5.851	
Н	6.353	-0.323	6.500	
Н	5.361	0.127	3.320	
Н	5.494	-1.024	5.126	
Н	-4.552	-1.051	5.292	
Н	-2.140	-1.604	4.917	
С	-3.897	-0.338	4.786	
С	-2.545	-0.651	4.569	
н	-5.452	1.148	4.506	
С	-4.401	0.897	4.348	
C	-1.703	0.260	3,914	
н	-0.651	0.033	3.770	
н	2.638	1.862	3,258	
ц	_2.823	_1 136	3 9/2	
и п	-2.025	3 033	1 123	
11 TT	-1.300	1 0 2 4	2 904	
п 11	-1.245	-4.934	3.004	
Н	-2./18	-5.801	3.301	
C	-3.558	1.812	3.698	
C	-2.226	-4.81/	3.313	
С	-2.199	1.504	3.470	
Н	0.281	-5.712	-0.560	
Н	2.133	0.530	4.345	
С	2.343	0.803	3.296	
Н	1.192	-3.967	0.963	
Н	-3.950	2.772	3.356	
Н	3.163	0.180	2.917	
С	-1.122	3.763	3.447	
Н	-5.874	-1.479	2.671	
С	0.989	-4.979	-0.944	
С	-1.320	2.518	2.819	
С	1.507	-4.004	-0.080	
н	-1.613	-2.257	2.579	
н	-0.216	5.725	3.370	
0	1 173	0 656	2 508	
c	-2 069	-1 261	1 013	
C C	-2.009	1 771	2 851	
с 11	-0.333	4.//4	2.001	
п	-3.032	-0.578	2.090	
0	4.003	-1.2/3	2.3/4	
н	0.914	-0.036	1.254	
C	-1.718	-2.918	1.724	
С	-5.573	-1.406	1.624	
Η	0.943	-5.747	-2.972	
С	1.359	-4.997	-2.297	
Η	-2.609	-6.095	0.889	
Η	0.875	-1.419	4.329	
С	5.280	-1.444	1.400	

a	1 200	0 000	1 204
C	-4.309	-0.896	1.304
С	2.443	-3.055	-0.543
С	3.105	-2.155	0.439
С	-2.304	-5.053	0.771
C	_0 709	2 324	1 558
с u	2 000	1 / 20	0 0 20
п -	-3.000	1.409	0.029
В	0.848	-0.473	1.722
С	4.497	-1.914	0.314
С	6.753	-1.124	1.171
н	2.427	-1.951	3.604
н	-7.430	-2.218	0.850
ц ц	2 565	2 6 2 7	0 000
п	-3.303	3.027	0.090
C	0.217	4.58/	1.580
С	-6.445	-1.819	0.601
С	1.332	-2.071	3.564
Ν	-1.020	1.152	0.784
С	-0.566	-0.115	0,928
н	7 366	-1 605	1 950
2	1 5 2 6	2 200	0 441
C	-1.536	-2.388	0.441
0	0.825	-1.781	2.263
С	2.263	-4.033	-2.779
С	0.001	3.355	0.939
Н	7.105	-1.446	0.179
C	2 803	-3 080	_1 910
c	2.000	1 215	0 075
C	-2.334	1.215	0.075
Н	0.794	6.661	1.313
Ν	-1.413	-0.964	0.309
С	-3.904	-0.801	-0.040
С	-2.151	-4.515	-0.512
С	1.038	5.667	0,909
Ċ	_3 015	3 463	_0 840
	-3.015	0 106	-0.040
в	2.305	-0.196	0.127
Н	1.072	-3.117	3.788
Н	2.117	5.496	1.066
С	-2.541	-0.246	-0.385
н	2.547	-4.027	-3.834
C	_1 743	-3 181	_0 713
c	6 046	1 710	0 742
	-0.040	-1.719	-0.742
Н	-3.51/	5.398	-1.6/2
C	-2.333	2.249	-1.030
Н	0.356	3.198	-0.075
Н	3.504	-2.340	-2.290
н	-2.312	-5.146	-1.387
C	-4.775	-1,213	-1.061
c	2 0 9 2	-1.215	1 0 2 0
	-2.903	4.459	-1.020
0	2.013	-0.099	-1.21/
Н	0.865	5.677	-0.179
0	3.231	0.837	0.493
Н	-6.720	-2.037	-1.540
Н	-2.374	-0.339	-1.464
C	-1.612	2.039	-2.220
с u		1 116	-2.220
п	-4.401	-1.140	-2.101
н	4.316	-0.412	-2.628
С	-1.554	-2.659	-2.087
Н	0.320	-1.664	-1.646
С	-2.264	4.244	-3.015
н	-3.378	-3.538	-2,857
н	2,902	-0.197	-3,693
**	2	U • I / /	5.075

Н	-1.065	1.108	-2.372				
С	2.781	0.962	-1.870				
Η	2.409	3.285	-0.205				
С	3.675	1.568	-0.689				
С	3.590	0.318	-3.007				
С	-0.434	-1.862	-2.401				
С	-2.500	-2.934	-3.097				
С	-1.579	3.032	-3.209				
н	-2.237	5.017	-3.786				
н	4.064	3,375	0.435				
н	5 402	0 240	_0 882				
C	3 456	3 064	_0 /28				
с ц	1 10/	1 /31	-3.260				
п	1.194	1.431	-3.200				
п	1.070	2.324	-1.733				
	1.779	1.940	-2.404				
C T	J.18Z	1.314	-0.856				
H	5./21	1.755	-0.005				
H	4.135	1.089	-3.5/2				
Н	-1.014	2.860	-4.12/				
C	-0.2//	-1.336	-3.689				
Н	3.768	3.660	-1.300				
С	-2.339	-2.409	-4.389				
Η	2.298	2.797	-2.948				
Η	5.555	1.780	-1.780				
Η	0.602	-0.727	-3.911				
Η	-3.086	-2.622	-5.156				
С	-1.229	-1.601	-4.688				
Η	-1.107	-1.185	-5.690				
Η	2.752	-2.290	1.456				
Η	4.990	-2.048	-0.650				
		1			2		2
		I A			2		3
Б	roguonaioa	412 Q	170		1/ 007	1	A 10 2512
Г	requencies	412.0	472		14.907	1	19.2313
R R	eu. masses	10.7	239		5.509	1 216205	4.0421
 п	ero-point c		- En o marro			1 202205	(Hartree/Partree)
П	hermal corr	ection to	Energy=	_		1 202220	
1	nermal corr	ection to	Enthalpy-	-		1 202020	
1	nermal corr	ection to	GIDDS Fre	e En	ergy=	1.202838	074125
5	um of elect	ronic and	zero-poli	IT EN	ergies=	-3280.	0/4135
S	um of elect	ronic and	thermal I	snerg	les=	-3279.	998125
S	um of elect	ronic and	thermal I	sntha	lpies=	-3279.	99/181
S	um of elect	ronic and	thermal I	ree	Energies=	-3280.	18/682
	Item		Valı	ıe	Threshold	Converged?	
м	aximum Foro	e	0.0000)55	0.000450	YES	
R	MS Forc	e	0.0000	006	0.000300	YES	
-							

Transition State of II

Carte	esian coo	rdinates (Ar	ngstroms):
158			
H C	5.653 5.926	19.226 18.178	5.250 5.066

Н	4.046	17.855	4.034
Н	5.730	18.004	7.204
С	5.104	17.577	3.920
Н	5.458	17.968	2.957
Ν	5.651	17.452	6.314
Н	7.004	18.123	4.844
Н	2.759	16.347	8.468
Н	2.451	16.385	6.026
Н	5.070	16.390	8.491
С	5.112	16.241	6.371
С	2.342	15.432	6.564
С	3.149	15.505	7.878
Н	1.273	15.344	6.814
С	4.699	15.701	7.721
С	5.230	16.048	3.928
Ν	4.910	15.505	5.269
Н	4.527	15.597	3.216
Н	6.250	15.736	3.656
Н	2.981	14.592	8.469
С	2.733	14.284	5.611
Н	2.212	14.431	4.652
Η	5.216	14.743	7.875
С	4.257	14.181	5.365
Η	2.402	13.315	6.018
Η	4.741	13.615	6.171
Η	4.470	13.652	4.428
Η	-3.177	21.413	12.061
Η	-0.964	20.499	11.331
С	-2.438	22.068	11.597
С	-1.196	21.555	11.183
Н	-3.688	23.837	11.712
С	-2.723	23.430	11.404
С	-0.247	22.394	10.579
Η	0.712	21.987	10.260
Η	2.261	19.592	10.789
Η	-1.599	16.366	8.913
Η	0.346	26.078	11.431
Η	-1.248	17.827	9.885
Η	0.082	16.819	9.276
С	-1.771	24.273	10.811
С	-0.916	17.222	9.027
C	-0.521	23.765	10.390
Н	2.916	24.598	12.206
Н	1.601	18.852	9.296
C	2.356	19.549	9.694
H	3.099	22.508	10.856
H	-1.994	25.330	10.658
H	3.361	19.189	9.425
C	0.815	25.8//	10.466
Н	-4.547	21.269	9.443
C C	3.080	24.JL0	11.432
C C	U.489 2 777	24.001 22 242	9./9/ 10 67/
с u	3.///	23.342	10.0/4 0 770
п u	-0.397	13.914 07 705	10 100
п 0	1.904 2 120	21.103	10.40U 0.201
c	2 · 1 2 9 _0 850	18 0/0	9.201 7 761
C	-0.030	26 700	0 021
0	T • / J T	20.190	J.J.J.T

Н	-2.270	22.066	8.862
Н	4.282	21.122	9.396
0	5.658	19.160	8.437
Н	8.263	18.851	8.216
С	-0.548	19.417	7.815
С	-4.281	21.425	8.396
Н	4.467	26.509	11.767
С	4.547	25.591	11.183
Н	-1.369	16.418	6.429
Н	2.312	18.242	7.244
С	6.501	20.112	8.288
С	-2.996	21.879	8.072
С	4.755	23.210	9.665
С	4.914	21.898	8.981
C	-1.103	17.475	6.497
С	1.118	24.446	8.546
н	-1.450	24.053	7,948
B	2.185	21,206	7.817
C	6.208	21.465	8.589
C	7.884	19.769	7.740
н	3 867	19 138	7 189
н	-6 218	20 819	7 629
ц	_1 /9/	26 362	7.759
C II	2 350	26 5/3	8 700
C	2.339	20.545	0.700 7 377
C	2 877	10 03/	6 7 7 7
N	2.077	19.034	7 672
C	0.550	23.433	7.455
С 11	0.044	22.104	7 000
п	0.005	20.307	1.000
	-0.417	20.170	0.044
н	7.003	22.195	8.434
0	2.101	20.249	6.//4
C	5.504	25.485	10.158
C	2.014	25.371	8.007
H	/.81/	19.574	6.656
C	5.600	24.311	9.402
C	-0.789	23.840	7.096
Н	3.299	28.495	8.578
N	-0.175	21.582	6.780
C	-2.636	22.084	6.728
C	-1.009	18.244	5.331
C	3.367	27.501	8.110
С	-1.065	26.319	6.756
В	3.986	22.124	7.115
H	2.986	18.756	5.668
H	4.390	27.119	8.270
С	-1.241	22.550	6.371
H	6.173	26.322	9.946
С	-0.648	19.607	5.374
С	-4.860	21.378	6.034
H	-1.207	28.453	6.426
С	-0.669	25.076	6.231
H	2.425	25.176	7.024
Н	6.335	24.247	8.599
H	-1.187	17.783	4.358
С	-3.571	21.830	5.711
С	-0.896	27.494	6.008
0	4.547	21.371	6.070

0	3.984	23.476	6.783			
н	-5.583	21,184	5,239			
н	_1 174	22 667	5 282			
C	-1.1/4	25 021	1 0/9			
11	-0.093	23.021	4.540			
п 	-3.202	21.979	4.009			
Н	6.896	22.655	6.273			
С	-0.498	20.386	4.119			
Η	1.458	21.138	4.633			
С	-0.322	27.433	4.728			
Н	-2.419	19.786	3.324			
Н	7.031	21.269	5.164			
н	0.238	24.067	4.535			
c	5 114	22 266	5 073			
с u	2 113	22.200	1 677			
п	2.443	23.003	4.077			
C a	4.418	23.049	5.401			
C	6.638	22.290	5.272			
С	0.665	21.152	3.885			
С	-1.515	20.370	3.142			
С	0.078	26.193	4.199			
Н	-0.187	28.345	4.144			
Н	2.668	24.831	4.910			
н	6.189	24.770	6.022			
c	3 155	23 909	1 566			
11	5.133	23.909	2 540			
п 	3.314	20.740	3.540			
Н	3.707	21.51/	3.5/6			
С	4.784	21.700	3.686			
С	5.336	24.875	5.339			
Н	4.766	25.771	5.628			
Н	7.120	22.934	4.521			
Н	0.527	26.138	3.206			
С	0.796	21.898	2.705			
н	3.402	24.027	3.501			
c	_1 382	21 119	1 962			
	5 100	22.112	2 907			
п 	5.109	22.397	2.097			
H	5./15	25.018	4.315			
Н	1.700	22.485	2.535			
Н	-2.183	21.106	1.220			
С	-0.229	21.889	1.743			
Н	-0.127	22.477	0.828			
		1		2		3
		А		А		А
F٢	equencies -	404.1	519	14,9932)	17,9827
Pc	d maggog	- 10 7	015	1 6450	-	1 8961
70	ro point a	io.,		1.0150	, 1 216049	(Hartroo/Dartialo)
20 mb	errel acres	Difection-			1 201014	(har tree/ Particle)
TD	ermal corre	ection to	Energy=		1.391914	
Th	ermal corre	ection to	Enthalpy=		1.392859	
Тh	ermal corre	ection to	Gibbs Free Er	nergy=	1.203083	
Su	m of election	conic and	zero-point Er	ergies=	-3280.	072629
Su	m of election	conic and	thermal Energy	jies=	-3279.	996763
Su	m of electi	conic and	thermal Entha	lpies=	-3279.	995818
Su	m of electi	conic and	thermal Free	Energies=	-3280.	185594
				J		
	Ttem		Value	Threshold	Converged?	
Ма	ximum Force	2	0.000004	0.000450	YES	
DM		-	0 000004	0 000300	VEG	
KI.	P LOTCE	-	0.00000	0.000300	169	

3.220

Н

27.613

7.023

Next, computations were carried out on the NHC catalyzed enantioselective silvl conjugate addition to an acyclic enone (Scheme S10). There are several differences compared to the boron conjugate addition variants: 1) The calculated B-Si bond length of PhMe₂Si-B(pin) is 2.05 Å, which is significantly longer than the bond length of B–B in $B_2(pin)_2$ (1.70 Å) 2) The reaction proceeds more efficiently when H₂O is used as a co-solvent with thf instead MeOH. As mentioned in the manuscript, H₂O is probably responsible for the hydrolysis of the B(pin) unit, generating (HO)₂B-SiPhMe₂, which may facilitate effective coordination of NHC to the boron center. The computational study suggests an interesting feature of the transformation: Instead of Lewis acid activation of the carbonyl group by dbuH⁺, an intramolecular chelation by the two hydroxyl groups of the (HO)₂B-SiPhMe₂ to the carbonyl group of the enone takes place in the favored transition state III. The activation barrier of III is 14.8 kcal/mol. The unfavored pathway via transition state IV, which also involves such a chelation, is 2.0 kcal/mol higher in energy than III. This is probably due to the steric repulsion between the SiMe₂Ph unit and the N-Ar motif of the NHC. Such interactions may also lead to the variation of the N-C-B angle from 124° to 129° in TS III and IV, respectively.

Scheme S10. The transition state of the C-Si bond formation in an achiral NHC catalyzed SCA reaction

Ground State of III and IV

Carte	esian	coordinates	(Angstroms):	
123				
С	0.381	L -0.958	3.147	

Н	2.208	1.536	1.258
Н	3.612	0.479	1.138
С	2.688	0.655	1.711
Н	2.976	0.916	2.745
Н	-0.520	-0.336	3.020
Si	1.567	-0.903	1.625
Н	4.595	-1.313	1.923
Н	0.883	-0.640	4.078
С	4.126	-2.295	2.002
С	2.719	-2.407	1.906
Н	6.029	-3.297	2.279
Н	0.036	-1.995	3.293
С	4.945	-3.419	2.202
С	2.169	-3.710	2.012
С	4.374	-4.699	2.300
Н	1.087	-3.842	1.933
С	2,980	-4.842	2.201
Н	5.008	-5.576	2.450
н	2.525	-5.833	2.274
н	6.934	4,421	-0.696
н	8.395	2.395	-0.703
C	6.490	3,430	-0.809
C	7 314	2 288	-0.812
C C	5 099	3 292	-0.950
с ч	1 152	1 170	-0.946
п ц	7 400	4.170	-0.954
n C	6 754	1 014	-0.954
с u	5 9/2	1 222	-0.955
п u	5.042	-4.233	-0.327
п С	5 292	-4.230	-2.095
U U	5.202	-4.203	-1.275
п	0.339	-1./0/	-1.092
C T	4.530	2.018	-1.093
н	4.014	-5.073	-1.337
C T	5.352	0.859	-1.096
H	1.037	-3.150	-0.265
C	4.480	-2.914	-1.359
C	5.261	-1.668	-1.222
Н	3.456	1.907	-1.194
0	0.203	-2.648	-0.266
C	4.689	-0.433	-1.23/
Н	3.604	-0.373	-1.341
В	0.576	-1.214	-0.221
C	-0.809	-0.319	-0.095
Н	-3.997	-4.485	-1.635
С	-3.575	-4.027	-0.738
Н	-4.106	-5.685	0.544
С	1.311	2.661	-2.660
C	-3.632	-4.703	0.489
C	-2.964	-2.763	-0.850
0	1.383	-0.811	-1.384
Н	0.131	0.852	-2.540
С	0.454	1.751	-2.023
Н	2.309	4.572	-2.451
С	1.656	3.839	-1.973
C	-2.421	-2.200	0.327
C	-3.087	-4.134	1.655
N	-1.986	-0.833	0.320
С	-2.492	-2.864	1.554

С	0.002	1.961	-0.712
Н	2.026	-1.539	-1.521
N	-0.939	1.032	-0.168
Н	-2.090	-2.368	2.438
С	1.173	4.076	-0.682
С	0.342	3.149	-0.013
н	1,455	4,990	-0.157
C	-3.078	0.183	0.408
C	-2.318	1,513	0.179
0	3 252	-2 950	_1 551
с ц	-2 263	2 001	1 108
ш ц	-2.203	2.091	0 424
п С	-3.700	-0.014	-0.434
	-3.155	-4.030	2.994
	1.859	2.357	-4.036
H	-4.104	5.546	-1.429
Н	-3.140	4.103	0.3/4
С	-3.813	4.517	-1.650
C	-3.279	3.708	-0.634
Н	-4.379	4.634	-3.739
С	-3.967	4.004	-2.948
С	-2.905	2.383	-0.911
С	-3.587	2.679	-3.228
С	-3.058	1.872	-2.213
Н	-3.700	2.272	-4.234
Н	-2.755	0.849	-2.431
Н	-6.779	-1.275	2.876
Н	-5.517	-0.925	0.750
С	-5.808	-0.776	2.895
С	-5.104	-0.574	1.698
Н	-5.806	-0.497	5.045
С	-5.261	-0.340	4.112
С	-3.852	0.066	1.705
С	-4.010	0.301	4.126
С	-3.310	0.500	2.929
Н	-3.579	0.645	5.068
Н	-2.339	0.995	2.949
Н	-3.617	-5.832	2.898
Н	-3.747	-4.251	3.716
н	-2.149	-4.964	3.427
н	1.129	1.798	-4.642
н	2.766	1.731	-3.956
н	2,135	3,278	-4.573
Н	-0.744	-0.775	-4.468
н	-0.767	-1.965	-2.286
C	-1.705	-1.698	-2.770
C	_1 699	-1.038	-1 008
C C	-2 929	-2.052	-2 159
c	-2.925		-2.155
u u	-2.900	-0.206	-5 617
C	-2.090	-0.200	-2 810
C	4 127	-1.737	-2.019
U U	-4.127	-1.070	-4.037
n U	-5.000	-2.005	-2.340
п U	/ .	-0.032	-4.049
п u	-1.303	0.14U 5 511	J.UOI 0 706
п С	-0.000	J.JLL 1 706	0./90
	-0.04/	4./00	7.010 T.010
C a	-1.113	5.130	2.886
C	-0.148	3.490	1.350

C -1.087	4.196	3.930			
Н -1.451	4.466	4.923			
C -0.128	2.557	2.408			
C -0.588	2.906	3.685			
Н 0.250	1.557	2.228			
н -0.554	2.166	4.487			
	1		2		3
	A		A		A
Frequencies	- 11.35	93	17.975	1	19.4696
Red. masses	- 5.68	08	5.257	1	5.4842
Zero-point cor	rection=			0.987387	(Hartree/Particle)
Thermal correc	tion to E	nergy=		1.050836	· · · · · · · · · · · · · · · · · · ·
Thermal correc	tion to E	nthalpy=		1.051780	
Thermal correc	tion to G	ibbs Free E	nergy=	0.884080	
Sum of electro	onic and ze	ero-point E	nergies=	-2929	352738
Sum of electro	onic and the	hermal Ener	gies=	-2929	.289288
Sum of electro	onic and t	hermal Enth	alpies=	-2929	288344
Sum of electro	onic and t	hermal Free	Energies=	-2929	456045
Item		Value	Threshold	Converged	2
Maximum Force		0.000015	0.000450	YES	
RMS Force		0.000002	0.000300	YES	

Transition State of III

Cartesian coordinates (Angstroms):

123

С	0.889	-1.344	2.902
Н	3.290	1.241	2.679
н	4.613	0.084	2.721
С	3.535	0.194	2.909
н	3.355	0.028	3.988
н	0.178	-0.511	2.809
Si	2.491	-1.057	1.857
Н	5.388	-1.873	2.281
Н	1.132	-1.471	3.974
С	4.813	-2.797	2.206
С	3.408	-2.728	2.011
Н	6.569	-4.031	2.496
Н	0.373	-2.248	2.552
С	5.488	-4.021	2.334
С	2.721	-3.967	1.920
С	4.780	-5.231	2.243
Н	1.641	-3.967	1.760
С	3.389	-5.196	2.029
Н	5.302	-6.186	2.337
Н	2.825	-6.130	1.958
Н	6.104	4.314	1.606
Н	7.617	2.332	1.786
С	5.810	3.360	1.164
С	6.660	2.243	1.267
С	4.581	3.237	0.492
Η	3.906	4.092	0.412
Н	6.952	0.155	0.813

С	6.286	1.013	0.713
Н	5.257	-4.678	-0.318
Н	6.694	-3.786	-0.875
С	5.647	-4.024	-1.115
Н	6.269	-1.631	-0.153
С	4.209	2.009	-0.062
н	5.596	-4.576	-2.066
C	5.044	0.870	0.043
н	1.778	-3.210	-0.578
Ċ	1 772	_2 782	_1 195
c	5 270	-2.702	-0.604
с u	2 252	-1.505	-0.004
	0.045	1.909	-0.373
0	0.945	-2.770	-0.320
0	4.570	-0.383	-0.535
Н	3.599	-0.320	-1.021
В	0.986	-1.441	-0.761
C	-0.248	-0.508	-0.304
Н	-2.604	-4.939	-1.559
С	-2.433	-4.366	-0.646
Н	-3.016	-5.990	0.660
С	0.993	2.042	-3.743
С	-2.672	-4.955	0.606
С	-2.004	-3.032	-0.759
0	1.754	-1.017	-1.822
Н	-0.083	0.304	-3.037
С	0.384	1.247	-2.762
Н	1.995	3.929	-4.100
С	1.528	3.284	-3.353
С	-1.771	-2.317	0.442
С	-2.487	-4.224	1.792
N	-1.314	-0.960	0.412
С	-2.028	-2.899	1.690
С	0.354	1.644	-1.417
н	2.505	-1.672	-1.938
N	-0.382	0.830	-0.504
н	-1.849	-2.311	2.588
С	1.469	3.699	-2.018
С	0.894	2.891	-1.013
н	1.901	4.658	-1.728
С	-2.333	0.119	0.613
С	-1.529	1.392	0.277
0	3,645	-2.900	-1.760
Н	-1.126	1.836	1.194
н	-3.108	-0.035	-0.154
C	-2.752	-4.829	3,155
C C	1 061	1 561	-5 177
с н	-3 687	5 541	0 023
и ц	-2 295	3 825	1 192
C	$-2 \cdot 2 \cdot 3 = -3 \cdot 135$	4 606	_0 /82
c	-2 650	3 642	0 180
с u	-2.039	5 125	2 212
п С	-4.4/3	J.12J	-2.313
C C	-3.0//	4.3/2	-1./95
C C	-2.332	2.43/ 2.160	-0.402
	-3.343	2.100	
с п	-2./80	2.202	-1.//5
п	-3.00L	2.984	-3.404
н	-2.513	1.007	-2.2/4
н	-2.890	-1.03/	3.415

Н	-4.778	-0.835	1.192
С	-4.896	-0.592	3.342
С	-4.274	-0.474	2.091
H	-4.714	-0.234	5.473
С	-4.236	-0.142	4.496
С	-2.991	0.093	1.976
С	-2.958	0.434	4.389
С	-2.340	0.552	3.136
Η	-2.441	0.791	5.282
H	-1.346	0.996	3.075
H	-3.161	-5.847	3.067
Н	-3.467	-4.214	3.725
H	-1.824	-4.882	3.750
Н	0.120	1.074	-5.475
H	1.864	0.813	-5.297
Η	1.266	2.392	-5.869
H	0.131	-2.651	-4.910
Η	-0.097	-3.600	-2.613
С	-0.810	-2.859	-2.975
С	-0.678	-2.313	-4.260
С	-1.834	-2.423	-2.111
С	-1.576	-1.329	-4.705
Η	-1.476	-0.907	-5.707
С	-2.736	-1.440	-2.570
С	-2.608	-0.895	-3.857
Η	-3.560	-1.126	-1.928
Η	-3.320	-0.140	-4.198
Η	0.190	6.181	2.227
Η	0.235	5.365	-0.126
С	0.519	4.697	0.689
С	0.480	5.150	2.016
С	0.879	3.365	0.392
С	0.794	4.275	3.070
Η	0.754	4.623	4.103
С	1.219	2.503	1.457
С	1.165	2.950	2.784
Н	1.524	1.479	1.236

1.429 2.264 3.590

Н

2 A 14.2858 5.1471 3 1 А Α Frequencies -- -64.2757 19.1044 Red. masses -- 6.5243 5.2584 Zero-point correction= 0.987137 (Hartree/Particle) Thermal correction to Energy= Thermal correction to Enthalpy= 1.049482 1.050426 Thermal correction to Enthalpy=1.050426Thermal correction to Gibbs Free Energy=0.886814Sum of electronic and zero-point Energies=-2929.332124Sum of electronic and thermal Energies=-2929.269780Sum of electronic and thermal Enthalpies=-2929.268836Sum of electronic and thermal Free Energies=-2929.432448 Item Value Threshold Converged? Maximum Force RMS Force 0.000004 0.000450 YES 0.000001 0.000300 YES

Transition State of IV

Car	tesian	coordinates	(Angstroms):	
123				
н	7 578	3 886	-0 549	
н	5.332	2 4.129	-1.632	
C	6.720	3.326	-0.170	
C	5.458	3.459	-0.777	
C	6.864	2.465	0.932	
Н	7.839	2.352	1.413	
С	4.357	2.742	-0.284	
С	5.759	1.743	1.410	
С	4.470	1.866	0.828	
Н	5.894	1.083	2.269	
С	3.334	0.728	3.400	
Н	3.400	1.733	3.856	
Н	3.388	3 2.865	-0.769	
Н	0.866	2.075	0.597	
C	1.511	2.164	1.480	
H	0.870	2.027	2.367	
H Ci	1.898	3.198	1.511	
л Л	1 260		2 620	
п ц	2 52/	0.191	3 908	
C	-2.049	-4.479	-2.520	
C	-0.751	-3.941	-2.520	
C	0.973	-1.671	-5.874	
С	-2.776	-4.533	-1.319	
С	-0.184	-3.448	-1.334	
С	-2.207	-4.054	-0.130	
С	0.573	-0.440	-5.088	
С	-0.907	-3.500	-0.124	
С	0.379	-0.523	-3.700	
C	0.348	3 0.799	-5.715	
C	-0.245		2.273	
C	-4./04		-3.381	
C C	-0.344	e -2.995 e 1.347	-2 442	
C C	-4 770	-0.213	-3 964	
C	0.010	0.603	-2.953	
C	-0.026	5 1.924	-4.968	
С	0.139	-3.378	3.532	
С	0.441	-0.297	-0.697	
С	-0.010	-1.634	1.367	
N	-0.304	0.420	-1.567	
С	-0.183	3 1.860	-3.570	
С	-2.772	2 0.357	-2.079	
N	-0.316	-0.682	0.341	
C	-3.852	-1.206	-3.600	
C	-1.750		U.1/5 1 050	
C C	0 132		-1.039	
C	0.355	-2.017	2.631	
c	-2.854	-0.923	-2.659	
C	-0.512	3.072	-2.783	
С	-3.177	-0.478	2.236	

C	0 805	_1 495	5 107
c	2 220	0 207	1 4 4 4
C	-2.320	0.307	1.444
C	-1.588	3.908	-3.147
С	0.257	3.400	-1.646
С	-3.659	0.008	3.461
С	-1,948	1.589	1.891
c	1 006	5 02/	2 2 7 2
C a	-1.900	J.034	-2.372
C	-0.065	4.521	-0.869
С	-3.283	1.286	3.903
С	-1.151	5.338	-1.226
С	-2.427	2.075	3.115
0	2 490	-1 808	-0 978
D	2 0 2 2	0 501	0 022
Б	2.032	-0.301	-0.933
0	4.963	-1.06/	-1.694
0	2.609	0.553	-1.641
С	5.926	-0.843	-0.899
С	7.131	-0.093	-1.443
С	4.860	-1.777	1.148
C	5 940	-1 224	0 493
c	2 600	2 012	2 002
C a	3.090	-2.912	3.002
C	4.833	-2.214	2.538
С	3.615	-3.379	4.318
С	5.896	-1.989	3.451
С	4.675	-3.144	5.213
С	5.813	-2.444	4.772
н	3,551	0.341	-1.814
ц	3 152		_1 254
11	2 4 9 0	-1.757	-1.254
н	-2.489	-4.854	-3.440
н	-0.175	-3.906	-3.447
Н	1.099	-1.438	-6.942
Н	0.209	-2.462	-5.784
Н	1.920	-2.090	-5.496
н	-3.787	-4.947	-1.308
н	0 830	_3 049	_1 333
11	2 771	-3.045	-1.555
п 	-2.771	-4.094	0.004
н	0.489	-1.4//	-3.186
Н	0.474	0.885	-6.797
Н	-0.499	-4.908	2.142
Н	-5.423	1.835	-3.657
н	-3.623	2.339	-1.995
н	-5.557	-0.434	-4.697
u u	_0 169	2 886	5 465
п 11	-0.109	2.000	-3.403
н	0.181	-4.068	4.3/8
Н	-3.904	-2.201	-4.047
Н	-2.304	-1.205	-0.074
Н	-1.763	1.710	-0.753
Н	0.519	-0.086	2.753
н	-2.135	-1.693	-2.379
н	-3 456	_1 476	1 892
и 11	-3.430	0 451	5 222
п	0.470	-0.451	5.252
H	1.897	-1.525	5.256
Η	0.343	-2.106	5.898
H	-2.191	3.652	-4.020
H	1.109	2.771	-1.392
Н	-4.323	-0.610	4.068
Н	-1.268	2.199	1.298
н	_2 7/8	5 667	_2 657
и П	-2.140	1 752	-2.037
11	0.000	4./00	0.013

H	I - 3.653	1.666	4.857				
H	I - 1.405	6.210	-0.619				
H	-2.130	3.069	3.455				
H	1 7.307	-0.377	-2.491				
H	8.036	-0.272	-0.844				
H	6.918	0.990	-1.408				
H	I 3 . 964	-2.014	0.583				
H	6.858	-1.000	1.038				
H	2.853	-3.067	2.319				
H	2.724	-3.915	4.648				
H	6.784	-1.446	3.126				
H	4.614	-3.499	6.243				
H	6.638	-2.253	5.462				
		1		2		3	
		A		A		A	
	Frequencies -	104.0	5940	16.3073		19.7	720
	Red. masses -	- 7.1	1023	5.4909		5.1	635
	Zero-point co:	rrection=	=		0.987198	(Hartree/P	article)
	Thermal correct	ction to	Energy=		1.049456		
	Thermal correct	ction to	Enthalpy=		1.050400		
	Thermal correct	ction to	Gibbs Free	e Energy=	0.887837		
	Sum of electro	onic and	zero-point	t Energies=	-2929.	329938	
	Sum of electro	onic and	thermal Er	nergies=	-2929.	267680	
	Sum of electro	onic and	thermal Er	nthalpies=	-2929.	266736	
	Sum of electro	onic and	thermal Fi	ree Energies=	-2929.	429299	

	Item	Value	Threshold	Converged?
Maximum	Force	0.000273	0.000450	YES
RMS	Force	0.000045	0.000300	YES

When we moved to investigate the enantioselective boron conjugate addition to a cyclic enone catalyzed by the same chiral NHC, experimental results obtained from reactions with this and several other chiral NHCs showed poor enantioselectivity when cyclohexenone is used as substrate (for instance, 55:45 er with NHC derived from 7c). However, the boron conjugate addition to a sterically more hindered β -methyl substituted cyclohexenone resulted in good enantioselectivity (er = 84:16, NHC derived from 7c). Two transition states (V and VI) for the addition of B(pin) unit to the enone that result in the two observed enantiomeric products were optimized (Scheme S11). In the favored transition state V, the substrate approaches the NHC•diboron complex from the right side. The distance between the two boron centers is 2.21 Å and the forming C····B bond length is 2.12 Å. The activation barrier $\Delta G^{\ddagger} = 36.8$ kcal/mol. The longer bond lengths and the higher activation energy compared to TS I (Scheme S9) may be due to the sterically more demanding substrate (a trisubstituted olefin). The transition state VI, which is higher in energy than V by 4.8 kcal/mol, leads to the minor product. The breaking B....B bond length is 2.09 Å and the forming C····B bond length is 2.08 Å. Unfavorable steric interactions (highlighted in VI), which might be responsible for the variation in the N–C–B bond angle (from 123° to 133°), may explain why the reaction mainly follows the pathway involving transition state V.

 \mathbf{V} $\Delta \mathbf{G}^{t} = 36.8 \text{ kcal/mol}$

Ground State of V and VI

Ca	rtesian	coordinates	(Angstroms):	
155				
Н	-9.870	16.269	-5.607	
Н	-10.681	24.295	-6.232	
Н	-11.169	15.183	-5.097	
Н	-9.337	17.856	-6.975	
С	-10.917	16.236	-5.279	
Н	-12.892	15.083	-7.150	
Н	-10.466	23.363	-8.812	
Н	-11.039	22.688	-3.976	
Н	-11.510	24.339	0.610	
С	-11.737	23.989	-6.363	
Н	-11.997	25.275	-0.826	
N	-11.770	16.697	-6.395	
Н	-11.073	22.118	-0.379	
С	-10.168	18.544	-6.755	
С	-13.071	16.008	-6.579	
Н	-10.286	16.859	-3.327	
С	-12.350	24.554	-0.068	
С	-11.562	23.209	-8.773	
С	-11.444	17.798	-7.084	
Н	-11.931	25.256	-8.127	
С	-11.919	22.257	-4.486	
С	-11.856	22.540	-5.952	

С	-11.119	17.090	-4.011
Н	-13.189	16.816	-9.271
Н	-12.335	24.590	-5.662
С	-12.195	24.235	-7.813
н	-13,435	15,735	-5.579
н	-10.077	19.376	-7.465
и П	-9.069	18 777	-1 883
11 TT	-9.009	10.777	-4.005
п	-11.970	21.104	-4.207
C	-11.910	21.539	-0.8/9
C	-12.074	22.12/	-0.815
С	-11.784	21.773	-8.311
Ν	-12.205	18.247	-8.080
С	-10.050	19.075	-5.281
Н	-12.885	25.317	-3.212
Н	-11.938	23.310	-9.802
С	-13.437	17.568	-8.506
Н	-13.149	25.051	0.504
н	-11.981	19.174	-8.495
н	-12.053	16.804	-3.507
C	-12 860	23 293	_0 731
c	1/ 095	16 01/	7 202
	-14.005	20 927	-7.202
0	-11.001	20.037	-9.142
Н	-12.805	22.764	-4.066
Н	-12.046	20.507	-6.553
С	-11.155	18.602	-4.314
Н	-14.960	16.321	-7.579
Н	-11.948	20.082	-1.488
С	-12.569	20.977	-1.438
С	-13.942	25.454	-3.500
Н	-14.019	26.343	-4.155
н	-13.291	24.143	-7.851
н	-10.064	20.172	-5.319
н	-14.090	18.324	-8.955
ц	_11 059	19 160	_3 371
и п	14 524	25 672	2 596
п	-14.524	23.072	-2.580
C	-14.148	23.253	-1.282
H	-12.145	18.864	-4.724
н	-14.413	1/.698	-6.58/
0	-14.368	24.279	-4.165
С	-13.847	20.943	-2.038
Н	-14.818	24.105	-1.172
С	-14.625	22.124	-1.959
Н	-15.597	26.275	-5.890
Н	-14.388	22.417	-9.132
н	-14.392	21.086	-7.243
н	-13,550	18,433	-1.091
н	-16.147	26.224	0.064
Ċ	1/ 331	10 601	-2 672
D D	15 910	24 062	-2.072
D	-15.019	24.003	-4.330
п	-13.230		-9.//0
C	-14.09/	18.451	-2.035
С	-15.373	22.835	-9.373
0	-15.631	23.671	-7.091
С	-16.610	26.143	-5.465
0	-16.603	25.315	-4.320
В	-16.016	23.144	-5.859
С	-15.308	20.572	-7.559
С	-15.060	19.699	-3.883

Н	-17.001	27.134	-5.174
С	-17.172	25.863	-0.052
N	-15.981	22.146	-2.406
н	-15.253	20.638	-4.399
н	-15,188	20.239	-8,600
н	-17.024	25.666	-2.215
C	1/ 500	17 255	2 577
	-14.300	17.200	-2.3//
C	-10.284	22.887	-8.144
0	-10.54/	23.095	-3.184
н	-15.834	22.215	-10.157
Н	-15.455	19.691	-6.923
Н	-17.255	25.729	-6.264
С	-17.652	25.542	-1.331
С	-16.376	21.040	2.527
Н	-17.620	25.962	2.070
С	-16.784	22.247	1.930
Н	-14.402	16.311	-2.062
Н	-16,210	20,991	3,605
н	-16.937	23.140	2.539
C		25.710	1 075
c c	-17.999	10 000	1 722
	-10.100	19.090	1.732
C ~	-16.995	22.309	0.54/
С	-16.518	21.505	-7.434
С	-15.576	18.505	-4.405
0	-16.626	21.896	-6.020
С	-15.341	17.278	-3.763
С	-16.390	19.964	0.345
С	-16.801	21.167	-0.252
Н	-15.862	18.959	2.190
Н	-17.301	23.248	0.086
С	-16,989	21.242	-1.750
н	-17.356	24.642	-8.811
ц	-16 227	19 08/	_0 281
C	-17 503	23 618	-0.201
	-17.393	10 522	-0.407
H	-10.181	18.000	-5.312
N	-1/.882	22.955	-3.125
Н	-16.876	20.240	-2.182
Н	-15.750	16.354	-4.175
С	-18.978	25.082	-1.499
С	-19.317	25.259	0.915
С	-17.799	20.773	-7.836
Н	-18.245	23.673	-7.605
С	-18.335	21.871	-2.209
Н	-18.133	23.106	-9.298
С	-18.894	23.799	-3.686
н	-17.774	20.532	-8.911
Ċ	_19 504	24 768	-2 857
с u	17 002	24.700	-2.007
п	-17.002	20.455	-4.495
C T	-19.805	24.948	-0.364
H	-1/.8/9	19.832	-/.2/3
н	-18.854	22.345	-1.362
С	-19.388	23.513	-4.963
Н	-18.898	22.733	-5.543
Н	-19.965	25.139	1.786
Н	-18.692	21.379	-7.632
С	-18.859	20.233	-4.068
С	-20.635	25.435	-3.366
С	-19.268	20.894	-2.894

С	-20.501	24.204	-5.475
Н	-21.124	26.188	-2.744
Н	-20.470	24.515	-7.622
С	-21.124	25.161	-4.651
Н	-20.827	24.586	-0.489
С	-21.012	23.916	-6.871
С	-19.722	19.330	-4.702
Н	-19.402	18.825	-5.615
С	-20.546	20.650	-2.367
Н	-20.870	22.856	-7.135
Н	-22.002	25.696	-5.020
Н	-20.862	21.173	-1.461
Н	-22.082	24.159	-6.961
С	-20.999	19.080	-4.168
С	-21.411	19.741	-3.000
Н	-21.671	18.376	-4.663
Н	-22.403	19.555	-2.583

1		2		3
A		А		А
Frequencies 13.8	3700	20.4338	3	24.1635
Red. masses 5.2	L341	5.5709)	4.6885
Zero-point correction=	=		1.299632	(Hartree/Particle)
Thermal correction to	Energy=		1.374340	
Thermal correction to	Enthalpy=		1.375284	
Thermal correction to	Gibbs Free En	nergy=	1.186880	
Sum of electronic and	zero-point En	nergies=	-3165.	919920
Sum of electronic and	thermal Energy	gies=	-3165.	845212
Sum of electronic and	thermal Entha	alpies=	-3165.	844268
Sum of electronic and	thermal Free	Energies=	-3166.	032672
Item	Value	Threshold	Converged?	
Maximum Force	0.000038	0.000450	YES	
RMS Force	0.000002	0.000300	YES	

0.000002	0.000300
	0.000002

Transition State of V

```
-----
Cartesian coordinates (Angstroms):
-----
155
в
     0.296
            -0.717
                    -0.421
                     1.743
в
     0.158
            -0.286
Н
     2.124
            -3.348
                     -4.301
     3.935
            -3.968
                     -3.322
Н
Н
    3.886
            -4.179
                   -1.058
Ν
    1.727
            -4.322
                    -4.381
Н
    -0.032
            -3.560
                     -5.188
С
     3.660
            -4.994
                     -3.048
С
     3.729
            -5.174
                     -1.492
Н
     4.611
            -5.785
                     -1.247
С
     0.459
            -4.534
                     -5.089
С
            -5.286
     2.317
                     -3.680
                    -3.539
Н
    4.388
            -5.659
Н
     0.669
            -4.925
                     -6.098
С
     2.478
            -5.795
                     -0.842
```

H	1.592	-5.207	-1.124
H	2.561	-5.708	0.250
H	-0.675	-5.073	-3.332
С	-0.397	-5.526	-4.293
N	1.769	-6.504	-3.554
Н	-1.315	-5.772	-4.842
С	2.239	-7.272	-1.218
С	0.399	-6.808	-4.034
Н	3.500	-7.551	-2.982
С	2.432	-7.535	-2.727
Н	2.947	-7.924	-0.681
Н	0.482	-7.420	-4.945
Н	1.223	-7.561	-0.911
Н	-0.091	-7.408	-3.255
Н	2.011	-8.505	-3.023
С	0.373	2.141	1.232
0	-0.397	1.008	1.629
N	-0.955	-2.623	2.586
С	-2.286	-3.267	2.864
С	-1.064	-1.321	2.236
С	2.009	0.438	3.306
0	1.376	-0.486	2.434
С	-3.253	-2.063	2.780
N	-2.366	-0.962	2.295
Н	-3.603	-1.776	3.783
Н	-2.488	-3.974	2.051
С	-2.505	-5.390	4.217
С	-2.088	-3.979	6.609
С	-2.501	-6.075	5.443
С	-2.308	-4.000	4.186
С	-2.098	-3.297	5.386
С	-2.291	-5.371	6.640
Н	-1.933	-2.221	5.362
Н	-1.922	-3.423	7.534
Н	-2.283	-5.903	7.593
Н	-2.656	-7.155	5.462
Н	-2.648	-5.932	3.280
С	-4.244	-2.685	0.536
С	-6.843	-2.200	1.482
С	-4.440	-2.276	1.868
С	-5.342	-2.853	-0.318
С	-6.645	-2.612	0.155
С	-5.741	-2.030	2.336
Н	-3.231	-2.849	0.166
Н	-5.183	-3.165	-1.351
н	-7.500	-2.743	-0.511
Н	-7.852	-2.009	1.853
н	-5.886	-1.700	3.367
С	-4.451	1.949	1.233
С	-4.557	2.643	2.452
С	-3.673	0.780	1.210
С	-3.908	2.173	3.602
С	-2.979	0.339	2.339
С	-3.108	1.013	3.576
С	1.599	-5.327	2.925
С	2.404	-4.792	3.936
С	0.488	-4.631	2.403
н	3.261	-5.360	4.303

С	2.112	-3.534	4.495
С	0.221	-3.352	2.953
С	0.994	-2.843	4.005
Н	0.701	-1.894	4.448
Н	-4.016	2.709	4.546
С	-5.147	2.427	-0.023
С	2.249	-1.533	-0.417
н	-1.061	-2,930	-3.069
н	0.348	-1.874	-3.352
н	-3 103	-2 145	-2 112
C		_1 898	-2.112
с u	1 160	1 502	4 222
0	-1.109	-1.505	-4.233
0	-0.709	-1.522	-0.803
C	-1.270	-0.996	-2.142
0	-2./9/	-1.091	-2.16/
н	-3.1/9	-0.6/1	-3.110
Н	-3.263	-0.552	-1.339
Н	0.744	0.216	-3.801
H	-0.836	0.887	-4.305
С	-0.695	0.482	-2.170
С	-0.071	0.891	-3.512
Н	-2.563	1.608	-2.402
Н	0.332	1.912	-3.425
С	-1.702	1.552	-1.718
Н	-2.056	1.340	-0.703
Н	-1.200	2.531	-1.712
0	0.363	0.455	-1.172
Η	-3.624	0.174	0.312
Н	-5.166	3.548	2.506
С	2.964	-2.935	5.593
Η	1.842	-6.305	2.506
Н	-0.099	2.595	0.350
Н	1.407	1.869	0.972
Н	0.386	2.871	2.059
Н	2.148	-0.043	4.290
Н	1.429	1.362	3.445
Н	3.002	0.706	2.906
Н	-0.857	-0.705	8.180
С	-1.310	-0.363	7.248
н	0.584	-0.125	6.220
н	-3.341	-0.484	7.998
С	-0.501	-0.047	6.144
С	-2.706	-0.236	7.147
Ċ	-3.289	0.206	5,949
C	-1.085	0.386	4,944
н	-4.373	0.301	5.867
н	-0.471	0.663	4.093
C	-2.484	0.518	4.833
н	-2.409	-6.965	-1.529
C	-1.821	-6.493	-0.740
с н	-1 946	-4 501	_1 593
н	_1.533	- 8,327	0.383
Ċ	_1 550	_5 112	_0 777
c	_1 320	_7 256	0 333 -0•111
c	-1.525	-6 6/3	1 25/
c	-0.805	-0.043	U 233
н	-0.236	_7 000	2 100
н	-0.605	-3.437	0,167
**	-0.000	-3.33/	0.101

С	-0.314	-5.257	1.320	
Н	2.346	-2.373	6.312	
Н	3.703	-2.230	5.176	
Н	3.516	-3.714	6.139	
Н	-4.454	3.006	-0.658	
Η	-6.003	3.075	0.217	
Η	-5.505	1.576	-0.624	
С	3.699	-0.107	-2.602	
0	2.796	-1.797	-4.057	
С	2.833	-1.340	-2.862	
С	2.217	-1.992	-1.764	
С	3.196	-0.369	-0.117	
Η	1.700	-2.931	-1.966	
С	3.385	0.620	-1.281	
Η	4.203	1.318	-1.039	
Η	2.467	1.207	-1.401	
Η	3.610	0.572	-3.466	
Η	4.747	-0.464	-2.596	
С	2.302	-2.646	0.613	
Η	2.862	0.153	0.786	
Η	4.173	-0.830	0.130	
Η	2.091	-2.285	1.618	
Н	3.326	-3.061	0.613	
Η	1.617	-3.458	0.351	

2 A 13.9287 4.7660 3 1 А А Frequencies -- -436.7168 Red. masses -- 9.1130 19.4402 3.7134 Zero-point correction= 1.300794 (Hartree/Particle) Thermal correction to Energy= 1.374062 Thermal correction to Enthalpy= 1.375006 Inermal correction to Enthalpy-1.3/5006Thermal correction to Gibbs Free Energy=1.192412Sum of electronic and zero-point Energies=-3165.865602Sum of electronic and thermal Energies=-3165.792334Sum of electronic and thermal Enthalpies=-3165.791390 Sum of electronic and thermal Free Energies= -3165.973984 Value Ttom Throchold Converged?

	ltem	value	Threshold	convergea?
Maximum	Force	0.000060	0.000450	YES
RMS	Force	0.000009	0.000300	YES

Transition State of VI

Cart	esian co	pordinates	(Angstroms):	
155				
Н	4.586	-9.825	-2.482	
С	4.297	-9.236	-1.597	
Н	5.216	-8.977	-1.055	
Н	4.354	-7.302	-2.571	
Н	2.698	-8.406	-3.967	
С	3.619	-7.927	-2.045	
С	2.382	-8.128	-2.948	
С	3.437	-10.145	-0.652	

Η	1.861	-10.231	-2.668
Н	1.827	-7.179	-3.027
С	1.439	-9.242	-2.444
Н	3.327	-7.358	-1.149
Н	0.460	-9.188	-2.935
С	2.165	-9.513	-0.127
N	1.202	-9.150	-0.988
N	2.028	-9.358	1.184
С	-0.045	-8.496	-0.526
Н	-0.330	-7.759	-1.289
Н	0.795	-6.931	0.709
С	0.826	-8.790	1.808
Н	-0.837	-9.259	-0.473
С	0.157	-7.815	0.833
Н	1.142	-8.284	2.729
Н	-0.816	-7.491	1.225
Н	0.138	-9.607	2.077
Н	2.868	-9.571	1.790
н	4.034	-10.457	0.213
н	3.137	-11.063	-1.180
н	3.402	-4.800	-2.880
н	5.715	-4.023	-3.334
н	1.926	-5.048	0.597
С	4.029	-4.458	-2.054
C	5.333	-4.020	-2.312
н	6.634	-1.569	-3.029
Н	8.817	-0.576	-3.704
c	2.067	-4.793	-0.464
C	7.562	-1,941	-2.591
C	3.509	-4,435	-0.746
C	8,792	-1.383	-2.969
н	1.402	-3.942	-0.691
н	1.734	-5.641	-1.081
C	6.174	-3.555	-1.280
C	7.502	-2,976	-1.631
н	6.775	-7.424	-0.876
н	1.882	-0.010	-0.164
C	9,986	-1.859	-2.401
н	5.534	-6.282	-0.303
н	4.306	-0.424	-0.609
н	10,944	-1.428	-2.696
C	6.527	-6.691	-0.085
C	4.345	-3.998	0.292
C	8.705	-3.441	-1.059
c	5.662	-3.595	0.039
c	2 525	-0 389	0 633
c	9,935	-2.889	-1.447
н	4 423	-7 796	1 117
C	3 888	-0 614	0 382
н	7 271	-5 894	_0 130
Ċ	5.365	-8.165	1,527
н	7.478	- 10,146	0.890
н	8 681		_0 316
0	<u>4</u> 2/1	-4.231	2 6/7
c	7.241 6 552	_J.J4J _7 106	1 216
с ц	3 072	-7.420	1 211
и п	5.910	-3.952	1.311
п u	10 050	-1.000	1 002
11	TO . 070	-3.200	-1.002

С	1.992	-0.657	1.904
С	5.318	-9.317	2.357
Н	8.605	-7.936	0.754
Ν	6.379	-2.917	1.080
С	4.724	-1.101	1.400
С	7.747	-9.630	1.828
Н	8.714	-0.966	-0.119
С	6.171	-1.428	1.097
н	2.541	-5,940	2.821
C	7 899	-8 119	1 576
ц	10 363	0 732	_0 859
и п	3 115	7 163	3 066
C	5.445	-7.403	2 072
	0.040	-9.809	2.072
	8.881 2 110	-0.076	0.480
C T	3.119	-0.535	3.540
H	6.507	-10.936	3.109
C	9.815	0.883	0.073
0	8.843	-5.333	1.433
С	2.826	-1.147	2.925
Н	8.707	-10.046	2.174
Η	10.745	-5.588	0.735
0	5.103	-5.331	2.859
В	6.271	-6.096	2.816
С	7.332	-3.323	1.931
С	4.186	-1.369	2.672
В	7.901	-4.864	2.391
С	10.190	-5.716	1.678
Н	2.461	-6.791	4.391
Н	8.340	-7.678	2.475
С	7.189	-0.950	2.163
С	8.169	0.101	1.686
С	4.316	-5.700	4.032
С	10.041	2.029	0.856
Н	10.126	-2.957	1.513
Н	3.131	-3.892	3.957
Н	6.896	-9.334	3.802
Н	2.418	-1.359	3.915
Н	10.769	2.776	0.534
Ν	7.860	-2.238	2.544
Н	10.254	-6.774	1.982
Н	4.426	-8.495	4.739
0	6.419	-6.847	3.997
Н	4.827	-1.766	3.459
С	3,799	-4,405	4,664
н	13.667	-2,412	2.660
н	6.670	-0.578	3.055
н	10.659	-5.092	2.451
C	8 398	1 245	2 468
c	10 255	-2 571	2 5 2 3
c	9.330	2.209	2.053
c	5 351	-6 513	1 926
c	1 780	_7 81 <i>1</i>	5 517
0	/09 8 007	-1 683	3 765
c	0.227	-+.003 _2 1Q1	3 2 2 2 2 2
U U	12 620	-2.101	J•ZJZ 1 222
п С	12.000	-2.139	1.233 2.212
с u	1 6 2 1	-2.921	Z.JIZ
п U	4.UJI 2.020	-3./32	4.903
11	J.230	-4.010	7.001

Н	3.961	-7.588	6.209			
С	11.539	-2.449	3.079			
Н	9.173	-6.532	4.080			
Н	7.851	1.373	3.404			
Η	9.502	3.097	2.665			
С	9.072	-5.534	4.528			
Н	5.583	-8.322	6.086			
Н	6.823	-2.863	4.885			
С	5.968	-5.678	6.062			
Н	12.906	-4.006	2.446			
Н	10.069	-5.070	4.615			
Н	6.471	-4.789	5.666			
С	9.212	-1.596	4.515			
Ċ	6.855	-1.892	5.377			
C	8.032	-1.119	5.279			
н	4.850	-2.025	6.181			
Ċ	5 752	_1 /16	6 101			
C C	11 6/8	-1.410	1 361			
с u	5 200	-1.070	4.301			
п u	J.200	-5.509	5 5 2 0			
п 11	6.030	-5.044	5.550			
н	0./13	-0.294	0.300			
C	10.508	-1.453	5.055			
C	8.077	0.137	5.925			
C	5.803	-0.162	6./32			
H	12.634	-1.756	4.815			
C	6.971	0.613	6.644			
н	8.978	0.746	5.839			
Η	4.939	0.207	7.289			
Η	10.612	-1.014	6.049			
Η	7.019	1.591	7.127			
Н	0.931	-0.486	2.099			
		1		2		3
		А		А		A
F	requencies	428.1	144	18.98	397	20.5813
R	ed. masses	9.7	758	4.89	919	5.0981
Z	ero-point c	orrection=			1.301737	(Hartree/Particle)
\mathbf{T}	hermal corr	ection to	Energy=		1.374277	, ,
T	hermal corr	ection to	Enthalpv=		1.375221	
T	hermal corr	ection to	Gibbs Free	e Energy=	1.195115	
S	um of elect	ronic and	zero-point	: Energies=	-3165	859718
S	um of elect	ronic and	thermal Er	ergies=	-3165	.787178
S	um of elect	ronic and	thermal Er	thalpies=	-3165	786233
S	um of elect	ronic and	thermal Fr	ree Energies=	-3165	966340
2						
	Item		Value	e Threshold	d Converged	?
Ma	aximum Forc	e	0.00002	0.000450) YES	
RI	MS Forc	е	0.0000	0.000300) YES	

Finally, computations were carried out on the NHC catalyzed enantioselective silyl conjugate addition to a cyclic enone. The geometry optimized transition state geometries (VII (favored) and VIII (unfavored)) are depicted in Scheme S12. In VII the cyclohexenone molecule approaches the NHC•borosilane complex from beneath the left N-aryl group of the NHC. This is in contrast to the substrate approaching from beneath the *right* N-aryl group of the NHC in V

(Scheme S11). The reasons for this difference have been discussed in the manuscript. The activation energy of forming transition state **VII** is 19.0 kcal/mol. However, forming TS **VIII** requires a higher activation barrier ($\Delta G^{\ddagger} = 20.6$ kcal/mol), which may be due to the steric repulsion between the SiMe₂Ph unit and the N-aryl motif of the NHC. The larger N–C–N angle (129° vs 123° in **VII**) may also be the result of this steric interaction.

Scheme S12. The transition state of the C-Si bond formation in a chiral NHC catalyzed SCA reaction to a cyclic enone

Ground State of VII and VIII

Car	tesian	coordinates	(Angstroms):	
145				
Н	-5.151	-0.058	1.771	
0	-3.637	0.697	2.665	
Н	-4.726	3.018	2.291	
С	-3.160	1.592	1.931	
С	-4.012	2.778	1.489	
Н	-4.599	2.430	0.619	
С	-1.818	1.481	1.370	
С	-3.164	3.996	1.070	
Н	-2.646	4.393	1.959	
Н	-3.814	4.793	0.680	
С	-1.371	2.348	0.422	
С	-2.113	3.587	0.020	
Н	-2.593	3.393	-0.956	
Н	-1.383	4.395	-0.155	
Н	-1.232	0.610	1.656	
Н	-0.440	2.150	-0.114	

С	-1.244	-1.922	-2.127
Н	-1.345	-1.987	-1.036
Н	-2.240	-2.088	-2.576
Н	-0.589	-2.750	-2.434
Si	-0.553	-0.246	-2.764
С	-2.090	0.920	-2.733
C	-3.201	0.673	-1.892
н	-3 177	-0 182	_1 217
C	_/ 339	1 /03	_1 906
с u	5 107	1 250	1 260
C II	- 3.107	2 615	-1.200
	-4.391	2.015	-2.752
н	-5.274	3.257	-2.702
	-3.295	2.901	-3.582
Н	-3.322	3.770	-4.244
C	-2.169	2.058	-3.5/4
С	-0.212	-0.544	-4.630
H	-1.056	-1.054	-5.125
Н	-0.023	0.404	-5.161
Н	-1.343	2.280	-4.256
Н	0.691	-1.165	-4.748
H	-0.076	2.478	-2.357
0	0.753	2.277	-1.897
В	1.108	0.847	-2.024
С	1.772	0.400	-0.519
H	3.862	5.391	-1.053
С	3.193	4.817	-0.410
Н	2.356	6.579	0.521
С	2.093	-3.453	-2.774
С	2.344	5.488	0.479
С	3.233	3.409	-0.490
0	2.187	0.616	-3.014
Н	2.678	-1.374	-2.547
С	2.205	-2.238	-2.079
Н	1.418	-5.507	-2.626
С	1.495	-4.544	-2.117
С	2.352	2.688	0.353
С	1.487	4.767	1.327
N	2.316	1.248	0.383
С	1.510	3.365	1.246
С	1.683	-2.087	-0.787
н	2.846	1.323	-2.896
N	1.941	-0.868	-0.075
Н	0.846	2.786	1.883
С	0.987	-4.399	-0.822
C	1.047	-3.171	-0.131
н	0.496	-5.243	-0.335
C	2,983	0.542	1.537
C	2.713	-0.952	1,206
н	2.072	-1.399	1.973
н	4.058	0.756	1.474
C	0.551	5.453	2.300
c	2,606	-3.568	-4,193
н	5.722	-4,206	2.735
н	3.620	-2.865	2,909
C	5,473	-3.480	1,959
č	4,293	-2.725	2,060
ч	7,239	-3.898	0.773
C	6.326	-3.307	0.856

C	3,968	-1.787	1.067
c	5.004	2 2 7 7 7	0 146
C	5.994	-2.377	-0.140
С	4.821	-1.620	-0.040
Н	6.646	-2.249	-1.012
Н	4.551	-0.910	-0.821
н	3.391	3,175	5.387
ц ц	1 215	2 2 2 5	2 2/2
11 G	4.245	2.225	J.24J
C	2./81	2.40/	4.825
С	3.266	1.927	3.624
Н	1.128	2.525	6.226
С	1.509	2.102	5.295
C	2 4 8 9	1 016	2 888
c	0 721	1 105	1 567
	1 222	1.105	2.007
C	1.222	0.040	3.3/1
Н	-0.258	0.893	4.925
Н	0.612	-0.053	2.805
Н	0.616	4.991	3.298
Н	-0.498	5.366	1.968
н	0.788	6.524	2,393
н	2 841	-4 612	-4 450
11	2 5091	2 05/	4 220
п 	3.500	-2.954	-4.339
н	1.848	-3.209	-4.910
Н	4.976	3.085	-4.802
Н	3.460	4.067	-3.085
С	4.152	3.269	-2.811
С	4.997	2.705	-3.779
С	4.142	2.782	-1.483
c	5 852	1 645	3 136
	5.052	1 100	-3.430
н	0.504	1.199	-4.189
С	5.020	1.730	-1.151
С	5.863	1.164	-2.117
Н	5.067	1.367	-0.127
Н	6.535	0.352	-1.833
н	0.218	-4.803	4.169
н	1 329	-4 894	1 941
C	0 640	4 091	2 176
C a	0.040	-4.001	2.170
C	0.018	-4.024	3.431
С	0.409	-3.079	1.207
С	-0.853	-2.966	3.741
Н	-1.336	-2.920	4.719
С	-0.467	-2.021	1.533
С	-1.095	-1.966	2.787
ч	-0 649	-1 240	0 796
11	1 771	-1.240	2 010
н	-1.//1	-1.140	3.018
Н	-5.051	-5.278	1.453
Н	-6.016	-3.805	1.350
Н	-3.869	-3.377	2.468
Н	-8.127	-1.802	0.824
С	-5.109	-4.296	0,960
н	-7.476	0.403	1.698
C C	_3 880	_3 /61	1 370
c	-3.000	-J.401 1 015	1.3/2
C a	-/.90/	-1.015	0.08/
C	-7.050	0.074	0.742
N	-5.712	-0.473	1.017
Η	-8.856	-0.587	-0.260
Н	-6.255	-4.996	-0.736
С	-5.281	-4.515	-0.558
Н	-3.398	-1.319	1.500

С	-3.825	-2.015	0.773
Н	-2.953	-3.974	1.080
С	-5.168	-1.485	0.338
Н	-4.504	-5.199	-0.936
С	-7.156	-1.625	-1.103
Н	-7.679	-2.515	-1.475
Ν	-5.794	-2.050	-0.699
Н	-6.959	0.952	0.083
С	-5.187	-3.212	-1.391
Н	-3.163	-2.008	-0.101
Н	-7.065	-0.905	-1.931
Н	-4.143	-2.971	-1.623
Н	-5.711	-3.316	-2.349

2 A 3 1 А Α 21.8550 Frequencies --14.8637 24.4984 Red. masses -- 5.4974 4.9285 4.2487 Zero-point correction= 1.202599 (Hartree/Particle) Thermal correction to Energy= 1.273168 Thermal correction to Enthalpy= 1.274112 Thermal correction to Gibbs Free Energy=1.094801Sum of electronic and zero-point Energies=-3237.884351Sum of electronic and thermal Energies=-3237.813782 Sum of electronic and thermal Enthalpies= -3237.812838 Sum of electronic and thermal Free Energies= -3237.992150 170 1 110 Threshold Con ᅮᅩ - d -

	ltem	Value	Threshold	Converged?
Maximum	Force	0.000000	0.000450	YES
RMS	Force	0.000000	0.000300	YES

Transition State of VII

Cai	ctesian	coordinates	(Angstroms):	
145				
н	-5.626	0.232	1.755	
0	-4.060	0.103	2.382	
Н	-4.421	2.605	1.868	
С	-3.271	0.808	1.669	
С	-3.757	2.151	1.114	
Η	-4.367	1.956	0.216	
С	-1.929	0.409	1.392	
С	-2.592	3.089	0.747	
Η	-2.081	3.408	1.671	
Η	-2.973	3.995	0.248	
С	-1.117	1.070	0.475	
С	-1.581	2.363	-0.166	
Η	-2.068	2.160	-1.133	
Η	-0.714	3.000	-0.378	
Η	-1.574	-0.493	1.893	
Η	-0.058	0.847	0.450	
С	-2.192	-2.290	-0.615	
Η	-2.584	-1.924	0.347	
Н	-3.043	-2.697	-1.192	

H	-1.499	-3.119	-0.405
Si	-1.329	-0.894	-1.640
С	-2.790	0.104	-2.357
С	-4.048	0.122	-1.704
Н	-4.192	-0.493	-0.816
С	-5.109	0.921	-2.158
н	-6.067	0.901	-1.634
C	-4.943	1.744	-3.285
ч	-5 765	2 368	-3 640
C	2 705	1 750	2 052
	-3.705	1.750	-3.955
п	-3.504	2.301	-4.034
C	-2.653	0.944	-3.491
C	-0.629	-1.840	-3.195
Н	-1.339	-2.634	-3.491
Н	-0.513	-1.172	-4.067
Н	-1.703	0.962	-4.037
Н	0.349	-2.304	-2.997
Н	0.257	1.936	-2.856
0	0.852	1.906	-2.088
В	1.595	0.745	-2.021
С	2.375	0.486	-0.634
н	3.294	5.511	-1.464
C	2.731	4,923	-0.738
н	1.682	6.636	0.059
C	4 739	-2 466	-2 990
c	1 0 2 7	-2.400	-2.550
C C	2 066	2 5 2 7	0.125
	2.900	3.557	-0.009
0	1.879	-0.099	-3.066
Н	4.472	-0.410	-2.370
С	4.218	-1.451	-2.176
Н	4.840	-4.613	-3.267
С	4.432	-3.801	-2.661
С	2.212	2.795	0.272
С	1.108	4.817	1.084
N	2.379	1.376	0.390
С	1.309	3.428	1.137
С	3.377	-1.747	-1.093
Н	1.300	0.040	-3.834
N	2.979	-0.661	-0.252
н	0.734	2.823	1.834
С	3.616	-4.098	-1.565
Ċ	3.058	-3.085	-0.756
н	3,381	-5.137	-1.329
C C	3 110	0 8/3	1 580
C C	2 216	0.650	1 209
	3.510	-0.050	1.720
п 	2.504	-1.255	1.720
н	4.089	1.302	1.01/
C	0.106	5.479	2.006
С	5.605	-2.123	-4.184
Н	6.196	-3.338	3.731
Н	3.939	-2.454	3.121
С	6.093	-2.623	2.913
С	4.825	-2.123	2.578
H	8.209	-2.605	2.443
С	7.224	-2.211	2.189
С	4.685	-1.201	1.527
С	7.084	-1.295	1.132
С	5.819	-0.789	0.805

Н	7.958	-0.979	0.560
н	5.703	-0.091	-0.022
и п	2 524	2 066	5 717
п 	2.004	2.900	2.717
н	3.829	2.408	3.639
С	2.139	2.260	4.985
С	2.872	1.975	3.822
Η	0.319	1.872	6.097
С	0.895	1.644	5.199
С	2.370	1,069	2.874
c	0 201	0 722	1 252
	1 1 2 0	0.733	4.233
C	1.130	0.443	3.099
H	-0.578	0.257	4.407
Η	0.727	-0.251	2.361
Η	0.015	4.926	2.953
Н	-0.894	5.506	1.540
н	0.397	6.517	2,229
н Ц	6 331	_2 924	_1 391
11 TT	6 152	1 102	4 010
п 	0.152	-1.103	-4.019
Н	4.986	-1.990	-5.088
Н	4.603	2.407	-4.903
Η	2.893	3.396	-3.374
С	3.800	2.947	-2.968
С	4,759	2,383	-3.823
Ċ	3 976	2 913	-1570
c	5 016	1 700	2 202
с 	5.910	1.790	-3.292
Н	6.666	1.358	-3.956
С	5.143	2.318	-1.046
С	6.107	1.763	-1.900
Η	5.306	2.315	0.033
Н	7.010	1.316	-1.480
н	2,188	-5.592	3.084
и П	3 568	4 980	1 103
п С	2.500	-4.900	1 205
C a	2.020	-4.4/3	1.285
С	1.846	-4.807	2.406
С	2.206	-3.450	0.403
С	0.647	-4.123	2.665
Н	0.047	-4.378	3.541
С	0.992	-2.781	0.664
Ċ	0 221	_3 112	1 787
U U	0.650	1 000	0.000
11 TT	0.039	-1.900	-0.009
H	-0.720	-2.591	1.905
Н	-8.448	-4.233	1.694
Η	-8.459	-2.470	1.747
Η	-6.247	-3.379	2.315
Н	-9.194	0.476	1.578
С	-8.075	-3.334	1,180
н	-7 259	1 943	2 037
	6 524	2 226	1 25/
C a	-0.534	-3.320	1.254
С	-8./59	1.026	0./30
С	-7.319	1.427	1.070
Ν	-6.494	0.217	1.160
Н	-9.370	1.919	0.544
Н	-9.754	-3.126	-0.171
C	-8.668	-3.295	-0.245
с п	-0.000		-0.24J 1 0/0
п	-4.9/0	-1.//0	1.243
C	-5.827	-2.076	0.623
H	-6.131	-4.225	0.763
С	-6.735	-0.880	0.450

Η	-8.522	-4.263	-0.750		
С	-8.764	0.137	-0.520		
Н	-9.748	-0.333	-0.656		
Ν	-7.768	-0.954	-0.404		
Н	-6.904	2.095	0.297		
С	-8.034	-2.207	-1.143		
Н	-5.420	-2.332	-0.365		
Н	-8.535	0.722	-1.425		
Н	-7.091	-2.559	-1.578		
Н	-8.696	-1.949	-1.979		
		1		2	
		A		A	
Fı	requencies	87.1	398	12.7987	
_					

1		2		3
A		A		A
Frequencies87.1	398	12.7987		16.3093
Red. masses 6.0)834	5.2748		5.2315
Zero-point correction=	=		1.200175	(Hartree/Particle)
Thermal correction to	Energy=		1.270579	
Thermal correction to	Enthalpy=		1.271524	
Thermal correction to	Gibbs Free En	nergy=	1.090060	
Sum of electronic and	zero-point E	nergies=	-3237	.851811
Sum of electronic and	thermal Ener	qies=	-3237	.781407
Sum of electronic and	thermal Enth	alpies=	-3237	780463
Sum of electronic and	thermal Free	Energies=	-3237	.961926
Item	Value	Threshold	Converged	2

	I CCIII	vuruc	THECOHOTA	convergeu.
Maximum	Force	0.000003	0.000450	YES
RMS	Force	0.00000	0.000300	YES

Transition State of VIII

Cai	rtesian	coordinates	(Angstroms):	
1/5				
145				
Н	9.613	3.082	6.257	
Н	9.203	1.864	5.050	
н	9.265	-0.495	3.174	
С	9.518	3 2.914	5.174	
н	11.564	2.284	4.848	
Н	7.489	3.635	5.206	
С	10.902	3.101	4.518	
С	9.402	-0.269	2.106	
н	9.766	-1. 175	1.603	
С	8.404	3.832	4.628	
Н	7.254	-0.530	1.725	
Н	11.359	4.047	4.851	
н	11.337	0.636	2.539	
С	8.064	0.177	1.504	
С	10.438	0.852	1.945	
N	7.690	1.474	2.080	
Н	8.675	4.886	4.797	
С	8.576	2.365	2.505	
N	9.897	2.149	2.419	
С	8.062	3.654	3.107	
С	10.849	3.136	2.973	
H	6.974	3.681	2.960	
Н	8.142	0.273	0.408	

Н	11.831	2.912	2.537
H	10.739	0.963	0.892
Н	10.560	4.134	2.618
H	8.486	4.485	2.523
Н	4.315	-0.658	-6.281
Н	2.753	-2.479	-5.555
С	4.113	-0.821	-5.220
С	3.226	-1.833	-4.812
С	4.755	-0.040	-4.244
Н	5.472	0.728	-4.544
С	2.968	-2.034	-3.445
н	2,350	-2.888	-3,153
н	4.587	3.289	-1.815
н	5.523	1,501	-0.326
C	4 481	_0 244	-2 882
c	3 562	-1 230	-2.430
с u	2 000	1 201	1 071
п u	1 256	1.394	-1.071
п	1.250	0.035	-3.034
	4.089	3.050	-0.860
C	5.085	2.412	0.123
H	5.920	3.093	0.347
Н	0.498	-2.205	-2.843
С	2.862	2.153	-1.114
Н	5.006	0.371	-2.146
0	0.549	0.338	-2.433
H	2.062	2.760	-1.564
Н	3.748	4.012	-0.428
Н	1.548	-3.485	-0.873
0	-0.053	-2.021	-2.061
В	0.039	-0.705	-1.685
С	4.402	2.010	1.430
Н	6.670	1.698	2.230
Si	3.004	-1.390	-0.600
С	2.542	-3.268	-0.457
С	2.348	1.500	0.153
н	3,287	-3.894	-0.983
0	5 055	2 001	2 524
C	3.034	1,606	1.355
ч	5 /11	-0.686	_0 089
п ц	1 306	1 106	0 170
и п	2 5 2 5	2 570	0.170
п С	2.525	-3.370	0.000
	4.013	-1.200	0.408
H T	4.999	-2.201	0.754
H	2.5/6	1.2/3	2.28/
Н	4.432	-0.629	1.389
С	-0.878	-0.231	-0.439
Н	-0.298	-5.101	1.807
С	0.059	-4.077	1.926
H	1.576	-4.627	3.361
С	-3.505	0.567	-3.875
С	1.117	-3.808	2.802
С	-0.588	-3.056	1.197
Н	-2.758	-0.839	-2.404
С	-2.844	0.211	-2.690
Н	-4.207	2.243	-5.055
С	-3.671	1.939	-4.154
С	-0.112	-1.735	1.399
C	1.612	-2.501	2.956

N	-0.796	-0.604	0.845
С	0.979	-1.474	2.239
С	-2.323	1.194	-1.833
N	-1.769	0.766	-0.586
Н	1.325	-0.450	2.341
С	-3.153	2.916	-3.296
С	-2.445	2.570	-2.127
н	-3.265	3.974	-3.542
C	-1.721	0.202	1,720
C	-2.291	1.258	0.727
н	-1.832	2.235	0.918
н	-2 517	_0 472	2 065
C	2 805	-2 189	3 832
C C	1 020	-2.105	1 910
с u	-4.039 6 144	-0.497	-4.010
п	-0.144	2 207	2.004
п	-3.007	3.307	1.013
C	-5.728	2.697	1.509
C	-4.336	2.545	1.408
Н	-/.664	1.844	1.034
C	-6.581	1.724	0.964
С	-3.792	1.415	0.776
С	-6.039	0.597	0.320
С	-4.650	0.441	0.231
Н	-6.698	-0.156	-0.116
Н	-4.228	-0.421	-0.283
Н	-0.663	0.153	6.277
Н	-1.906	-0.663	4.273
С	-0.505	0.629	5.309
С	-1.210	0.173	4.184
Н	0.957	2.046	6.054
С	0.403	1.693	5.183
С	-1.015	0.777	2.929
С	0.598	2.301	3.931
С	-0.107	1.846	2.809
Н	1.309	3.122	3.822
Н	0.075	2.310	1.840
Н	3.001	-3.005	4.545
Н	2.648	-1.256	4.396
Н	3.709	-2.051	3.214
Н	-3.377	-0.616	-5.685
Н	-5.037	-0.228	-5.190
Н	-4.105	-1.473	-4.304
Н	-2.200	-5.648	-2.317
н	-0.467	-4.976	-0.662
С	-1.434	-4.473	-0.674
С	-2.407	-4.839	-1.613
C	-1.666	-3.420	0.239
C	-3.637	-4.163	-1.657
н	-4.396	-4.445	-2.390
C	-2.913	-2.765	0.199
C	-3.890	-3.130	-0.740
н	-3.145	-1,991	0.927
н	-4.85/	-2.618	-0.742
н	-2.517	6.517	0.308
н	-2.517	Δ Q/1	_1 105
C	-2.5193	4.041 1 725	_1.10J
C	-2.540	5 660	0 042
C	-1 Q72	3 605	_1 266
<u> </u>		5.005	-1.200

С	-0.609	5.488	0.452			
Η	-0.147	6.212	1.126			
С	-0.478	3.452	-0.864			
С	0.126	4.381	-0.008			
Η	0.072	2.584	-1.222			
Η	1.163	4.235	0.300			
		1		2		3
		Ā		Ā		A
Fı		81.1	664	8.079	7	11.4952
Re	ed. masses -	5.8	588	4.579	6	5.3125
Ze	ero-point co	prrection=			1.199457	(Hartree/Particle)
Тł	nermal corre	ection to 1	Energy=		1.270430	
Тł	nermal corre	ection to 1	Enthalpy=		1.271374	
Тł	nermal corre	ection to (Gibbs Free 1	Energy=	1.085323	
Sι	um of electr	conic and a	zero-point 1	Energies=	-3237.	845123
Sι	um of electr	conic and [.]	thermal Ene:	rgies=	-3237.	774149
Sι	um of electr	conic and [.]	thermal Ent	halpies=	-3237.	773205
Sι	um of electr	conic and [.]	thermal Free	e Energies=	-3237.	959257
	Ttem		Value	Threshold	Converged?)
Ma	aximum Force	2	0.000003	0.000450	YES	
RN	IS Force	2	0.000001	0.000300	YES	
10		-				

Computational Analysis of a Doubly Coordinated Diboron Complex

Density Functional Theory (DFT) calculations were carried out to study the probability of a methoxide coordination to the NHC•diboron complex. Two ground states (**B** and **C**, Scheme S13) were optimized using the B97-D functional and $6-31G^*$ basis set, with tetrahydrofuran solvation modeled using the PCM model. Ethylene glycol was employed instead of pinacol to simplify the calculations. Ground state **C**, which includes the methoxide coordination to the NHC•diboron complex, is 20.2 kcal/mol higher in energy than ground state **B** (involving a mono-coordinated diboron complex). In addition, we cannot find any low-energy transition state about the reaction between the bis-coordinated diboron and enones. Thus, we consider bis-coordinated diboron **C** not an active species in the NHC-catalyzed boryl conjugate additions.

Scheme S13. Ground states of mono-coordinated diboron (B) and bis-coordinated diboron (C)

 $\Delta\Delta G(C - B) = 20.2 \text{ kcal/mol}$

Ground State of B

Car	tesian	coordinates	(Angstroms):	
83				
0	1.476	0.918	-1.379	
В	0.422	2 1.786	-1.084	
Н	3.107	1.411	-2.585	
С	2.020	1.266	-2.680	
Н	1.816	0.443	-3.381	
0	0.283	3 2.778	-2.055	
С	1.271	2.562	-3.095	
Н	1.934	3.440	-3.143	
Н	0.753	3 2.447	-4.059	
Н	-1.676	-4.809	-4.512	
С	-1.133	-3.994	-4.005	
Н	-3.504	-3.612	-2.542	
N	-1.785	-3.737	-2.720	
Н	0.446	5 -5.301	-3.300	
С	0.355	-4.349	-3.848	
Н	-1.949	-4.690	0.837	
Н	-1.223	-3.100	-4.649	
Н	0.843	-4.465	-4.828	
Н	0.189	-5.077	-0.266	
С	-1.259	-3.835	0.747	
С	-1.063	-3.222	-1.759	
Н	-2.818	-3.042	-0.582	
С	-1.738	3 -2.927	-0.430	
С	0.170	-4.403	0.606	
Н	0.398	-5.023	1.488	
С	1.046	-3.234	-3.054	
N	0.274	-2.919	-1.842	
Н	-1.339	-3.260	1.686	
п	2 055	3 5/5	2 7/3	
--------	---------	--------	---------	
11	1 1 2 0	-3.345	-2.745	
н	1.139	-2.320	-3.075	
Н	-1.559	-1.8/4	-0.1/6	
C	1.285	-3.352	0.429	
С	0.993	-2.330	-0.703	
Н	2.229	-3.882	0.220	
Н	0.416	-1.481	-0.318	
Н	1.431	-2.791	1.367	
н	1,928	-1.906	-1.092	
ш	4 306	-0 003	2 5/6	
	-4.500	-0.993	-2.540	
	-3.029	-0.383	-3.104	
H	-2.284	-0.142	-1.389	
н	-4.081	0.627	-3.228	
0	-0.939	0.299	0.644	
Н	-4.439	-0.901	-5.126	
Н	-3.305	-2.084	-4.443	
С	-2.297	-0.272	-2.473	
С	-3.496	-1.008	-4.568	
С	-1.725	0,096	1,810	
B	-0.510	1.710	0.408	
C	1 109	0 221	2 1 2 1	
	-1.108	-0.331	-3.121	
C	-2.334	-0.369	-5.357	
Н	-0.176	-0.313	-2.562	
С	-4.812	-4.795	-1.716	
0	-4.496	-3.567	-2.354	
Н	-2.555	0.701	-5.534	
С	-1.012	-0.427	-4.583	
Н	-2.189	-0.839	-6.341	
0	0.081	-0.501	-5.169	
C	0 620	2 218	1 530	
c	0 387	1 682	1 069	
	1 570	4.002	2 204	
	1.578	0.016	2.294	
N	0.999	3.516	1./24	
N	1.522	1.482	2.238	
С	2.440	2.303	2.881	
С	2.110	3.587	2.554	
Н	0.298	4.479	-0.004	
Н	1.041	5.546	1.244	
Н	-0.611	4.863	1.480	
н	2.557	4.535	2.828	
н	3.232	1,900	3.501	
ц	1 274	_0 330	3 203	
и п	2 600	-0.330	2 001	
11	2.009	-0.300	2.091	
Н	0.895	-0.372	1.535	
C	-2.641	2.542	-0.443	
0	-1.620	2.679	0.524	
Н	-4.263	-4.932	-0.760	
Н	-4.590	-5.676	-2.356	
Н	-5.891	-4.801	-1.491	
Н	-3.314	3.416	-0.373	
н	-3.249	1.629	-0.277	
н	-2.235	2.489	-1,471	
 н	_1 002	_0 972	1 867	
н	_2 6/0		1 780	
11	1 1 2 0	0.700	1.707	
н	-1.108	0.369	2./30	

А А Α 22.8540 Frequencies --16.5166 26.6261 Red. masses --4.4344 4.4560 4.4417 Zero-point correction= 0.705267(Hartree/Particle) Thermal correction to Energy= 0.748325 Thermal correction to Enthalpy= 0.749269 Thermal correction to Gibbs Free Energy= 0.625196 Sum of electronic and zero-point Energies= -1698.710368 Sum of electronic and thermal Energies= -1698.667310 Sum of electronic and thermal Enthalpies= -1698.666366 Sum of electronic and thermal Free Energies= -1698.790439 Threshold Converged? Item Value 0.000041 0.000450 YES Maximum Force RMS Force 0.000005 0.000300 YES

Ground State of C

-----Cartesian coordinates (Angstroms): _____ 83 1.5581.9401.1501.591 0.510 Η С 1.480 Н 1.600 0.150 2.062 0 1.565 1.096 0.189 1.977 Η 2.289 1.805 -2.559 -2.969 Н -3.464 -2.428 -2.866 -3.963 -1.342 С -2.378 Н -2.390 -1.862 -3.612 -2.162 Ν Н -2.014 -3.155 -4.884 С -1.693 -2.328 -4.232 Н -1.061 -7.234 -2.345 Η -2.180 -1.528 -2.258 Н -1.966 -1.381 -4.716 -0.852 -5.866 -4.368 Η С -0.141 -6.647 -2.480 С -0.654 -4.127 -2.369 Н -0.969 -5.511 -0.783 С -0.245 -5.359 -1.593 С 0.041 -6.393 -3.992 Н 0.072 -7.363 -4.512 С -0.174 -2.385 -4.032 0.188 -3.607 Ν -3.273 0.693 -7.256 -2.099 Η Н 0.348 -2.435 -4.997 Η 0.183 -1.512 -3.463 0.722 -5.147 Η -1.116 С 1.293 -5.580 -4.383 С 1.471 -4.277 -3.564 Η 1.230 -5.333 -5.454 -4.482 Н 1.983 -2.614 Н 2.203 -6.185 -4.239 н 2.091 -3.554 -4.107 Н -2.150 -0.455 3.632

С	-1.929	-1.129	2.788
н	-1.518	-2.746	4.279
н	-0.919	-0.867	2.417
0	-1.464	1.936	0.449
н	-2.789	0.049	1.178
Н	-3.960	-1.023	2.024
C	-1.886	-2.555	3.266
C	-2.931	-0.941	1.631
C	-2.522	2.862	0.427
в	-1.024	1.254	-0.807
C	-2.241	-3.610	2,487
C	-2.686	-2.009	0.549
н	-2.181	-4.639	2.850
C	-3.310	0.889	-1.840
0	-2.076	0.361	-1.412
н	-1.689	-1.781	0.114
C	-2.640	-3.421	1.085
н	-3.424	-1.952	-0.264
0	-2.860	-4,414	0.351
C	-0.548	2.390	-1.919
С	-0.924	1.110	-4.058
C	0.364	4.109	-0.316
N	-0.426	2.241	-3.279
N	0.136	3.549	-1.651
С	0.665	4.102	-2.811
С	0.312	3.277	-3.838
н	-0.129	0.766	-4.735
н	-1.805	1.410	-4.647
н	-1.192	0.324	-3.350
в	0.484	0.304	-0.524
0	0.219	-0.989	0.243
0	1.112	-0.204	-1.803
н	0.519	3.323	-4.901
н	1.246	5.016	-2.791
С	1.916	-1.294	-1.391
С	1.132	-1.963	-0.220
н	-0.536	4.628	0.042
Н	1.196	4.822	-0.388
Н	0.618	3.286	0.355
Н	1.825	-2.299	0.581
н	0.576	-2.859	-0.566
н	2.088	-1.987	-2.236
н	2.905	-0.947	-1.025
н	-4.045	0.962	-1.014
Н	-3.740	0.223	-2.615
H	-3.203	1.902	-2.283
Н	-2.380	3.605	1.238
Н	-3.511	2.382	0.587
Н	-2.579	3.417	-0.534

2 1 3 А А Α Frequencies --34.8427 39.7655 20.5065 Red. masses --4.6439 3.8072 4.4531 0.706972(Hartree/Particle) 0.747521 Zero-point correction= Thermal correction to Energy= Thermal correction to Enthalpy= 0.748465 Thermal correction to Gibbs Free Energy= 0.635128

Sum of	e	electronic	and	zero-poi	int Er	nergies=	-1698.68640)8
Sum of	e	electronic	and	thermal	Energ	jies=	-1698.64585	<u>;</u> 9
Sum of	e	electronic	and	thermal	Entha	alpies=	-1698.64491	. 5
Sum of	e	electronic	and	thermal	Free	Energies=	-1698.75825	52
		Item		Val	Lue	Threshold	Converged	,
Maximu	m	Force		0.000	0223	0.000450	YES	
RMS		Force		0.000	019	0.000300	YES	

Besides the aforementioned pathways that were proposed for the NHC catalyzed boryl or silyl conjugate additions, multiple mechanisms were also explored using model systems on which DFT calculations were carried out. One of them includes a step where the chiral NHC inserts into the B–B or B–Si bond of the corresponding diboron and borosilane reagents. For example, the activation energy of the insertion process of the NHC (derived from **7c**) into PhMe₂Si–B(OH)₂ is 22.2 kcal/mol. This transformation is also endergonic by 6.0 kcal/mol. However, we cannot find any low-energy transition state about the following reaction between those insertion products and enones. We also investigated a Lewis base activation of the insertion product, generating the corresponding B(pin) or SiMe₂Ph bound N-heterocyclic carbanion. However, MeOH or water (being present) would rapidly protonate the formed carbanions, quenching the reaction. We also considered a similar pathway to the one previously reported by Fernández and co-workers.¹⁰ However, no low-energy transition state can be found for the C–B or C–Si bond formation step.

■ X-ray Structures for Compounds 15, 34 and 43:

C27H33BO6	
C27 H33 B O6	
464.34	
143(2) K	
0.71073 Å	
Orthorhombic	
P b c a	
a = 18.8781(9) Å	a= 90°.
b = 12.1056(5) Å	b= 90°.
	C27H33BO6 C27 H33 B O6 464.34 143(2) K 0.71073 Å Orthorhombic P b c a a = 18.8781(9) Å b = 12.1056(5) Å

	$c = 21.2885(9) \text{ Å} \qquad g = 90^{\circ}.$
Volume	4865.1(4) Å ³
Z	8
Density (calculated)	1.268 Mg/m ³
Absorption coefficient	0.088 mm ⁻¹
F(000)	1984
Crystal size	0.17 x 0.02 x 0.02 mm ³
Theta range for data collection	1.91 to 26.00°.
Index ranges	-23<=h<=23, -14<=k<=14, -26<=l<=26
Reflections collected	64871
Independent reflections	4780 [R(int) = 0.0899]
Completeness to theta = 26.00∞	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9983 and 0.9853
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4780 / 0 / 310
Goodness-of-fit on F ²	1.009
Final R indices [I>2sigma(I)]	R1 = 0.0450, wR2 = 0.0943
R indices (all data)	R1 = 0.0840, wR2 = 0.1110
Extinction coefficient	na
Largest diff. peak and hole	0.408 and -0.214 e. Å ⁻³

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for compound **15**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

	Х	у	Z	U(eq)	
B(1)	1503(1)	522(2)	2566(1)	23(1)	
O(1)	1491(1)	-2315(1)	2112(1)	39(1)	
O(2)	920(1)	296(1)	2912(1)	45(1)	
O(3)	1377(1)	1282(1)	2103(1)	31(1)	

O(4)	3147(1)	-1286(1)	2353(1)	29(1)
O(5)	3074(1)	-1134(1)	708(1)	27(1)
O(6)	2561(1)	-1597(1)	1175(1)	28(1)
C(1)	1953(1)	-1955(2)	2449(1)	25(1)
C(2)	2078(1)	-2348(2)	3109(1)	32(1)
C(3)	1940(1)	-1379(2)	3560(1)	36(1)
C(4)	2374(1)	-368(2)	3379(1)	33(1)
C(5)	2256(1)	-8(2)	2690(1)	24(1)
C(6)	2424(1)	-988(1)	2247(1)	21(1)
C(7)	365(1)	1074(2)	2719(1)	43(1)
C(8)	599(1)	1370(2)	2052(1)	36(1)
C(9)	-346(1)	505(2)	2775(2)	65(1)
C(10)	409(1)	2068(2)	3166(1)	53(1)
C(11)	372(1)	502(2)	1562(1)	61(1)
C(12)	410(1)	2515(2)	1826(1)	42(1)
C(13)	2316(1)	-680(1)	1559(1)	22(1)
C(14)	2745(1)	312(1)	1343(1)	24(1)
C(15)	2888(1)	21(2)	659(1)	23(1)
C(16)	2231(1)	197(2)	251(1)	24(1)
C(17)	1970(1)	1269(2)	182(1)	30(1)
C(18)	1373(1)	1473(2)	-176(1)	37(1)
C(19)	1026(1)	609(2)	-470(1)	39(1)
C(20)	1281(1)	-451(2)	-405(1)	38(1)
C(21)	1882(1)	-657(2)	-48(1)	30(1)
C(22)	3531(1)	577(2)	369(1)	25(1)
C(23)	3791(1)	1568(2)	608(1)	32(1)
C(24)	4360(1)	2090(2)	320(1)	38(1)
C(25)	4675(1)	1627(2)	-200(1)	39(1)
C(26)	4420(1)	643(2)	-440(1)	39(1)
C(27)	3850(1)	125(2)	-162(1)	31(1)

Table 3. Bond lengths [Å] and angles [°] for compound 15

B(1)-O(2)	1.352(3)
B(1)-O(3)	1.369(3)
B(1)-C(5)	1.582(3)
O(1)-C(1)	1.211(2)
O(2)-C(7)	1.468(2)
O(3)-C(8)	1.475(2)
O(4)-C(6)	1.429(2)
O(4)-H(4O)	0.85(2)
O(5)-C(15)	1.445(2)
O(5)-O(6)	1.4959(17)
O(6)-C(13)	1.454(2)
C(1)-C(2)	1.502(3)
C(1)-C(6)	1.532(3)
C(2)-C(3)	1.539(3)
C(2)-H(2A)	0.9900
C(2)-H(2B)	0.9900
C(3)-C(4)	1.523(3)
C(3)-H(3A)	0.9900
C(3)-H(3B)	0.9900
C(4)-C(5)	1.546(3)
C(4)-H(4A)	0.9900
C(4)-H(4B)	0.9900
C(5)-C(6)	1.548(2)
C(5)-H(5)	1.0000
C(6)-C(13)	1.527(3)
C(7)-C(9)	1.513(3)
C(7)-C(8)	1.530(3)
C(7)-C(10)	1.536(3)
C(8)-C(12)	1.510(3)
C(8)-C(11)	1.540(3)
C(9)-H(9A)	0.9800
C(9)-H(9B)	0.9800
C(9)-H(9C)	0.9800
C(10)-H(10A)	0.9800

C(10)-H(10B)	0.9800
C(10)-H(10C)	0.9800
C(11)-H(11A)	0.9800
C(11)-H(11B)	0.9800
C(11)-H(11C)	0.9800
C(12)-H(12A)	0.9800
C(12)-H(12B)	0.9800
C(12)-H(12C)	0.9800
C(13)-C(14)	1.519(2)
C(13)-H(13)	1.0000
C(14)-C(15)	1.522(3)
C(14)-H(14A)	0.9900
C(14)-H(14B)	0.9900
C(15)-C(22)	1.520(3)
C(15)-C(16)	1.530(3)
C(16)-C(21)	1.380(3)
C(16)-C(17)	1.396(3)
C(17)-C(18)	1.383(3)
C(17)-H(17)	0.9500
C(18)-C(19)	1.383(3)
C(18)-H(18)	0.9500
C(19)-C(20)	1.377(3)
C(19)-H(19)	0.9500
C(20)-C(21)	1.388(3)
C(20)-H(20)	0.9500
C(21)-H(21)	0.9500
C(22)-C(23)	1.391(3)
C(22)-C(27)	1.392(3)
C(23)-C(24)	1.388(3)
C(23)-H(23)	0.9500
C(24)-C(25)	1.375(3)
C(24)-H(24)	0.9500
C(25)-C(26)	1.383(3)
C(25)-H(25)	0.9500

C(26)-C(27)	1.380(3)
C(26)-H(26)	0.9500
C(27)-H(27)	0.9500
O(2)-B(1)-O(3)	112.73(17)
O(2)-B(1)-C(5)	123.92(18)
O(3)-B(1)-C(5)	123.33(17)
B(1)-O(2)-C(7)	107.35(16)
B(1)-O(3)-C(8)	105.99(15)
C(6)-O(4)-H(4O)	106.5(15)
C(15)-O(5)-O(6)	104.73(12)
C(13)-O(6)-O(5)	107.00(11)
O(1)-C(1)-C(2)	123.62(18)
O(1)-C(1)-C(6)	121.84(17)
C(2)-C(1)-C(6)	114.39(16)
C(1)-C(2)-C(3)	108.37(16)
C(1)-C(2)-H(2A)	110.0
C(3)-C(2)-H(2A)	110.0
C(1)-C(2)-H(2B)	110.0
C(3)-C(2)-H(2B)	110.0
H(2A)-C(2)-H(2B)	108.4
C(4)-C(3)-C(2)	111.34(17)
C(4)-C(3)-H(3A)	109.4
C(2)-C(3)-H(3A)	109.4
C(4)-C(3)-H(3B)	109.4
C(2)-C(3)-H(3B)	109.4
H(3A)-C(3)-H(3B)	108.0
C(3)-C(4)-C(5)	112.84(17)
C(3)-C(4)-H(4A)	109.0
C(5)-C(4)-H(4A)	109.0
C(3)-C(4)-H(4B)	109.0
C(5)-C(4)-H(4B)	109.0
H(4A)-C(4)-H(4B)	107.8
C(4)-C(5)-C(6)	109.46(15)

C(4)-C(5)-B(1)	113.70(16)
C(6)-C(5)-B(1)	113.19(15)
C(4)-C(5)-H(5)	106.7
C(6)-C(5)-H(5)	106.7
B(1)-C(5)-H(5)	106.7
O(4)-C(6)-C(13)	109.90(15)
O(4)-C(6)-C(1)	108.52(14)
C(13)-C(6)-C(1)	112.19(15)
O(4)-C(6)-C(5)	107.07(14)
C(13)-C(6)-C(5)	111.78(14)
C(1)-C(6)-C(5)	107.17(14)
O(2)-C(7)-C(9)	108.58(17)
O(2)-C(7)-C(8)	101.78(16)
C(9)-C(7)-C(8)	115.8(2)
O(2)-C(7)-C(10)	106.8(2)
C(9)-C(7)-C(10)	110.9(2)
C(8)-C(7)-C(10)	112.13(19)
O(3)-C(8)-C(12)	108.95(16)
O(3)-C(8)-C(7)	101.63(16)
C(12)-C(8)-C(7)	116.19(19)
O(3)-C(8)-C(11)	106.17(17)
C(12)-C(8)-C(11)	110.2(2)
C(7)-C(8)-C(11)	112.9(2)
C(7)-C(9)-H(9A)	109.5
C(7)-C(9)-H(9B)	109.5
H(9A)-C(9)-H(9B)	109.5
C(7)-C(9)-H(9C)	109.5
H(9A)-C(9)-H(9C)	109.5
H(9B)-C(9)-H(9C)	109.5
C(7)-C(10)-H(10A)	109.5
C(7)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
C(7)-C(10)-H(10C)	109.5
H(10A)-C(10)-H(10C)	109.5

109.5 H(10B)-C(10)-H(10C) 109.5 C(8)-C(11)-H(11A) 109.5 C(8)-C(11)-H(11B) H(11A)-C(11)-H(11B) 109.5 C(8)-C(11)-H(11C) 109.5 H(11A)-C(11)-H(11C) 109.5 109.5 H(11B)-C(11)-H(11C) C(8)-C(12)-H(12A) 109.5 C(8)-C(12)-H(12B) 109.5 H(12A)-C(12)-H(12B)109.5 C(8)-C(12)-H(12C) 109.5 109.5 H(12A)-C(12)-H(12C)109.5 H(12B)-C(12)-H(12C)O(6)-C(13)-C(14)105.29(14) O(6)-C(13)-C(6)108.09(14) C(14)-C(13)-C(6)114.33(15) O(6)-C(13)-H(13) 109.7 109.7 C(14)-C(13)-H(13) C(6)-C(13)-H(13) 109.7 C(13)-C(14)-C(15)101.61(14) C(13)-C(14)-H(14A)111.4 111.4 C(15)-C(14)-H(14A) C(13)-C(14)-H(14B)111.4 C(15)-C(14)-H(14B) 111.4 H(14A)-C(14)-H(14B)109.3 O(5)-C(15)-C(22) 105.32(14) O(5)-C(15)-C(14)101.35(14) C(22)-C(15)-C(14)115.28(16) O(5)-C(15)-C(16)111.91(15) C(22)-C(15)-C(16)110.88(15) C(14)-C(15)-C(16)111.57(15) C(21)-C(16)-C(17)118.66(18) C(21)-C(16)-C(15)122.96(17) C(17)-C(16)-C(15)118.37(16)

C(18)-C(17)-C(16)	120.72(18)
C(18)-C(17)-H(17)	119.6
C(16)-C(17)-H(17)	119.6
C(19)-C(18)-C(17)	120.04(19)
C(19)-C(18)-H(18)	120.0
C(17)-C(18)-H(18)	120.0
C(20)-C(19)-C(18)	119.6(2)
C(20)-C(19)-H(19)	120.2
C(18)-C(19)-H(19)	120.2
C(19)-C(20)-C(21)	120.53(19)
C(19)-C(20)-H(20)	119.7
C(21)-C(20)-H(20)	119.7
C(16)-C(21)-C(20)	120.48(18)
C(16)-C(21)-H(21)	119.8
C(20)-C(21)-H(21)	119.8
C(23)-C(22)-C(27)	118.86(18)
C(23)-C(22)-C(15)	121.05(17)
C(27)-C(22)-C(15)	120.01(17)
C(24)-C(23)-C(22)	120.3(2)
C(24)-C(23)-H(23)	119.9
C(22)-C(23)-H(23)	119.9
C(25)-C(24)-C(23)	120.2(2)
C(25)-C(24)-H(24)	119.9
C(23)-C(24)-H(24)	119.9
C(24)-C(25)-C(26)	119.9(2)
C(24)-C(25)-H(25)	120.0
C(26)-C(25)-H(25)	120.0
C(27)-C(26)-C(25)	120.2(2)
C(27)-C(26)-H(26)	119.9
C(25)-C(26)-H(26)	119.9
C(26)-C(27)-C(22)	120.5(2)
C(26)-C(27)-H(27)	119.8
C(22)-C(27)-H(27)	119.8

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U22	U33	U23	U13	U12	
						• (1)	
B(1)	26(1)	17(1)	26(1)	-4(1)	1(1)	2(1)	
O(1)	44(1)	41(1)	32(1)	0(1)	-2(1)	-18(1)	
O(2)	32(1)	39(1)	64(1)	22(1)	15(1)	15(1)	
O(3)	23(1)	32(1)	37(1)	6(1)	-3(1)	3(1)	
O(4)	22(1)	30(1)	34(1)	-7(1)	-2(1)	7(1)	
O(5)	33(1)	22(1)	26(1)	1(1)	7(1)	4(1)	
O(6)	40(1)	20(1)	25(1)	-4(1)	9(1)	-2(1)	
C(1)	28(1)	22(1)	26(1)	-6(1)	5(1)	7(1)	
C(2)	42(1)	26(1)	28(1)	1(1)	3(1)	6(1)	
C(3)	53(1)	33(1)	22(1)	1(1)	2(1)	13(1)	
C(4)	44(1)	30(1)	25(1)	-7(1)	-6(1)	8(1)	
C(5)	26(1)	21(1)	24(1)	-5(1)	-2(1)	1(1)	
C(6)	19(1)	20(1)	24(1)	-3(1)	0(1)	3(1)	
C(7)	29(1)	33(1)	66(2)	12(1)	8(1)	10(1)	
C(8)	24(1)	31(1)	54(2)	2(1)	-8(1)	2(1)	
C(9)	29(1)	36(1)	129(3)	24(2)	16(2)	5(1)	
C(10)	48(2)	53(2)	56(2)	-8(1)	11(1)	22(1)	
C(11)	50(2)	55(2)	77(2)	-24(2)	-30(1)	10(1)	
C(12)	32(1)	35(1)	60(2)	9(1)	-14(1)	5(1)	
C(13)	25(1)	18(1)	24(1)	-5(1)	1(1)	2(1)	
C(14)	26(1)	21(1)	24(1)	-4(1)	1(1)	0(1)	
C(15)	28(1)	17(1)	25(1)	-2(1)	1(1)	3(1)	
C(16)	25(1)	24(1)	23(1)	-1(1)	3(1)	-2(1)	
C(17)	31(1)	25(1)	35(1)	-4(1)	-2(1)	-1(1)	
C(18)	35(1)	30(1)	46(1)	-1(1)	-6(1)	6(1)	

Table 4. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for compound **15**. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$

C(19)	33(1)	41(1)	42(1)	2(1)	-10(1)	1(1)
C(20)	43(1)	32(1)	38(1)	-2(1)	-12(1)	-8(1)
C(21)	39(1)	22(1)	30(1)	0(1)	-3(1)	-1(1)
C(22)	24(1)	27(1)	23(1)	5(1)	-3(1)	3(1)
C(23)	33(1)	32(1)	32(1)	1(1)	4(1)	-1(1)
C(24)	36(1)	38(1)	39(1)	8(1)	-4(1)	-8(1)
C(25)	25(1)	58(2)	36(1)	19(1)	-1(1)	-6(1)
C(26)	32(1)	60(2)	25(1)	7(1)	4(1)	6(1)
C(27)	32(1)	37(1)	26(1)	2(1)	-1(1)	4(1)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for compound **15**

	X	у	Z	U(eq)	
H(4O)	3243(12)	-1800(20)	2093(11)	43	
H(2A)	2572	-2610	3155	38	
H(2B)	1755	-2969	3208	38	
H(3A)	1430	-1188	3552	43	
H(3B)	2062	-1604	3994	43	
H(4A)	2883	-533	3443	40	
H(4B)	2247	253	3661	40	
H(5)	2614	578	2599	28	
H(9A)	-363	-123	2485	98	
H(9B)	-724	1028	2670	98	
H(9C)	-410	240	3206	98	
H(10A)	255	1843	3587	79	
H(10B)	102	2661	3012	79	
H(10C)	899	2333	3185	79	
H(11A)	495	-237	1714	91	
H(11B)	617	644	1165	91	

H(11C)	-141	549	1496	91
H(12A)	553	3058	2143	63
H(12B)	-102	2562	1759	63
H(12C)	658	2667	1431	63
H(13)	1802	-545	1477	27
H(14A)	3191	383	1584	29
H(14B)	2470	1005	1380	29
H(17)	2204	1865	384	36
H(18)	1202	2206	-221	44
H(19)	614	746	-714	46
H(20)	1044	-1045	-606	45
H(21)	2055	-1391	-9	36
H(23)	3578	1888	969	39
H(24)	4532	2769	483	45
H(25)	5067	1982	-393	47
H(26)	4638	323	-799	47
H(27)	3673	-545	-333	38

Table 6. Torsion angles [°] for compound 15

O(3)-B(1)-O(2)-C(7)	-7.6(2)
C(5)-B(1)-O(2)-C(7)	171.04(19)
O(2)-B(1)-O(3)-C(8)	-13.9(2)
C(5)-B(1)-O(3)-C(8)	167.44(17)
C(15)-O(5)-O(6)-C(13)	-23.31(16)
O(1)-C(1)-C(2)-C(3)	-116.1(2)
C(6)-C(1)-C(2)-C(3)	59.4(2)
C(1)-C(2)-C(3)-C(4)	-53.9(2)
C(2)-C(3)-C(4)-C(5)	54.8(2)
C(3)-C(4)-C(5)-C(6)	-56.5(2)
C(3)-C(4)-C(5)-B(1)	71.2(2)
O(2)-B(1)-C(5)-C(4)	-26.4(3)
O(3)-B(1)-C(5)-C(4)	152.16(18)

O(2)-B(1)-C(5)-C(6)	99.4(2)
O(3)-B(1)-C(5)-C(6)	-82.1(2)
O(1)-C(1)-C(6)-O(4)	-130.42(18)
C(2)-C(1)-C(6)-O(4)	53.93(19)
O(1)-C(1)-C(6)-C(13)	-8.8(2)
C(2)-C(1)-C(6)-C(13)	175.56(15)
O(1)-C(1)-C(6)-C(5)	114.27(19)
C(2)-C(1)-C(6)-C(5)	-61.38(19)
C(4)-C(5)-C(6)-O(4)	-59.63(19)
B(1)-C(5)-C(6)-O(4)	172.41(15)
C(4)-C(5)-C(6)-C(13)	179.96(15)
B(1)-C(5)-C(6)-C(13)	52.0(2)
C(4)-C(5)-C(6)-C(1)	56.65(19)
B(1)-C(5)-C(6)-C(1)	-71.32(19)
B(1)-O(2)-C(7)-C(9)	147.3(2)
B(1)-O(2)-C(7)-C(8)	24.7(2)
B(1)-O(2)-C(7)-C(10)	-93.1(2)
B(1)-O(3)-C(8)-C(12)	151.26(19)
B(1)-O(3)-C(8)-C(7)	28.09(19)
B(1)-O(3)-C(8)-C(11)	-90.1(2)
O(2)-C(7)-C(8)-O(3)	-31.4(2)
C(9)-C(7)-C(8)-O(3)	-148.96(17)
C(10)-C(7)-C(8)-O(3)	82.4(2)
O(2)-C(7)-C(8)-C(12)	-149.49(18)
C(9)-C(7)-C(8)-C(12)	93.0(2)
C(10)-C(7)-C(8)-C(12)	-35.7(3)
O(2)-C(7)-C(8)-C(11)	81.9(2)
C(9)-C(7)-C(8)-C(11)	-35.7(3)
C(10)-C(7)-C(8)-C(11)	-164.29(19)
O(5)-O(6)-C(13)-C(14)	-4.81(17)
O(5)-O(6)-C(13)-C(6)	-127.39(14)
O(4)-C(6)-C(13)-O(6)	54.87(18)
C(1)-C(6)-C(13)-O(6)	-65.96(18)
C(5)-C(6)-C(13)-O(6)	173.62(14)

O(4)-C(6)-C(13)-C(14)	-62.01(19)
C(1)-C(6)-C(13)-C(14)	177.16(15)
C(5)-C(6)-C(13)-C(14)	56.7(2)
O(6)-C(13)-C(14)-C(15)	29.40(18)
C(6)-C(13)-C(14)-C(15)	147.88(15)
O(6)-O(5)-C(15)-C(22)	161.67(13)
O(6)-O(5)-C(15)-C(14)	41.23(16)
O(6)-O(5)-C(15)-C(16)	-77.77(16)
C(13)-C(14)-C(15)-O(5)	-43.53(17)
C(13)-C(14)-C(15)-C(22)	-156.66(15)
C(13)-C(14)-C(15)-C(16)	75.72(18)
O(5)-C(15)-C(16)-C(21)	-2.2(3)
C(22)-C(15)-C(16)-C(21)	115.1(2)
C(14)-C(15)-C(16)-C(21)	-115.0(2)
O(5)-C(15)-C(16)-C(17)	177.28(16)
C(22)-C(15)-C(16)-C(17)	-65.4(2)
C(14)-C(15)-C(16)-C(17)	64.5(2)
C(21)-C(16)-C(17)-C(18)	0.1(3)
C(15)-C(16)-C(17)-C(18)	-179.38(18)
C(16)-C(17)-C(18)-C(19)	0.3(3)
C(17)-C(18)-C(19)-C(20)	-0.4(3)
C(18)-C(19)-C(20)-C(21)	0.1(4)
C(17)-C(16)-C(21)-C(20)	-0.5(3)
C(15)-C(16)-C(21)-C(20)	179.01(19)
C(19)-C(20)-C(21)-C(16)	0.4(3)
O(5)-C(15)-C(22)-C(23)	-135.11(18)
C(14)-C(15)-C(22)-C(23)	-24.3(3)
C(16)-C(15)-C(22)-C(23)	103.7(2)
O(5)-C(15)-C(22)-C(27)	48.1(2)
C(14)-C(15)-C(22)-C(27)	158.87(17)
C(16)-C(15)-C(22)-C(27)	-73.2(2)
C(27)-C(22)-C(23)-C(24)	-0.2(3)
C(15)-C(22)-C(23)-C(24)	-177.10(18)
C(22)-C(23)-C(24)-C(25)	-0.6(3)

C(23)-C(24)-C(25)-C(26)	0.7(3)
C(24)-C(25)-C(26)-C(27)	0.1(3)
C(25)-C(26)-C(27)-C(22)	-0.9(3)
C(23)-C(22)-C(27)-C(26)	0.9(3)
C(15)-C(22)-C(27)-C(26)	177.84(18)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for compound **15** [Å and °]

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
O(4)-H(4O)O(3)#1	0.85(2)	2.43(2)	3.1246(19)	139(2)	

Symmetry transformations used to generate equivalent atoms:

#1 -x+1/2,y-1/2,z

Table 1. Crystal data and structure refinement for compound 34

Identification code	C21H44B2N2O7	
Empirical formula	C21 H44 B2 N2 O7	
Formula weight	458.20	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	Рс	
Unit cell dimensions	a = 8.1777(3) Å a= 90	0

	b = 17.5288(6) Å	b= 101.375(2)°		
	c = 18.6171(6) Å	$g = 90^{\circ}$		
Volume	2616.25(16) Å ³			
Z	4			
Density (calculated)	1.163 Mg/m ³			
Absorption coefficient	0.684 mm ⁻¹			
F(000)	1000			
Crystal size	$0.15 \text{ x} 0.10 \text{ x} 0.06 \text{ mm}^3$			
Theta range for data collection	5.52 to 67.81°			
Index ranges	-9<=h<=8,-20<=k<=20,-21<=l<=22			
Reflections collected	17780			
Independent reflections	eflections $6250 [R(int) = 0.0324]$			
Completeness to theta = 66.50∞	Simpleteness to the = $66.50 \times$ 98.5 %			
Absorption correction	Semi-empirical from equi	valents		
Max. and min. transmission	0.9601 and 0.9044			
Refinement method	Full-matrix least-squares	on F ²		
Data / restraints / parameters	6250 / 2 / 615			
Goodness-of-fit on F ²	1.013			
Final R indices [I>2sigma(I)]	R1 = 0.0309, wR2 = 0.082	15		
R indices (all data)	R1 = 0.0315, wR2 = 0.082	23		
Extinction coefficient	na			
Largest diff. peak and hole	0.199 and -0.170 e. Å ⁻³			

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for compound **34**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

	X	У	Z	U(eq)	
B (1)	949(2)	9786(1)	2556(1)	18(1)	
O(1)	-236(2)	10323(1)	2772(1)	20(1)	
O(2)	2585(2)	10090(1)	2895(1)	19(1)	

O(3)	548(2)	9012(1)	2784(1)	19(1)
O(4)	858(2)	9707(1)	1756(1)	20(1)
C(1)	601(2)	11009(1)	3038(1)	20(1)
C(2)	2400(2)	10713(1)	3367(1)	20(1)
C(3)	617(2)	8485(1)	2202(1)	21(1)
C(4)	94(2)	8992(1)	1510(1)	21(1)
C(5)	562(3)	11553(1)	2397(1)	26(1)
C(6)	-311(3)	11372(1)	3594(1)	28(1)
C(7)	3780(3)	11289(1)	3343(1)	29(1)
C(8)	2538(3)	10408(1)	4146(1)	28(1)
C(9)	2405(3)	8193(1)	2283(1)	28(1)
C(10)	-557(3)	7823(1)	2254(1)	32(1)
C(11)	755(3)	8726(1)	843(1)	26(1)
C(12)	-1790(2)	9115(1)	1301(1)	26(1)
C(13)	4602(2)	9684(1)	6225(1)	26(1)
C(14)	5601(2)	8980(1)	6117(1)	26(1)
C(15)	5066(2)	8690(1)	5338(1)	27(1)
N(1)	3242(2)	8652(1)	5117(1)	22(1)
C(17)	2585(2)	8206(1)	4447(1)	27(1)
C(18)	1793(3)	7452(1)	4605(1)	29(1)
C(19)	47(3)	7534(1)	4768(1)	30(1)
C(20)	-105(2)	8066(1)	5400(1)	24(1)
C(21)	397(2)	8898(1)	5295(1)	22(1)
C(22)	2248(2)	9026(1)	5476(1)	18(1)
N(2)	2828(2)	9502(1)	6009(1)	20(1)
B(2)	6646(3)	9348(1)	3329(1)	20(1)
O(5)	6673(2)	9961(1)	2880(1)	25(1)
O(6)	8017(2)	8899(1)	3576(1)	27(1)
O(7)	5215(2)	9162(1)	3555(1)	27(1)
B(3)	5635(2)	4644(1)	2708(1)	19(1)
O(8)	7050(2)	4204(1)	2561(1)	22(1)
O(9)	4166(2)	4243(1)	2303(1)	22(1)
O(10)	5790(2)	5445(1)	2476(1)	23(1)
O(11)	5476(2)	4715(1)	3479(1)	24(1)

C(24)	6456(2)	3502(1)	2202(1)	24(1)
C(25)	4657(2)	3709(1)	1809(1)	22(1)
C(26)	5372(3)	5951(1)	3014(1)	24(1)
C(28)	6468(3)	2886(1)	2789(1)	33(1)
C(29)	7626(3)	3273(1)	1697(1)	39(1)
C(30)	3430(3)	3045(1)	1704(1)	28(1)
C(31)	4608(3)	4105(1)	1078(1)	32(1)
C(32)	3505(3)	6096(1)	2831(1)	34(1)
C(33)	6295(3)	6702(1)	2994(1)	35(1)
C(27)	6021(8)	5479(2)	3711(2)	26(1)
C(34)	5223(8)	5689(2)	4353(2)	49(2)
C(35)	7915(5)	5498(2)	3952(2)	44(1)
C(27X)	5538(17)	5470(8)	3784(9)	24(4)
C(34X)	4259(16)	5626(6)	4250(5)	28(3)
C(35X)	7264(16)	5526(6)	4212(7)	36(3)
C(36)	9483(3)	5566(1)	1725(1)	31(1)
C(37)	10214(3)	5437(1)	1047(1)	33(1)
C(38)	9792(2)	6109(1)	526(1)	28(1)
N(3)	7993(2)	6269(1)	386(1)	22(1)
C(40)	7281(2)	6675(1)	-300(1)	24(1)
C(41)	6694(3)	7484(1)	-177(1)	25(1)
C(42)	4995(3)	7528(1)	39(1)	27(1)
C(43)	4875(2)	7118(1)	748(1)	26(1)
C(44)	5245(2)	6257(1)	731(1)	24(1)
C(45)	7079(2)	6086(1)	874(1)	21(1)
N(4)	7725(2)	5767(1)	1502(1)	24(1)
B(4)	1333(3)	4044(1)	3426(1)	26(1)
O(12)	2791(2)	4027(1)	3934(1)	42(1)
O(13)	1261(2)	4167(1)	2701(1)	26(1)
O(14)	-112(2)	3935(1)	3670(1)	37(1)

Table 3. Bond lengths [Å] and angles [°] for compound 34

B(1)-O(2)	1.462(2)
B(1)-O(1)	1.463(2)
B(1)-O(3)	1.478(2)
B(1)-O(4)	1.483(2)
O(1)-C(1)	1.425(2)
O(2)-C(2)	1.429(2)
O(3)-C(3)	1.432(2)
O(4)-C(4)	1.435(2)
C(1)-C(5)	1.523(2)
C(1)-C(6)	1.528(2)
C(1)-C(2)	1.566(2)
C(2)-C(7)	1.521(3)
C(2)-C(8)	1.528(2)
C(3)-C(10)	1.521(3)
C(3)-C(9)	1.529(3)
C(3)-C(4)	1.554(2)
C(4)-C(11)	1.522(2)
C(4)-C(12)	1.528(3)
C(5)-H(5A)	0.9800
C(5)-H(5B)	0.9800
C(5)-H(5C)	0.9800
C(6)-H(6A)	0.9800
C(6)-H(6B)	0.9800
C(6)-H(6C)	0.9800
C(7)-H(7A)	0.9800
C(7)-H(7B)	0.9800
C(7)-H(7C)	0.9800
C(8)-H(8A)	0.9800
C(8)-H(8B)	0.9800
C(8)-H(8C)	0.9800
C(9)-H(9A)	0.9800
C(9)-H(9B)	0.9800
C(9)-H(9C)	0.9800
C(10)-H(10A)	0.9800

C(10)-H(10B)	0.9800
C(10)-H(10C)	0.9800
C(11)-H(11A)	0.9800
C(11)-H(11B)	0.9800
C(11)-H(11C)	0.9800
C(12)-H(12A)	0.9800
C(12)-H(12B)	0.9800
C(12)-H(12C)	0.9800
C(13)-N(2)	1.463(2)
C(13)-C(14)	1.515(3)
C(13)-H(13A)	0.9900
C(13)-H(13B)	0.9900
C(14)-C(15)	1.519(3)
C(14)-H(14A)	0.9900
C(14)-H(14B)	0.9900
C(15)-N(1)	1.469(2)
C(15)-H(15A)	0.9900
C(15)-H(15B)	0.9900
N(1)-C(22)	1.323(2)
N(1)-C(17)	1.480(2)
C(17)-C(18)	1.526(3)
C(17)-H(17A)	0.9900
C(17)-H(17B)	0.9900
C(18)-C(19)	1.524(3)
C(18)-H(18A)	0.9900
C(18)-H(18B)	0.9900
C(19)-C(20)	1.526(3)
C(19)-H(19A)	0.9900
C(19)-H(19B)	0.9900
C(20)-C(21)	1.537(3)
C(20)-H(20A)	0.9900
C(20)-H(20B)	0.9900
C(21)-C(22)	1.501(2)
C(21)-H(21A)	0.9900

C(21)-H(21B)	0.9900
C(22)-N(2)	1.312(2)
N(2)-H(2N)	0.90(3)
B(2)-O(7)	1.358(2)
B(2)-O(5)	1.364(2)
B(2)-O(6)	1.373(3)
O(5)-H(5O)	0.81(3)
O(6)-H(6O)	0.83(3)
O(7)-H(7O)	0.80(3)
B(3)-O(8)	1.461(2)
B(3)-O(9)	1.466(2)
B(3)-O(11)	1.471(2)
B(3)-O(10)	1.482(2)
O(8)-C(24)	1.437(2)
O(9)-C(25)	1.425(2)
O(10)-C(26)	1.429(2)
O(11)-C(27)	1.449(4)
C(24)-C(29)	1.522(3)
C(24)-C(28)	1.534(3)
C(24)-C(25)	1.551(3)
C(25)-C(31)	1.523(2)
C(25)-C(30)	1.523(3)
C(26)-C(32)	1.519(3)
C(26)-C(33)	1.521(3)
C(26)-C(27)	1.543(4)
C(28)-H(28A)	0.9800
C(28)-H(28B)	0.9800
C(28)-H(28C)	0.9800
C(29)-H(29A)	0.9800
C(29)-H(29B)	0.9800
C(29)-H(29C)	0.9800
C(30)-H(30A)	0.9800
C(30)-H(30B)	0.9800
C(30)-H(30C)	0.9800

C(31)-H(31A)	0.9800
C(31)-H(31B)	0.9800
C(31)-H(31C)	0.9800
C(32)-H(32A)	0.9800
C(32)-H(32B)	0.9800
C(32)-H(32C)	0.9800
C(33)-H(33A)	0.9800
C(33)-H(33B)	0.9800
C(33)-H(33C)	0.9800
C(27)-C(34)	1.514(5)
C(27)-C(35)	1.526(7)
C(34)-H(34A)	0.9800
C(34)-H(34B)	0.9800
C(34)-H(34C)	0.9800
C(35)-H(35A)	0.9800
C(35)-H(35B)	0.9800
C(35)-H(35C)	0.9800
C(36)-N(4)	1.459(3)
C(36)-C(37)	1.518(3)
C(36)-H(36A)	0.9900
C(36)-H(36B)	0.9900
C(37)-C(38)	1.521(3)
C(37)-H(37A)	0.9900
C(37)-H(37B)	0.9900
C(38)-N(3)	1.470(2)
C(38)-H(38A)	0.9900
C(38)-H(38B)	0.9900
N(3)-C(45)	1.325(2)
N(3)-C(40)	1.478(2)
C(40)-C(41)	1.528(3)
C(40)-H(40A)	0.9900
C(40)-H(40B)	0.9900
C(41)-C(42)	1.522(3)
C(41)-H(41A)	0.9900

C(41)-H(41B)	0.9900
C(42)-C(43)	1.524(3)
C(42)-H(42A)	0.9900
C(42)-H(42B)	0.9900
C(43)-C(44)	1.541(3)
C(43)-H(43A)	0.9900
C(43)-H(43B)	0.9900
C(44)-C(45)	1.501(3)
C(44)-H(44A)	0.9900
C(44)-H(44B)	0.9900
C(45)-N(4)	1.309(3)
N(4)-H(4N)	0.84(3)
B(4)-O(13)	1.358(3)
B(4)-O(14)	1.360(3)
B(4)-O(12)	1.368(3)
O(12)-H(12O)	0.91(4)
O(13)-H(13O)	0.91(3)
O(14)-H(14O)	0.82(4)
O(2)-B(1)-O(1)	104.25(14)
O(2)-B(1)-O(3)	116.52(14)
O(1)-B(1)-O(3)	108.37(13)
O(2)-B(1)-O(4)	109.15(13)
O(1)-B(1)-O(4)	115.50(14)
O(3)-B(1)-O(4)	103.50(14)
C(1)-O(1)-B(1)	109.89(13)
C(2)-O(2)-B(1)	110.20(13)
C(3)-O(3)-B(1)	109.30(12)
C(4)-O(4)-B(1)	109.49(13)
O(1)-C(1)-C(5)	108.68(14)
O(1)-C(1)-C(6)	108.79(15)
C(5)-C(1)-C(6)	109.42(15)
O(1)-C(1)-C(2)	101.89(13)
C(5)-C(1)-C(2)	112.79(15)

C(6)-C(1)-C(2)	114.83(15)
O(2)-C(2)-C(7)	108.68(14)
O(2)-C(2)-C(8)	108.60(14)
C(7)-C(2)-C(8)	110.09(15)
O(2)-C(2)-C(1)	102.62(13)
C(7)-C(2)-C(1)	114.40(15)
C(8)-C(2)-C(1)	112.03(14)
O(3)-C(3)-C(10)	108.92(14)
O(3)-C(3)-C(9)	108.72(14)
C(10)-C(3)-C(9)	109.96(16)
O(3)-C(3)-C(4)	102.29(13)
C(10)-C(3)-C(4)	114.55(16)
C(9)-C(3)-C(4)	111.98(14)
O(4)-C(4)-C(11)	109.01(14)
O(4)-C(4)-C(12)	108.16(14)
C(11)-C(4)-C(12)	109.76(15)
O(4)-C(4)-C(3)	101.78(13)
C(11)-C(4)-C(3)	114.67(15)
C(12)-C(4)-C(3)	112.95(15)
C(1)-C(5)-H(5A)	109.5
C(1)-C(5)-H(5B)	109.5
H(5A)-C(5)-H(5B)	109.5
C(1)-C(5)-H(5C)	109.5
H(5A)-C(5)-H(5C)	109.5
H(5B)-C(5)-H(5C)	109.5
C(1)-C(6)-H(6A)	109.5
C(1)-C(6)-H(6B)	109.5
H(6A)-C(6)-H(6B)	109.5
C(1)-C(6)-H(6C)	109.5
H(6A)-C(6)-H(6C)	109.5
H(6B)-C(6)-H(6C)	109.5
C(2)-C(7)-H(7A)	109.5
C(2)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7B)	109.5

C(2)-C(7)-H(7C)	109.5
H(7A)-C(7)-H(7C)	109.5
H(7B)-C(7)-H(7C)	109.5
C(2)-C(8)-H(8A)	109.5
C(2)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8B)	109.5
C(2)-C(8)-H(8C)	109.5
H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5
C(3)-C(9)-H(9A)	109.5
C(3)-C(9)-H(9B)	109.5
H(9A)-C(9)-H(9B)	109.5
C(3)-C(9)-H(9C)	109.5
H(9A)-C(9)-H(9C)	109.5
H(9B)-C(9)-H(9C)	109.5
C(3)-C(10)-H(10A)	109.5
C(3)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
C(3)-C(10)-H(10C)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5
C(4)-C(11)-H(11A)	109.5
C(4)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11B)	109.5
C(4)-C(11)-H(11C)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5
C(4)-C(12)-H(12A)	109.5
C(4)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
C(4)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
N(2)-C(13)-C(14)	108.51(15)

N(2)-C(13)-H(13A)	110.0
C(14)-C(13)-H(13A)	110.0
N(2)-C(13)-H(13B)	110.0
C(14)-C(13)-H(13B)	110.0
H(13A)-C(13)-H(13B)	108.4
C(13)-C(14)-C(15)	109.80(16)
C(13)-C(14)-H(14A)	109.7
C(15)-C(14)-H(14A)	109.7
C(13)-C(14)-H(14B)	109.7
C(15)-C(14)-H(14B)	109.7
H(14A)-C(14)-H(14B)	108.2
N(1)-C(15)-C(14)	111.58(14)
N(1)-C(15)-H(15A)	109.3
C(14)-C(15)-H(15A)	109.3
N(1)-C(15)-H(15B)	109.3
C(14)-C(15)-H(15B)	109.3
H(15A)-C(15)-H(15B)	108.0
C(22)-N(1)-C(15)	121.84(15)
C(22)-N(1)-C(17)	121.99(16)
C(15)-N(1)-C(17)	116.08(14)
N(1)-C(17)-C(18)	113.11(14)
N(1)-C(17)-H(17A)	109.0
C(18)-C(17)-H(17A)	109.0
N(1)-C(17)-H(17B)	109.0
C(18)-C(17)-H(17B)	109.0
H(17A)-C(17)-H(17B)	107.8
C(19)-C(18)-C(17)	114.02(16)
C(19)-C(18)-H(18A)	108.7
C(17)-C(18)-H(18A)	108.7
C(19)-C(18)-H(18B)	108.7
C(17)-C(18)-H(18B)	108.7
H(18A)-C(18)-H(18B)	107.6
C(18)-C(19)-C(20)	115.69(17)
C(18)-C(19)-H(19A)	108.4

C(20)-C(19)-H(19A)	108.4
C(18)-C(19)-H(19B)	108.4
C(20)-C(19)-H(19B)	108.4
H(19A)-C(19)-H(19B)	107.4
C(19)-C(20)-C(21)	114.66(15)
C(19)-C(20)-H(20A)	108.6
C(21)-C(20)-H(20A)	108.6
C(19)-C(20)-H(20B)	108.6
C(21)-C(20)-H(20B)	108.6
H(20A)-C(20)-H(20B)	107.6
C(22)-C(21)-C(20)	113.34(15)
C(22)-C(21)-H(21A)	108.9
C(20)-C(21)-H(21A)	108.9
C(22)-C(21)-H(21B)	108.9
C(20)-C(21)-H(21B)	108.9
H(21A)-C(21)-H(21B)	107.7
N(2)-C(22)-N(1)	122.05(17)
N(2)-C(22)-C(21)	117.58(15)
N(1)-C(22)-C(21)	120.35(15)
C(22)-N(2)-C(13)	122.58(15)
C(22)-N(2)-H(2N)	120.3(15)
C(13)-N(2)-H(2N)	117.1(15)
O(7)-B(2)-O(5)	119.81(17)
O(7)-B(2)-O(6)	117.15(17)
O(5)-B(2)-O(6)	123.04(17)
B(2)-O(5)-H(5O)	114(2)
B(2)-O(6)-H(6O)	111.5(19)
B(2)-O(7)-H(7O)	112(2)
O(8)-B(3)-O(9)	104.40(14)
O(8)-B(3)-O(11)	116.95(15)
O(9)-B(3)-O(11)	108.75(14)
O(8)-B(3)-O(10)	109.19(14)
O(9)-B(3)-O(10)	114.41(15)
O(11)-B(3)-O(10)	103.53(14)

C(24)-O(8)-B(3)	109.36(14)
C(25)-O(9)-B(3)	109.91(13)
C(26)-O(10)-B(3)	109.65(13)
C(27)-O(11)-B(3)	106.7(2)
O(8)-C(24)-C(29)	108.47(16)
O(8)-C(24)-C(28)	108.52(15)
C(29)-C(24)-C(28)	109.72(17)
O(8)-C(24)-C(25)	102.82(14)
C(29)-C(24)-C(25)	115.02(17)
C(28)-C(24)-C(25)	111.87(16)
O(9)-C(25)-C(31)	108.43(15)
O(9)-C(25)-C(30)	108.81(15)
C(31)-C(25)-C(30)	109.42(15)
O(9)-C(25)-C(24)	102.16(13)
C(31)-C(25)-C(24)	112.61(16)
C(30)-C(25)-C(24)	114.96(16)
O(10)-C(26)-C(32)	108.39(15)
O(10)-C(26)-C(33)	109.33(16)
C(32)-C(26)-C(33)	109.33(16)
O(10)-C(26)-C(27)	99.63(19)
C(32)-C(26)-C(27)	116.2(3)
C(33)-C(26)-C(27)	113.3(2)
C(24)-C(28)-H(28A)	109.5
C(24)-C(28)-H(28B)	109.5
H(28A)-C(28)-H(28B)	109.5
C(24)-C(28)-H(28C)	109.5
H(28A)-C(28)-H(28C)	109.5
H(28B)-C(28)-H(28C)	109.5
C(24)-C(29)-H(29A)	109.5
C(24)-C(29)-H(29B)	109.5
H(29A)-C(29)-H(29B)	109.5
C(24)-C(29)-H(29C)	109.5
H(29A)-C(29)-H(29C)	109.5
H(29B)-C(29)-H(29C)	109.5

C(25)-C(30)-H(30A) 109.5 C(25)-C(30)-H(30B) 109.5 109.5 H(30A)-C(30)-H(30B)109.5 C(25)-C(30)-H(30C) H(30A)-C(30)-H(30C) 109.5 H(30B)-C(30)-H(30C) 109.5 109.5 C(25)-C(31)-H(31A) C(25)-C(31)-H(31B) 109.5 H(31A)-C(31)-H(31B) 109.5 C(25)-C(31)-H(31C) 109.5 H(31A)-C(31)-H(31C) 109.5 109.5 H(31B)-C(31)-H(31C) 109.5 C(26)-C(32)-H(32A) 109.5 C(26)-C(32)-H(32B)H(32A)-C(32)-H(32B) 109.5 109.5 C(26)-C(32)-H(32C)H(32A)-C(32)-H(32C) 109.5 109.5 H(32B)-C(32)-H(32C)C(26)-C(33)-H(33A) 109.5 C(26)-C(33)-H(33B) 109.5 109.5 H(33A)-C(33)-H(33B) 109.5 C(26)-C(33)-H(33C) H(33A)-C(33)-H(33C) 109.5 H(33B)-C(33)-H(33C) 109.5 O(11)-C(27)-C(34) 107.8(3) O(11)-C(27)-C(35) 110.1(3) C(34)-C(27)-C(35)109.4(3) O(11)-C(27)-C(26) 102.1(2) C(34)-C(27)-C(26) 113.7(3) C(35)-C(27)-C(26)113.3(3) 109.5 C(27)-C(34)-H(34A) 109.5 C(27)-C(34)-H(34B)109.5 H(34A)-C(34)-H(34B)C(27)-C(34)-H(34C)109.5

H(34A)-C(34)-H(34C)	109.5
H(34B)-C(34)-H(34C)	109.5
C(27)-C(35)-H(35A)	109.5
C(27)-C(35)-H(35B)	109.5
H(35A)-C(35)-H(35B)	109.5
C(27)-C(35)-H(35C)	109.5
H(35A)-C(35)-H(35C)	109.5
H(35B)-C(35)-H(35C)	109.5
N(4)-C(36)-C(37)	109.03(16)
N(4)-C(36)-H(36A)	109.9
C(37)-C(36)-H(36A)	109.9
N(4)-C(36)-H(36B)	109.9
C(37)-C(36)-H(36B)	109.9
H(36A)-C(36)-H(36B)	108.3
C(36)-C(37)-C(38)	109.76(16)
C(36)-C(37)-H(37A)	109.7
C(38)-C(37)-H(37A)	109.7
C(36)-C(37)-H(37B)	109.7
C(38)-C(37)-H(37B)	109.7
H(37A)-C(37)-H(37B)	108.2
N(3)-C(38)-C(37)	110.77(16)
N(3)-C(38)-H(38A)	109.5
C(37)-C(38)-H(38A)	109.5
N(3)-C(38)-H(38B)	109.5
C(37)-C(38)-H(38B)	109.5
H(38A)-C(38)-H(38B)	108.1
C(45)-N(3)-C(38)	120.82(16)
C(45)-N(3)-C(40)	122.01(16)
C(38)-N(3)-C(40)	117.10(14)
N(3)-C(40)-C(41)	113.46(14)
N(3)-C(40)-H(40A)	108.9
C(41)-C(40)-H(40A)	108.9
N(3)-C(40)-H(40B)	108.9
C(41)-C(40)-H(40B)	108.9

H(40A)-C(40)-H(40B)	107.7
C(42)-C(41)-C(40)	114.63(16)
C(42)-C(41)-H(41A)	108.6
C(40)-C(41)-H(41A)	108.6
C(42)-C(41)-H(41B)	108.6
C(40)-C(41)-H(41B)	108.6
H(41A)-C(41)-H(41B)	107.6
C(41)-C(42)-C(43)	114.98(16)
C(41)-C(42)-H(42A)	108.5
C(43)-C(42)-H(42A)	108.5
C(41)-C(42)-H(42B)	108.5
C(43)-C(42)-H(42B)	108.5
H(42A)-C(42)-H(42B)	107.5
C(42)-C(43)-C(44)	113.42(15)
C(42)-C(43)-H(43A)	108.9
C(44)-C(43)-H(43A)	108.9
C(42)-C(43)-H(43B)	108.9
C(44)-C(43)-H(43B)	108.9
H(43A)-C(43)-H(43B)	107.7
C(45)-C(44)-C(43)	112.63(15)
C(45)-C(44)-H(44A)	109.1
C(43)-C(44)-H(44A)	109.1
C(45)-C(44)-H(44B)	109.1
C(43)-C(44)-H(44B)	109.1
H(44A)-C(44)-H(44B)	107.8
N(4)-C(45)-N(3)	122.20(18)
N(4)-C(45)-C(44)	117.19(16)
N(3)-C(45)-C(44)	120.60(16)
C(45)-N(4)-C(36)	124.02(16)
C(45)-N(4)-H(4N)	117.3(17)
C(36)-N(4)-H(4N)	118.7(17)
O(13)-B(4)-O(14)	118.94(19)
O(13)-B(4)-O(12)	123.55(19)
O(14)-B(4)-O(12)	117.51(18)

B(4)-O(12)-H(12O)	109(2)
B(4)-O(13)-H(13O)	113.6(17)
B(4)-O(14)-H(14O)	112(2)

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for compound **34**. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$

	U11	U ²²	U ³³	U ²³	U13	U12
B(1)	17(1)	19(1)	19(1)	2(1)	5(1)	1(1)
O(1)	17(1)	19(1)	25(1)	-3(1)	5(1)	-1(1)
O(2)	18(1)	19(1)	20(1)	-2(1)	5(1)	-2(1)
O(3)	23(1)	17(1)	18(1)	0(1)	8(1)	-2(1)
O(4)	23(1)	18(1)	18(1)	0(1)	5(1)	-4(1)
C(1)	24(1)	17(1)	20(1)	-2(1)	7(1)	-1(1)
C(2)	22(1)	19(1)	19(1)	-1(1)	4(1)	0(1)
C(3)	27(1)	16(1)	22(1)	-2(1)	10(1)	0(1)
C(4)	23(1)	20(1)	20(1)	-4(1)	5(1)	-2(1)
C(5)	32(1)	20(1)	26(1)	3(1)	5(1)	1(1)
C(6)	33(1)	24(1)	28(1)	-3(1)	10(1)	6(1)
C(7)	27(1)	27(1)	32(1)	-6(1)	4(1)	-7(1)
C(8)	32(1)	32(1)	19(1)	0(1)	6(1)	4(1)
C(9)	33(1)	24(1)	26(1)	-1(1)	7(1)	8(1)
C(10)	43(1)	21(1)	32(1)	-3(1)	12(1)	-7(1)
C(11)	29(1)	26(1)	23(1)	-5(1)	8(1)	-3(1)
C(12)	25(1)	27(1)	26(1)	-5(1)	3(1)	-1(1)
C(13)	24(1)	27(1)	28(1)	-3(1)	4(1)	-6(1)
C(14)	20(1)	29(1)	27(1)	4(1)	2(1)	1(1)
C(15)	21(1)	32(1)	28(1)	3(1)	9(1)	5(1)
N(1)	24(1)	24(1)	17(1)	0(1)	5(1)	4(1)

C(17)	34(1)	29(1)	17(1)	-2(1)	6(1)	7(1)
C(18)	44(1)	22(1)	20(1)	-4(1)	2(1)	7(1)
C(19)	38(1)	22(1)	27(1)	-1(1)	-1(1)	-3(1)
C(20)	23(1)	25(1)	25(1)	1(1)	4(1)	-2(1)
C(21)	20(1)	22(1)	22(1)	-2(1)	2(1)	1(1)
C(22)	21(1)	18(1)	16(1)	3(1)	4(1)	2(1)
N(2)	21(1)	22(1)	19(1)	-3(1)	6(1)	0(1)
B(2)	19(1)	28(1)	15(1)	-1(1)	4(1)	0(1)
O(5)	17(1)	31(1)	28(1)	8(1)	6(1)	2(1)
O(6)	21(1)	34(1)	26(1)	10(1)	8(1)	4(1)
O(7)	20(1)	34(1)	27(1)	8(1)	8(1)	3(1)
B(3)	20(1)	17(1)	19(1)	1(1)	6(1)	-2(1)
O(8)	20(1)	19(1)	29(1)	-3(1)	6(1)	-1(1)
O(9)	21(1)	23(1)	23(1)	-6(1)	7(1)	-1(1)
O(10)	29(1)	18(1)	25(1)	1(1)	13(1)	0(1)
O(11)	38(1)	17(1)	18(1)	-1(1)	5(1)	0(1)
C(24)	25(1)	20(1)	29(1)	-3(1)	7(1)	0(1)
C(25)	28(1)	20(1)	19(1)	-3(1)	7(1)	0(1)
C(26)	33(1)	17(1)	21(1)	-3(1)	6(1)	0(1)
C(28)	39(1)	23(1)	33(1)	0(1)	-3(1)	-1(1)
C(29)	35(1)	30(1)	55(1)	-12(1)	19(1)	1(1)
C(30)	32(1)	26(1)	27(1)	-6(1)	6(1)	-5(1)
C(31)	51(1)	26(1)	20(1)	-1(1)	7(1)	-3(1)
C(32)	36(1)	22(1)	50(1)	0(1)	18(1)	6(1)
C(33)	41(1)	21(1)	42(1)	-2(1)	5(1)	-6(1)
C(27)	46(3)	17(2)	16(2)	-3(1)	7(2)	-3(1)
C(34)	101(5)	24(2)	26(2)	-4(1)	26(2)	1(2)
C(35)	51(2)	27(2)	43(2)	-2(1)	-22(2)	-6(1)
C(36)	26(1)	33(1)	34(1)	10(1)	7(1)	7(1)
C(37)	25(1)	36(1)	39(1)	4(1)	9(1)	9(1)
C(38)	24(1)	33(1)	28(1)	0(1)	11(1)	2(1)
N(3)	24(1)	23(1)	21(1)	1(1)	8(1)	3(1)
C(40)	29(1)	26(1)	17(1)	-1(1)	6(1)	-1(1)
C(41)	34(1)	22(1)	19(1)	0(1)	5(1)	-2(1)
C(42)	34(1)	23(1)	24(1)	2(1)	2(1)	7(1)
-------	-------	-------	-------	-------	-------	-------
C(43)	24(1)	30(1)	26(1)	1(1)	7(1)	7(1)
C(44)	23(1)	25(1)	24(1)	1(1)	7(1)	-1(1)
C(45)	26(1)	16(1)	24(1)	-2(1)	8(1)	-2(1)
N(4)	23(1)	26(1)	25(1)	7(1)	8(1)	2(1)
B(4)	23(1)	30(1)	27(1)	10(1)	7(1)	2(1)
O(12)	23(1)	75(1)	27(1)	19(1)	5(1)	1(1)
O(13)	19(1)	37(1)	24(1)	5(1)	6(1)	1(1)
O(14)	24(1)	58(1)	30(1)	18(1)	10(1)	3(1)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for compound **34**

	x	у	Z	U(eq)	
H(5A)	-588	11719	2211	39	
H(5B)	988	11291	2006	39	
H(5C)	1260	11998	2561	39	
H(6A)	-1420	11541	3343	41	
H(6B)	327	11811	3824	41	
H(6C)	-427	10996	3970	41	
H(7A)	4860	11063	3561	43	
H(7B)	3593	11745	3620	43	
H(7C)	3774	11429	2833	43	
H(8A)	3679	10230	4331	42	
H(8B)	1758	9983	4142	42	
H(8C)	2265	10815	4463	42	
H(9A)	2681	7871	2721	41	
H(9B)	3174	8627	2331	41	
H(9C)	2507	7893	1850	41	

H(10A)	-139	7531	2702	47
H(10B)	-617	7490	1827	47
H(10C)	-1672	8020	2268	47
H(11A)	383	9078	435	38
H(11B)	332	8212	704	38
H(11C)	1977	8715	961	38
H(12A)	-2047	9442	867	39
H(12B)	-2184	9359	1709	39
H(12C)	-2348	8621	1194	39
H(13A)	4863	9843	6746	32
H(13B)	4890	10109	5923	32
H(14A)	5419	8578	6467	31
H(14B)	6805	9106	6214	31
H(15A)	5511	9033	5000	32
H(15B)	5542	8176	5299	32
H(17A)	3507	8101	4188	32
H(17B)	1742	8517	4118	32
H(18A)	1737	7111	4176	35
H(18B)	2521	7205	5029	35
H(19A)	-350	7021	4879	36
H(19B)	-707	7720	4320	36
H(20A)	602	7866	5855	29
H(20B)	-1275	8058	5469	29
H(21A)	-28	9048	4780	26
H(21B)	-139	9232	5610	26
H(2N)	2130(30)	9742(14)	6248(12)	25
H(5O)	7590(40)	10065(16)	2806(15)	37
H(6O)	8800(40)	9004(16)	3365(15)	40
H(7O)	4460(40)	9437(17)	3378(15)	40
H(28A)	7622	2772	3025	50
H(28B)	5934	2423	2559	50
H(28C)	5855	3071	3157	50
H(29A)	8727	3153	1991	58
H(29B)	7726	3695	1364	58

H(29C)	7177	2824	1412	58
H(30A)	2333	3226	1451	42
H(30B)	3343	2835	2182	42
H(30C)	3826	2648	1409	42
H(31A)	3449	4223	851	48
H(31B)	5088	3769	753	48
H(31C)	5254	4579	1157	48
H(32A)	3231	6400	2381	52
H(32B)	3168	6374	3235	52
H(32C)	2912	5608	2759	52
H(33A)	5864	6964	2531	53
H(33B)	7489	6601	3035	53
H(33C)	6126	7024	3404	53
H(34A)	4006	5677	4198	73
H(34B)	5578	6203	4523	73
H(34C)	5569	5323	4752	73
H(35A)	8432	5363	3538	67
H(35B)	8262	5132	4351	67
H(35C)	8268	6012	4123	67
H(34D)	3137	5585	3948	42
H(34E)	4425	6142	4456	42
H(34F)	4387	5253	4649	42
H(35D)	8056	5422	3892	55
H(35E)	7421	5153	4612	55
H(35F)	7456	6041	4417	55
H(36A)	9597	5097	2027	37
H(36B)	10091	5983	2024	37
H(37A)	9755	4962	799	39
H(37B)	11440	5382	1189	39
H(38A)	10414	6566	742	33
H(38B)	10139	5993	58	33
H(40A)	6324	6378	-570	28
H(40B)	8133	6701	-611	28
H(41A)	7529	7728	213	30

H(41B)	6651	7782	-632	30
H(42A)	4151	7309	-363	33
H(42B)	4709	8072	88	33
H(43A)	3739	7190	847	32
H(43B)	5673	7354	1157	32
H(44A)	4737	5996	1104	28
H(44B)	4721	6050	245	28
H(4N)	7080(30)	5677(14)	1790(14)	29
H(12O)	3630(50)	4220(20)	3731(19)	62
H(13O)	2280(40)	4218(16)	2580(14)	39
H(14O)	-930(50)	3999(19)	3346(18)	55

Table 6. Torsion angles [°] for compound 34

O(2)-B(1)-O(1)-C(1)	15.59(17)
O(3)-B(1)-O(1)-C(1)	140.32(14)
O(4)-B(1)-O(1)-C(1)	-104.16(16)
O(1)-B(1)-O(2)-C(2)	7.35(17)
O(3)-B(1)-O(2)-C(2)	-112.00(16)
O(4)-B(1)-O(2)-C(2)	131.29(14)
O(2)-B(1)-O(3)-C(3)	-106.85(16)
O(1)-B(1)-O(3)-C(3)	136.05(14)
O(4)-B(1)-O(3)-C(3)	12.95(18)
O(2)-B(1)-O(4)-C(4)	136.89(14)
O(1)-B(1)-O(4)-C(4)	-106.09(16)
O(3)-B(1)-O(4)-C(4)	12.18(18)
B(1)-O(1)-C(1)-C(5)	89.43(16)
B(1)-O(1)-C(1)-C(6)	-151.50(14)
B(1)-O(1)-C(1)-C(2)	-29.84(16)
B(1)-O(2)-C(2)-C(7)	-146.22(15)
B(1)-O(2)-C(2)-C(8)	94.02(16)
B(1)-O(2)-C(2)-C(1)	-24.72(16)
O(1)-C(1)-C(2)-O(2)	32.72(15)

C(5)-C(1)-C(2)-O(2)	-83.60(16)
C(6)-C(1)-C(2)-O(2)	150.12(14)
O(1)-C(1)-C(2)-C(7)	150.23(14)
C(5)-C(1)-C(2)-C(7)	33.9(2)
C(6)-C(1)-C(2)-C(7)	-92.37(18)
O(1)-C(1)-C(2)-C(8)	-83.58(16)
C(5)-C(1)-C(2)-C(8)	160.09(15)
C(6)-C(1)-C(2)-C(8)	33.8(2)
B(1)-O(3)-C(3)-C(10)	-152.29(16)
B(1)-O(3)-C(3)-C(9)	87.90(16)
B(1)-O(3)-C(3)-C(4)	-30.67(17)
B(1)-O(4)-C(4)-C(11)	-151.54(15)
B(1)-O(4)-C(4)-C(12)	89.16(16)
B(1)-O(4)-C(4)-C(3)	-30.02(17)
O(3)-C(3)-C(4)-O(4)	36.58(16)
C(10)-C(3)-C(4)-O(4)	154.25(15)
C(9)-C(3)-C(4)-O(4)	-79.66(17)
O(3)-C(3)-C(4)-C(11)	154.09(15)
C(10)-C(3)-C(4)-C(11)	-88.24(19)
C(9)-C(3)-C(4)-C(11)	37.8(2)
O(3)-C(3)-C(4)-C(12)	-79.15(17)
C(10)-C(3)-C(4)-C(12)	38.5(2)
C(9)-C(3)-C(4)-C(12)	164.61(15)
N(2)-C(13)-C(14)-C(15)	53.78(19)
C(13)-C(14)-C(15)-N(1)	-47.1(2)
C(14)-C(15)-N(1)-C(22)	17.7(2)
C(14)-C(15)-N(1)-C(17)	-165.58(15)
C(22)-N(1)-C(17)-C(18)	-75.0(2)
C(15)-N(1)-C(17)-C(18)	108.30(19)
N(1)-C(17)-C(18)-C(19)	77.7(2)
C(17)-C(18)-C(19)-C(20)	-56.4(2)
C(18)-C(19)-C(20)-C(21)	60.6(2)
C(19)-C(20)-C(21)-C(22)	-80.8(2)
C(15)-N(1)-C(22)-N(2)	5.9(3)

C(17)-N(1)-C(22)-N(2)	-170.61(16)
C(15)-N(1)-C(22)-C(21)	-172.35(16)
C(17)-N(1)-C(22)-C(21)	11.1(2)
C(20)-C(21)-C(22)-N(2)	-118.59(17)
C(20)-C(21)-C(22)-N(1)	59.8(2)
N(1)-C(22)-N(2)-C(13)	2.9(3)
C(21)-C(22)-N(2)-C(13)	-178.77(15)
C(14)-C(13)-N(2)-C(22)	-33.6(2)
O(9)-B(3)-O(8)-C(24)	-10.14(17)
O(11)-B(3)-O(8)-C(24)	110.04(17)
O(10)-B(3)-O(8)-C(24)	-132.90(15)
O(8)-B(3)-O(9)-C(25)	-12.88(17)
O(11)-B(3)-O(9)-C(25)	-138.42(14)
O(10)-B(3)-O(9)-C(25)	106.41(16)
O(8)-B(3)-O(10)-C(26)	-137.58(15)
O(9)-B(3)-O(10)-C(26)	105.86(16)
O(11)-B(3)-O(10)-C(26)	-12.32(19)
O(8)-B(3)-O(11)-C(27)	103.9(3)
O(9)-B(3)-O(11)-C(27)	-138.2(3)
O(10)-B(3)-O(11)-C(27)	-16.2(3)
B(3)-O(8)-C(24)-C(29)	149.11(16)
B(3)-O(8)-C(24)-C(28)	-91.73(17)
B(3)-O(8)-C(24)-C(25)	26.89(17)
B(3)-O(9)-C(25)-C(31)	-90.52(17)
B(3)-O(9)-C(25)-C(30)	150.55(15)
B(3)-O(9)-C(25)-C(24)	28.58(17)
O(8)-C(24)-C(25)-O(9)	-33.35(17)
C(29)-C(24)-C(25)-O(9)	-151.05(16)
C(28)-C(24)-C(25)-O(9)	82.90(17)
O(8)-C(24)-C(25)-C(31)	82.76(17)
C(29)-C(24)-C(25)-C(31)	-34.9(2)
C(28)-C(24)-C(25)-C(31)	-160.99(16)
O(8)-C(24)-C(25)-C(30)	-151.01(14)
C(29)-C(24)-C(25)-C(30)	91.3(2)

C(28)-C(24)-C(25)-C(30)	-34.8(2)
B(3)-O(10)-C(26)-C(32)	-88.56(18)
B(3)-O(10)-C(26)-C(33)	152.34(16)
B(3)-O(10)-C(26)-C(27)	33.4(3)
B(3)-O(11)-C(27)-C(34)	156.4(3)
B(3)-O(11)-C(27)-C(35)	-84.3(3)
B(3)-O(11)-C(27)-C(26)	36.4(4)
O(10)-C(26)-C(27)-O(11)	-42.1(4)
C(32)-C(26)-C(27)-O(11)	74.0(4)
C(33)-C(26)-C(27)-O(11)	-158.1(3)
O(10)-C(26)-C(27)-C(34)	-157.9(3)
C(32)-C(26)-C(27)-C(34)	-41.8(4)
C(33)-C(26)-C(27)-C(34)	86.1(4)
O(10)-C(26)-C(27)-C(35)	76.2(3)
C(32)-C(26)-C(27)-C(35)	-167.7(2)
C(33)-C(26)-C(27)-C(35)	-39.8(3)
N(4)-C(36)-C(37)-C(38)	50.5(2)
C(36)-C(37)-C(38)-N(3)	-51.7(2)
C(37)-C(38)-N(3)-C(45)	26.5(2)
C(37)-C(38)-N(3)-C(40)	-156.50(16)
C(45)-N(3)-C(40)-C(41)	65.2(2)
C(38)-N(3)-C(40)-C(41)	-111.72(18)
N(3)-C(40)-C(41)-C(42)	-80.0(2)
C(40)-C(41)-C(42)-C(43)	60.4(2)
C(41)-C(42)-C(43)-C(44)	-60.0(2)
C(42)-C(43)-C(44)-C(45)	80.6(2)
C(38)-N(3)-C(45)-N(4)	0.9(3)
C(40)-N(3)-C(45)-N(4)	-175.93(16)
C(38)-N(3)-C(45)-C(44)	179.53(16)
C(40)-N(3)-C(45)-C(44)	2.7(3)
C(43)-C(44)-C(45)-N(4)	109.26(18)
C(43)-C(44)-C(45)-N(3)	-69.5(2)
N(3)-C(45)-N(4)-C(36)	-1.2(3)
C(44)-C(45)-N(4)-C(36)	-179.88(17)

C(37)-C(36)-N(4)-C(45)

-25.7(3)

Symmetry transformations used to generate equivalent atoms:

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
N(2)-H(2N)O(4)#1	0.90(3)	1.81(3)	2.7076(19)	175(2)	
O(5)-H(5O)O(1)#2	0.81(3)	1.85(3)	2.6523(18)	172(3)	
O(6)-H(6O)O(3)#2	0.83(3)	1.96(3)	2.7743(18)	167(3)	
O(7)-H(7O)O(2)	0.80(3)	1.98(3)	2.7811(19)	177(3)	
N(4)-H(4N)O(10)	0.84(3)	1.85(3)	2.6909(19)	176(3)	
O(12)-H(12O)O(11)	0.91(4)	1.89(4)	2.780(2)	169(3)	
O(13)-H(13O)O(9)	0.91(3)	1.72(3)	2.6272(17)	175(3)	
O(14)-H(14O)O(8)#3	0.82(4)	2.01(4)	2.825(2)	177(3)	

Table 7. Hydrogen bonds for compound **34** [Å and °].

Symmetry transformations used to generate equivalent atoms: #1 x,-y+2,z+1/2 #2 x+1,y,z #3 x-1,y,z

Table 1. Crystal data and structure refinement for compound 43

Identification code	C41H36N2O
Empirical formula	C41 H36 N2 O
Formula weight	572.72
Temperature	100(2) K
Wavelength	1.54178 Å
Crystal system	Trigonal

Space group	P 3(2)	
Unit cell dimensions	a = 9.7301(5) Å	a= 90°.
	b = 9.7301(5) Å	b= 90°.
	c = 28.7268(16) Å	$g = 120^{\circ}$.
Volume	2355.3(2) Å ³	
Z	3	
Density (calculated)	1.211 Mg/m ³	
Absorption coefficient	0.555 mm ⁻¹	
F(000)	912	
Crystal size	0.20 x 0.15 x 0.10 mm ³	
Theta range for data collection	5.25 to 68.04°.	
Index ranges	-11<=h<=11,-11<=k<=1	1,-33<=l<=34
Reflections collected	21349	
Independent reflections	5490 [R(int) = 0.0216]	
Completeness to theta = 67.00∞	98.8 %	
Absorption correction	Semi-empirical from equi	ivalents
Max. and min. transmission	0.9466 and 0.8971	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	5490 / 4 / 408	
Goodness-of-fit on F ²	1.047	
Final R indices [I>2sigma(I)]	R1 = 0.0268, wR2 = 0.06	81
R indices (all data)	R1 = 0.0269, wR2 = 0.06	82
Absolute structure parameter	0.05(17)	
Extinction coefficient	na	
Largest diff. peak and hole	0.140 and -0.174 e. Å ⁻³	

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for compound **43**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

	X	у	Z	U(eq)	
O(1)	220(1)	9992(1)	3214(1)	30(1)	
N(1)	2603(1)	10281(1)	2986(1)	17(1)	

N(2)	880(1)	7601(1)	2441(1)	19(1)
C(1)	2320(1)	10524(1)	2493(1)	17(1)
C(2)	1805(1)	9041(1)	2176(1)	18(1)
C(3)	3683(1)	12007(1)	2278(1)	18(1)
C(4)	3479(2)	13305(2)	2192(1)	24(1)
C(5)	4679(2)	14675(2)	1989(1)	29(1)
C(6)	6106(2)	14774(2)	1872(1)	30(1)
C(7)	6334(2)	13506(2)	1960(1)	26(1)
C(8)	5131(1)	12127(2)	2160(1)	21(1)
C(9)	4047(1)	10369(1)	3143(1)	18(1)
C(10)	4470(1)	9306(1)	2959(1)	20(1)
C(11)	5865(2)	9344(1)	3086(1)	23(1)
C(12)	6808(2)	10434(2)	3425(1)	25(1)
C(13)	6371(1)	11458(2)	3620(1)	23(1)
C(14)	5002(1)	11481(1)	3481(1)	20(1)
C(15)	4658(1)	12664(1)	3701(1)	20(1)
C(16)	4289(1)	13646(2)	3438(1)	23(1)
C(17)	4063(2)	14794(2)	3651(1)	28(1)
C(18)	4187(2)	14988(2)	4130(1)	30(1)
C(19)	4553(2)	14023(2)	4395(1)	28(1)
C(20)	4790(1)	12879(2)	4183(1)	24(1)
C(21)	6356(2)	8262(2)	2858(1)	32(1)
C(22)	1465(1)	10033(1)	3303(1)	21(1)
C(23)	572(1)	6121(1)	2287(1)	18(1)
C(24)	939(1)	5881(1)	1836(1)	20(1)
C(25)	641(1)	4394(2)	1682(1)	22(1)
C(26)	-74(2)	3116(2)	1985(1)	25(1)
C(27)	-423(2)	3342(2)	2440(1)	24(1)
C(28)	-110(1)	4814(1)	2601(1)	20(1)
C(29)	-420(1)	5040(1)	3094(1)	20(1)
C(30)	-1430(1)	5617(1)	3213(1)	21(1)
C(31)	-1667(2)	5856(1)	3675(1)	24(1)
C(32)	-898(2)	5528(2)	4028(1)	27(1)
C(33)	82(2)	4925(2)	3915(1)	28(1)
C(34)	315(2)	4670(2)	3454(1)	25(1)
C(35)	1158(2)	4212(2)	1202(1)	28(1)

C(36)	852(1)	9161(1)	1773(1)	18(1)	
C(37)	1492(1)	9629(1)	1329(1)	21(1)	
C(38)	575(2)	9699(2)	967(1)	24(1)	
C(39)	-974(2)	9331(1)	1047(1)	24(1)	
C(40)	-1612(1)	8896(1)	1491(1)	23(1)	
C(41)	-705(1)	8808(1)	1850(1)	20(1)	

Table 3. Bond lengths [Å] and angles [°] for compound **43**

O(1)-C(22)	1.2184(15)
N(1)-C(22)	1.3595(15)
N(1)-C(9)	1.4366(15)
N(1)-C(1)	1.4829(14)
N(2)-C(23)	1.3875(15)
N(2)-C(2)	1.4463(15)
N(2)-H(2N)	0.875(13)
C(1)-C(3)	1.5192(16)
C(1)-C(2)	1.5626(15)
C(1)-H(1)	0.986(12)
C(2)-C(36)	1.5239(16)
C(2)-H(2)	0.994(12)
C(3)-C(4)	1.3951(17)
C(3)-C(8)	1.3972(17)
C(4)-C(5)	1.3868(19)
C(4)-H(4)	0.9500
C(5)-C(6)	1.384(2)
C(5)-H(5)	0.9500
C(6)-C(7)	1.382(2)
C(6)-H(6)	0.9500
C(7)-C(8)	1.3885(18)
C(7)-H(7)	0.9500
C(8)-H(8)	0.9500
C(9)-C(10)	1.3937(17)
C(9)-C(14)	1.4049(17)
C(10)-C(11)	1.3889(18)

C(10)-H(10)	0.9500
C(11)-C(12)	1.3942(19)
C(11)-C(21)	1.5071(18)
C(12)-C(13)	1.3820(19)
C(12)-H(12)	0.9500
C(13)-C(14)	1.4008(17)
C(13)-H(13)	0.9500
C(14)-C(15)	1.4910(17)
C(15)-C(20)	1.3955(17)
C(15)-C(16)	1.3981(18)
C(16)-C(17)	1.3856(19)
C(16)-H(16)	0.9500
C(17)-C(18)	1.384(2)
C(17)-H(17)	0.9500
C(18)-C(19)	1.387(2)
C(18)-H(18)	0.9500
C(19)-C(20)	1.3857(19)
C(19)-H(19)	0.9500
C(20)-H(20A)	0.9500
C(21)-H(21A)	0.9800
C(21)-H(21B)	0.9800
C(21)-H(21C)	0.9800
C(22)-H(22)	0.9500
C(23)-C(24)	1.3966(17)
C(23)-C(28)	1.4226(16)
C(24)-C(25)	1.3972(17)
C(24)-H(24)	0.9500
C(25)-C(26)	1.3871(18)
C(25)-C(35)	1.5095(18)
C(26)-C(27)	1.3958(19)
C(26)-H(26)	0.9500
C(27)-C(28)	1.3854(18)
C(27)-H(27)	0.9500
C(28)-C(29)	1.4885(17)
C(29)-C(30)	1.3962(18)
C(29)-C(34)	1.4009(18)

C(30)-C(31)	1.3878(18)
C(30)-H(30)	0.9500
C(31)-C(32)	1.3879(19)
C(31)-H(31)	0.9500
C(32)-C(33)	1.385(2)
C(32)-H(32)	0.9500
C(33)-C(34)	1.3873(19)
C(33)-H(33)	0.9500
C(34)-H(34)	0.9500
C(35)-H(35A)	0.9800
C(35)-H(35B)	0.9800
C(35)-H(35C)	0.9800
C(36)-C(37)	1.3927(17)
C(36)-C(41)	1.3931(16)
C(37)-C(38)	1.3922(17)
C(37)-H(37)	0.9500
C(38)-C(39)	1.3822(19)
C(38)-H(38)	0.9500
C(39)-C(40)	1.3880(18)
C(39)-H(39)	0.9500
C(40)-C(41)	1.3879(17)
C(40)-H(40)	0.9500
C(41)-H(41)	0.9500
C(22)-N(1)-C(9)	119.07(9)
C(22)-N(1)-C(1)	117.86(9)
C(9)-N(1)-C(1)	123.00(9)
C(23)-N(2)-C(2)	123.06(10)
C(23)-N(2)-H(2N)	117.0(10)
C(2)-N(2)-H(2N)	117.3(10)
N(1)-C(1)-C(3)	113.32(9)
N(1)-C(1)-C(2)	114.12(9)
C(3)-C(1)-C(2)	111.35(9)
N(1)-C(1)-H(1)	102.9(8)
C(3)-C(1)-H(1)	108.3(8)
C(2)-C(1)-H(1)	106.0(8)

N(2)-C(2)-C(36)	111.48(9)
N(2)-C(2)-C(1)	110.15(9)
C(36)-C(2)-C(1)	107.43(9)
N(2)-C(2)-H(2)	111.7(9)
C(36)-C(2)-H(2)	107.7(8)
C(1)-C(2)-H(2)	108.1(9)
C(4)-C(3)-C(8)	118.39(11)
C(4)-C(3)-C(1)	118.69(11)
C(8)-C(3)-C(1)	122.93(11)
C(5)-C(4)-C(3)	120.78(12)
C(5)-C(4)-H(4)	119.6
C(3)-C(4)-H(4)	119.6
C(6)-C(5)-C(4)	120.20(12)
C(6)-C(5)-H(5)	119.9
C(4)-C(5)-H(5)	119.9
C(7)-C(6)-C(5)	119.74(12)
C(7)-C(6)-H(6)	120.1
C(5)-C(6)-H(6)	120.1
C(6)-C(7)-C(8)	120.28(12)
C(6)-C(7)-H(7)	119.9
C(8)-C(7)-H(7)	119.9
C(7)-C(8)-C(3)	120.60(12)
C(7)-C(8)-H(8)	119.7
C(3)-C(8)-H(8)	119.7
C(10)-C(9)-C(14)	120.43(11)
C(10)-C(9)-N(1)	118.60(10)
C(14)-C(9)-N(1)	120.96(10)
C(11)-C(10)-C(9)	121.87(11)
C(11)-C(10)-H(10)	119.1
C(9)-C(10)-H(10)	119.1
C(10)-C(11)-C(12)	117.81(11)
C(10)-C(11)-C(21)	120.96(12)
C(12)-C(11)-C(21)	121.22(11)
C(13)-C(12)-C(11)	120.60(11)
C(13)-C(12)-H(12)	119.7
C(11)-C(12)-H(12)	119.7

C(12)-C(13)-C(14)	122.24(11)
C(12)-C(13)-H(13)	118.9
C(14)-C(13)-H(13)	118.9
C(13)-C(14)-C(9)	116.95(11)
C(13)-C(14)-C(15)	118.32(10)
C(9)-C(14)-C(15)	124.73(11)
C(20)-C(15)-C(16)	118.01(11)
C(20)-C(15)-C(14)	119.73(11)
C(16)-C(15)-C(14)	122.15(11)
C(17)-C(16)-C(15)	120.63(12)
C(17)-C(16)-H(16)	119.7
C(15)-C(16)-H(16)	119.7
C(18)-C(17)-C(16)	120.76(12)
C(18)-C(17)-H(17)	119.6
C(16)-C(17)-H(17)	119.6
C(17)-C(18)-C(19)	119.21(12)
C(17)-C(18)-H(18)	120.4
C(19)-C(18)-H(18)	120.4
C(20)-C(19)-C(18)	120.23(12)
C(20)-C(19)-H(19)	119.9
C(18)-C(19)-H(19)	119.9
C(19)-C(20)-C(15)	121.15(12)
C(19)-C(20)-H(20A)	119.4
C(15)-C(20)-H(20A)	119.4
C(11)-C(21)-H(21A)	109.5
C(11)-C(21)-H(21B)	109.5
H(21A)-C(21)-H(21B)	109.5
C(11)-C(21)-H(21C)	109.5
H(21A)-C(21)-H(21C)	109.5
H(21B)-C(21)-H(21C)	109.5
O(1)-C(22)-N(1)	125.05(11)
O(1)-C(22)-H(22)	117.5
N(1)-C(22)-H(22)	117.5
N(2)-C(23)-C(24)	121.86(11)
N(2)-C(23)-C(28)	119.31(10)
C(24)-C(23)-C(28)	118.82(11)

C(23)-C(24)-C(25)	121.90(11)
C(23)-C(24)-H(24)	119.1
C(25)-C(24)-H(24)	119.1
C(26)-C(25)-C(24)	118.81(11)
C(26)-C(25)-C(35)	121.04(11)
C(24)-C(25)-C(35)	120.10(11)
C(25)-C(26)-C(27)	119.96(11)
C(25)-C(26)-H(26)	120.0
C(27)-C(26)-H(26)	120.0
C(28)-C(27)-C(26)	121.92(12)
C(28)-C(27)-H(27)	119.0
C(26)-C(27)-H(27)	119.0
C(27)-C(28)-C(23)	118.54(11)
C(27)-C(28)-C(29)	120.85(11)
C(23)-C(28)-C(29)	120.56(11)
C(30)-C(29)-C(34)	118.40(11)
C(30)-C(29)-C(28)	121.81(11)
C(34)-C(29)-C(28)	119.79(11)
C(31)-C(30)-C(29)	120.68(11)
C(31)-C(30)-H(30)	119.7
C(29)-C(30)-H(30)	119.7
C(30)-C(31)-C(32)	120.39(12)
C(30)-C(31)-H(31)	119.8
C(32)-C(31)-H(31)	119.8
C(33)-C(32)-C(31)	119.44(12)
C(33)-C(32)-H(32)	120.3
C(31)-C(32)-H(32)	120.3
C(32)-C(33)-C(34)	120.51(12)
C(32)-C(33)-H(33)	119.7
C(34)-C(33)-H(33)	119.7
C(33)-C(34)-C(29)	120.54(12)
C(33)-C(34)-H(34)	119.7
C(29)-C(34)-H(34)	119.7
C(25)-C(35)-H(35A)	109.5
C(25)-C(35)-H(35B)	109.5
H(35A)-C(35)-H(35B)	109.5

C(25)-C(35)-H(35C)	109.5
H(35A)-C(35)-H(35C)	109.5
H(35B)-C(35)-H(35C)	109.5
C(37)-C(36)-C(41)	118.68(11)
C(37)-C(36)-C(2)	122.11(10)
C(41)-C(36)-C(2)	119.21(10)
C(38)-C(37)-C(36)	120.40(11)
C(38)-C(37)-H(37)	119.8
C(36)-C(37)-H(37)	119.8
C(39)-C(38)-C(37)	120.37(11)
C(39)-C(38)-H(38)	119.8
C(37)-C(38)-H(38)	119.8
C(38)-C(39)-C(40)	119.69(11)
C(38)-C(39)-H(39)	120.2
C(40)-C(39)-H(39)	120.2
C(41)-C(40)-C(39)	119.97(11)
C(41)-C(40)-H(40)	120.0
C(39)-C(40)-H(40)	120.0
C(40)-C(41)-C(36)	120.86(11)
C(40)-C(41)-H(41)	119.6
C(36)-C(41)-H(41)	119.6

Symmetry transformations used to generate equivalent atoms:

Table 4.	Anisotropic displacement parameters	$(Å^2x \ 10^3)$ for comp	oound 43 . '	The anisotropic
displacem	nent factor exponent takes the form: -2	$p^2[h^2 a^{*2}U^{11} +$	+ 2 h k a*	b* U ¹²]

	U11	U ²²	U ³³	U23	U13	U12	
0(1)	22(1)	48(1)	21(1)	1(1)	2(1)	18(1)	
N(1)	17(1)	20(1)	14(1)	-2(1)	0(1)	8(1)	
N(2)	22(1)	19(1)	14(1)	0(1)	2(1)	9(1)	
C(1)	17(1)	21(1)	13(1)	0(1)	-1(1)	10(1)	
C(2)	16(1)	19(1)	18(1)	0(1)	2(1)	8(1)	

C(3)	22(1)	20(1)	12(1)	-3(1)	-3(1)	10(1)
C(4)	29(1)	24(1)	20(1)	-2(1)	-4(1)	15(1)
C(5)	42(1)	19(1)	25(1)	0(1)	-6(1)	14(1)
C(6)	30(1)	21(1)	22(1)	3(1)	-3(1)	1(1)
C(7)	22(1)	27(1)	20(1)	0(1)	-1(1)	6(1)
C(8)	21(1)	22(1)	18(1)	0(1)	-1(1)	9(1)
C(9)	17(1)	20(1)	15(1)	3(1)	2(1)	7(1)
C(10)	20(1)	22(1)	17(1)	2(1)	0(1)	9(1)
C(11)	23(1)	24(1)	22(1)	6(1)	4(1)	12(1)
C(12)	20(1)	28(1)	27(1)	5(1)	-1(1)	12(1)
C(13)	20(1)	25(1)	21(1)	1(1)	-3(1)	8(1)
C(14)	18(1)	19(1)	18(1)	3(1)	1(1)	7(1)
C(15)	14(1)	19(1)	22(1)	-2(1)	-1(1)	4(1)
C(16)	20(1)	24(1)	23(1)	-2(1)	-5(1)	8(1)
C(17)	21(1)	24(1)	39(1)	-2(1)	-4(1)	11(1)
C(18)	20(1)	27(1)	39(1)	-13(1)	-2(1)	10(1)
C(19)	23(1)	31(1)	23(1)	-8(1)	-1(1)	8(1)
C(20)	19(1)	24(1)	23(1)	-1(1)	-2(1)	6(1)
C(21)	30(1)	34(1)	38(1)	-1(1)	2(1)	21(1)
C(22)	19(1)	24(1)	16(1)	-2(1)	-1(1)	8(1)
C(23)	14(1)	20(1)	21(1)	-2(1)	-3(1)	9(1)
C(24)	17(1)	22(1)	21(1)	0(1)	-1(1)	9(1)
C(25)	16(1)	26(1)	25(1)	-5(1)	-4(1)	12(1)
C(26)	23(1)	22(1)	33(1)	-6(1)	-3(1)	12(1)
C(27)	22(1)	21(1)	31(1)	3(1)	1(1)	11(1)
C(28)	15(1)	21(1)	22(1)	0(1)	-1(1)	8(1)
C(29)	17(1)	16(1)	23(1)	3(1)	1(1)	5(1)
C(30)	20(1)	19(1)	22(1)	3(1)	0(1)	8(1)
C(31)	21(1)	19(1)	27(1)	1(1)	4(1)	6(1)
C(32)	26(1)	24(1)	21(1)	-1(1)	1(1)	6(1)
C(33)	24(1)	30(1)	25(1)	3(1)	-6(1)	9(1)
C(34)	21(1)	25(1)	28(1)	3(1)	-2(1)	10(1)
C(35)	27(1)	31(1)	28(1)	-8(1)	-1(1)	16(1)
C(36)	20(1)	14(1)	18(1)	-2(1)	-2(1)	7(1)
C(37)	20(1)	22(1)	20(1)	0(1)	2(1)	10(1)
C(38)	29(1)	24(1)	16(1)	2(1)	1(1)	12(1)

C(39)	27(1)	20(1)	23(1)	0(1)	-7(1)	10(1)
C(40)	20(1)	19(1)	27(1)	0(1)	-2(1)	9(1)
C(41)	21(1)	19(1)	18(1)	1(1)	1(1)	9(1)

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for compound **43**

	Х	У	Z	U(eq)	
H(2N)	763(18)	7701(18)	2738(5)	23	
H(1)	1390(16)	10672(16)	2514(5)	20	
H(2)	2779(16)	9102(17)	2044(5)	21	
H(4)	2506	13250	2273	28	
H(5)	4522	15547	1931	35	
H(6)	6926	15711	1732	36	
H(7)	7318	13578	1884	31	
H(8)	5295	11257	2216	25	
H(10)	3783	8534	2741	24	
H(12)	7760	10474	3523	30	
H(13)	7020	12169	3857	28	
H(16)	4193	13524	3109	28	
H(17)	3820	15456	3467	34	
H(18)	4023	15772	4274	35	
H(19)	4643	14147	4724	34	
H(20A)	5046	12230	4368	29	
H(21A)	5409	7254	2778	48	
H(21B)	7020	8063	3073	48	
H(21C)	6959	8764	2574	48	
H(22)	1654	9880	3618	25	
H(24)	1404	6754	1627	24	
H(26)	-327	2087	1883	30	
H(27)	-889	2460	2647	29	
H(30)	-1961	5847	2974	25	

H(31)	-2360	6246	3751	29
H(32)	-1042	5716	4344	32
H(33)	598	4683	4155	34
H(34)	977	4242	3381	30
H(35A)	2309	4644	1199	42
H(35B)	879	4788	976	42
H(35C)	622	3085	1118	42
H(37)	2561	9902	1272	25
H(38)	1016	10003	664	28
H(39)	-1598	9374	800	29
H(40)	-2669	8660	1549	27
H(41)	-1151	8502	2152	24

Table 6. Torsion angles [°] for compound 43

C(22)-N(1)-C(1)-C(3)	128.26(11)
C(9)-N(1)-C(1)-C(3)	-48.74(14)
C(22)-N(1)-C(1)-C(2)	-102.88(12)
C(9)-N(1)-C(1)-C(2)	80.12(13)
C(23)-N(2)-C(2)-C(36)	76.20(13)
C(23)-N(2)-C(2)-C(1)	-164.64(10)
N(1)-C(1)-C(2)-N(2)	32.55(13)
C(3)-C(1)-C(2)-N(2)	162.40(9)
N(1)-C(1)-C(2)-C(36)	154.15(9)
C(3)-C(1)-C(2)-C(36)	-76.00(11)
N(1)-C(1)-C(3)-C(4)	-107.76(12)
C(2)-C(1)-C(3)-C(4)	121.97(11)
N(1)-C(1)-C(3)-C(8)	72.63(13)
C(2)-C(1)-C(3)-C(8)	-57.64(14)
C(8)-C(3)-C(4)-C(5)	0.67(17)
C(1)-C(3)-C(4)-C(5)	-178.95(11)
C(3)-C(4)-C(5)-C(6)	-0.43(19)
C(4)-C(5)-C(6)-C(7)	-0.35(19)
C(5)-C(6)-C(7)-C(8)	0.87(19)
C(6)-C(7)-C(8)-C(3)	-0.61(18)

C(4)-C(3)-C(8)-C(7)	-0.15(17)
C(1)-C(3)-C(8)-C(7)	179.46(11)
C(22)-N(1)-C(9)-C(10)	121.97(12)
C(1)-N(1)-C(9)-C(10)	-61.06(15)
C(22)-N(1)-C(9)-C(14)	-56.78(15)
C(1)-N(1)-C(9)-C(14)	120.18(12)
C(14)-C(9)-C(10)-C(11)	-2.74(17)
N(1)-C(9)-C(10)-C(11)	178.50(10)
C(9)-C(10)-C(11)-C(12)	3.31(17)
C(9)-C(10)-C(11)-C(21)	-175.59(11)
C(10)-C(11)-C(12)-C(13)	-1.13(18)
C(21)-C(11)-C(12)-C(13)	177.76(12)
C(11)-C(12)-C(13)-C(14)	-1.65(19)
C(12)-C(13)-C(14)-C(9)	2.22(17)
C(12)-C(13)-C(14)-C(15)	-177.98(11)
C(10)-C(9)-C(14)-C(13)	-0.06(17)
N(1)-C(9)-C(14)-C(13)	178.67(10)
C(10)-C(9)-C(14)-C(15)	-179.84(11)
N(1)-C(9)-C(14)-C(15)	-1.10(18)
C(13)-C(14)-C(15)-C(20)	-45.85(16)
C(9)-C(14)-C(15)-C(20)	133.92(12)
C(13)-C(14)-C(15)-C(16)	130.40(12)
C(9)-C(14)-C(15)-C(16)	-49.82(17)
C(20)-C(15)-C(16)-C(17)	-0.02(18)
C(14)-C(15)-C(16)-C(17)	-176.34(11)
C(15)-C(16)-C(17)-C(18)	-0.42(19)
C(16)-C(17)-C(18)-C(19)	0.46(19)
C(17)-C(18)-C(19)-C(20)	-0.07(19)
C(18)-C(19)-C(20)-C(15)	-0.37(19)
C(16)-C(15)-C(20)-C(19)	0.42(18)
C(14)-C(15)-C(20)-C(19)	176.82(11)
C(9)-N(1)-C(22)-O(1)	177.25(12)
C(1)-N(1)-C(22)-O(1)	0.13(18)
C(2)-N(2)-C(23)-C(24)	-9.43(17)
C(2)-N(2)-C(23)-C(28)	169.31(10)
N(2)-C(23)-C(24)-C(25)	179.43(10)

C(28)-C(23)-C(24)-C(25)	0.68(17)
C(23)-C(24)-C(25)-C(26)	1.56(17)
C(23)-C(24)-C(25)-C(35)	-175.85(11)
C(24)-C(25)-C(26)-C(27)	-2.66(17)
C(35)-C(25)-C(26)-C(27)	174.73(12)
C(25)-C(26)-C(27)-C(28)	1.56(19)
C(26)-C(27)-C(28)-C(23)	0.71(18)
C(26)-C(27)-C(28)-C(29)	-176.98(11)
N(2)-C(23)-C(28)-C(27)	179.42(11)
C(24)-C(23)-C(28)-C(27)	-1.80(16)
N(2)-C(23)-C(28)-C(29)	-2.88(16)
C(24)-C(23)-C(28)-C(29)	175.90(11)
C(27)-C(28)-C(29)-C(30)	-122.39(13)
C(23)-C(28)-C(29)-C(30)	59.97(15)
C(27)-C(28)-C(29)-C(34)	57.64(16)
C(23)-C(28)-C(29)-C(34)	-120.00(13)
C(34)-C(29)-C(30)-C(31)	1.67(17)
C(28)-C(29)-C(30)-C(31)	-178.30(11)
C(29)-C(30)-C(31)-C(32)	0.15(18)
C(30)-C(31)-C(32)-C(33)	-1.48(19)
C(31)-C(32)-C(33)-C(34)	1.0(2)
C(32)-C(33)-C(34)-C(29)	0.9(2)
C(30)-C(29)-C(34)-C(33)	-2.19(18)
C(28)-C(29)-C(34)-C(33)	177.78(11)
N(2)-C(2)-C(36)-C(37)	-135.71(11)
C(1)-C(2)-C(36)-C(37)	103.52(12)
N(2)-C(2)-C(36)-C(41)	44.98(14)
C(1)-C(2)-C(36)-C(41)	-75.79(12)
C(41)-C(36)-C(37)-C(38)	-1.70(17)
C(2)-C(36)-C(37)-C(38)	178.98(11)
C(36)-C(37)-C(38)-C(39)	1.08(18)
C(37)-C(38)-C(39)-C(40)	0.35(18)
C(38)-C(39)-C(40)-C(41)	-1.11(18)
C(39)-C(40)-C(41)-C(36)	0.47(17)
C(37)-C(36)-C(41)-C(40)	0.94(17)
C(2)-C(36)-C(41)-C(40)	-179.73(11)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for compound 45 [A and]						
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)		
N(2)-H(2N)N(1)	0.875(13)	2.349(15)	2.7729(14)	110.0(12)		

Table 7. Hydrogen bonds for compound **43** [Å and °]

Symmetry transformations used to generate equivalent atoms:

■ ¹H NMR Spectra

1

Reaction of $B_2(pin)_2$ with dbu and MeOH in thf after 90 min is shown below. Free pinacol was observed at δ 1.22 ppm.

References

(1) Piers, E.; Banville, J.; Lau, C. K.; Nagakura, I. Can. J. Chem. 1982, 60, 2965–2975.

(2) (a) Lee, K.-s.; Zhugralin, A. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 7253–7255. (b) Lee, K-s.; Zhugralin, A. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 12766. (c) O'Brien, J. M.; Hoveyda, A. H. J. Am. Chem. Soc. 2011, 133, 7712–7715. (d) Wu, H.; Radomkit, S.; O'Brien, J. M.; Hoveyda, A. H. J. Am. Chem. Soc. 2012, 134, 8277–8285. (e) Radomkit, S.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2014, 53, 3387–3391.

(3) Negishi, E.; Tan, Z.; Liou, S.-Y.; Liao, B. Tetrahedron 2000, 56, 10197-10207.

- (4) Pattenden, G.; Whybrow, D. J. Chem. Soc. Perkin Trans. 1 1981, 3147-3149.
- (5) Majid, T. N.; Yeh, M. C. P.; Knochel, P. Tetrahedron Lett. 1989, 30, 5069–5072.

(6) Lee, K.-s.; Hoveyda, A. H. J. Org. Chem. 2009, 75, 4455–4462.

(7) Lee, K.-s.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 2898-2900.

(8) Meng, F.; Jang, H.; Hoveyda, A. H. Chem. Eur. J. 2013, 19, 3204–3214.

- (9) For a review on kinetic analysis of complex catalytic reactions, see: Blackmond, D. G. Angew. Chem., Int. Ed. **2005**, 44, 4302–4320.
- (10) Pubill-Ulldemolins, C.; Bonet, A.; Gulyás, H.; Bo, C.; Fernández, E. Org. Biomol. Chem. 2012, 10, 9677–9682.