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Abstract 

The objective of this paper is to provide a review on some aspects of the mathematical and computational 
modelling of skin biophysics, with special focus on constitutive theories based on non-linear continuum 
mechanics from elasticity, through anelasticity, including growth, to thermoelasticity. Microstructural and 
phenomenological approaches combining imaging techniques are also discussed. Finally, recent research 
applications on skin wrinkles will be presented to highlight the potential of physics-based modelling of skin 
in tackling global challenges such as ageing of the population and the associated skin degradation, diseases 
and traumas. 
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1. SUPPLEMENTARY MATERIAL  

1.1 Remark about elasticity tensors in the context of finite element numerical procedures 
Elasticity tensors that characterise the stiffness of a hyperelastic material can be defined in the 
Lagrangian and Eulerian configurations, respectively as: 
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The material, so, objective, rate of the second Piola-Kirchhoff stress tensor is expressed as: 

 
1

: :
2
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These elasticity tensors are generally not constant and depend on deformation [1]. They are essential in 
the implementation of constitutive models into non-linear implicit-based finite element codes as they 
are used to calculate the numerical tangent stiffness, and therefore, condition the rate of convergence of 
the system of non-linear algebraic equations [2]. However, an aspect which is often overlooked and/or 
misunderstood, is that to benefit from the theoretical quadratic rate of convergence of non-linear finite 
element solvers of the Newton-Raphson type, it is essential to calculate the consistently linearised 
tangent modulus, consistent with the work-conjugate strain rate-stress pair, chosen in combination with 
the appropriate objective stress rate. In the finite element software package Abaqus/Implicit (Simulia, 
Dassault Systèmes, Providence, RI, USA), widely used in research and development across academia, 
government and industry, the use of the UMAT subroutine allows the user to code displacement-based 
constitutive models of arbitrary complexity. In that case, explicit expression of the components of the 
true stress (i.e. Cauchy stress) and consistent elasticity tensors corresponding to the incremental solving 
procedure must be provided. As an Eulerian code, and for continuum elements, Abaqus/Implicit requires 
the explicit definition of the tangent tensor, ABAQUS , consistent with a Zaremba-Jaumann objective rate 
of Kirchhoff stress and spatial strain rate so that: 
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:
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The spatial strain rate d is defined as: 
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where l  is the spatial velocity gradient while the objective Zaremba-Jaumann rate of Kirchhoff stress 
is defined as [1]: 
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.
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The rate of spin w is introduced as: 

    1 T T T1 1
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In order to derive ABAQUS , one needs to derive the tangent tensor consistent with the Lie derivative of the 
Kirchhoff stress tensor which is also known as the Oldroyd objective rate of this tensor. It is obtained by 
pulling back the spatial strain rate to the material configuration so that the resulting stress rate is calculated 
in that configuration, and then pushed back to the spatial configuration: 

  
Oldroyd

T T T. . : . . . : :


        
E d dl l F F d F F d l

       (8) 

Although the final explicit form of ABAQUS  has been previously reported in the literature [3], the detailed 
intermediary derivation steps were not provided, and, for sake of completeness, are given below.  
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Equation (8) leads to: 

  T: . : : : :            d d dl l l l I l I l I I l          (9) 

where the non-standard tensor operators   and   are defined as [4]: 

    ik jl il jkijkl ijkl
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By injecting Equation (9) into Equation (6) one obtains the following formula for the Zaremba-Jaumann rate 
of Kirchhoff stress: 
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After simplifications, one obtains: 
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It follows that the correct tangent tensor to input into the Abaqus/Standard UMAT user subroutine is: 
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This formula was provided by Zöllner et al. [3]. In indicial notation the tangent tensor can be expressed as: 
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1.2 Fibre dispersion models 
It is clear that the complex microarchitecture of the collagen network in skin cannot be accurately captured 
by the strong assumption of uniform fibre alignment, even at a local level (see Figure 1 of the main article). 
A better assumption, more in line with physical observations, is to assume that, at a local level, fibres are 
distributed around a main orientation, 0

n  with a certain probability to lay within a particular range of 
angular deviation from that main direction (Figure 5). This is embodied by the notion of fibre dispersion 
which can be accounted for by means of two main modelling approaches [5]. The first one, termed the 
“angular integration approach” is due to Lanir [6] while the second approach, known as the “generalised 
structure tensor” approach is due to Gasser et al. [7].  
 

 

 

 

 

Figure 5. Schematic highlighting the Euler angles   and   
defining the position of any vector (in that case, denoted by 

0
v ) in a three-dimensional Cartesian coordinate system 
defined by the unit vectors x

e , 
y

e  and z
e . [0, ]   and 

[0,2 ]  . The mean fibre direction 0
n is indicated by the 

pink arrow aligned with the third Cartesian basis vector z
e . 

 

1.2.1 Angular integration approach 
In this approach, also known as the microsphere approach, the strain energy function of a single fibre, 

( )
fibre

  , is considered as a function of the fibre stretch  . This strain energy is then integrated over the 
unit sphere 2  to represent the strain energy of a bundle of these fibres per unit reference volume, bundle

 . 
This could effectively be viewed as an homogenisation procedure where mesoscopic (or macroscopic) 
quantities are obtained by integration of fibre level microscopic quantities (e.g. strain energy of a single fibre 

( )
fibre

  ). It follows that: 

 0

2 0
( ) ( )

bundle fibre
n dA   

n v   (18) 

where dA  is the elemental solid angle, n  is the number of fibres per unit reference volume, 0
v  is a unit 

vector bearing the direction of an arbitrary fibre, defined with respect to 0
n , a unit vector representing a 

mean direction around which fibre dispersion occurs, and 0n  is the relative angular distribution of fibres 
around the mean direction which must satisfy the following normalisation condition [5]: 

 0

2 0

1
1

4
( )dA




n v   (19) 

The homogenised second Piola-Kirchhoff stress tensor associated with a fibre bundle can then simply be 
defined as: 
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2 0

( )
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n dA



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Similarly, the associated Lagrangian elasticity tensor is: 
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As pointed out by Holzapfel and Ogden [5], in Equation (18), it is assumed that the elastic properties of all 
the fibres are defined by the same strain energy function fibre

 . This is was not the case in Lanir’s study [6] 
where a probability distribution characterising the degree of fibre crimp, and therefore, the degree of 
mechanical activation, was considered, effectively leading to a modulation of fibre

  for each fibre. 

ze

ye





0
( , ) v

x
e

0
n
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1.2.2 Generalised structure tensor approach 
In this ingenious approach, introduced by Gasser et al. [7], the idea is to use a homogenised structure tensor 
H  which is obtained by integration of the structure tensor 0 0

v v  associated with an arbitrary fibre of 
direction 0

v , deviating from the mean fibre direction 0
n , over the unit sphere. This effectively amounts to 

defining a statistical strain-like invariant ( : 1)C H  (see section 4.2.4 of the article). In that case, the strain 
energy of a bundle of fibres per unit reference volume bundle

  is defined as: 

 ( , )
bundle bundle

  C H   (22) 

where: 

 0

2 0 0 0

1
( )

4
dA


 H



n v v v   (23) 

with satisfaction of the normalisation condition (19) leading to : 1H I . 
 
Remark 
Holzapfel and Ogden [5] recently discussed important theoretical aspects of the angular integration and 
generalised structure tensor approaches for fibre dispersion. They demonstrated the equivalence of these two 
formulations in terms of predictive power and therefore, implicitly recommend the latter approach because 
it has been proven very effective in describing experimental data for a broad range of biological fibrous 
tissues, is conceptually simple, much simpler to implement in a numerical context, and also, much less 
demanding with regards to computational power. Moreover, and of particular significance, these authors 
developed a formulation based on the generalised structure tensor approach which exclude compressed fibres 
within a dispersion group. By so doing, they proved that it is indeed possible, unlike what has previously 
been claimed in the literature. 

1.3 A common angular distribution function: the π-periodic von Mises distribution function 
In his seminal paper, Lanir [6] developed a microstructurally-based plane stress model of skin in which he 
introduced a planar fibre angular density distribution ( )

k
  where ( )

k
d   is the fraction of all fibres of 

type k  (collagen or elastin) oriented between   and ( )d   in the reference configuration. In that case,   
represents the deviation from the mean fibre orientation 0

n . Lanir selected a circular normal distribution, 
also known as von Mises type distribution: 

 
0

exp( [cos( ) ])
( , , )

2 ( )I

  
  

 


   (24) 

where 0
( )I   is the modified Bessel function of order 0. Naturally, other forms of angular distribution 

functions are possible [7-9]. Fibre dispersion over the unit sphere is described by a spatial density function 
( , )    where   and   represent the Eulerian angles describing the direction of any material vector 0

v  [7] 
so that one can write 0 0

( , ) ( ) [ ( , )]       v v  (see Figure 5) where: 

 0
( , ) (sin cos ) (sin sin ) (cos )

x y z
        e e ev   (25) 

sindA d d    represents the infinitesimal surface area of the unit sphere defined by the angular range 
[( , ),( , )]d d       . Without loss of generality, if one assumes that any vector 0

( , ) v  is aligned with 
the base vector z

e  rotational symmetry around z
e  is obtained and the fibre density distribution becomes 

independent of   so that 0
( ) [ ( )]      v . The normalisation condition is then reduced to: 

 00
[ ( )] 2dA


   v  (26) 

The dispersion of collagen fibres around a preferred mean direction (transverse isotropy) can be accounted 
for by the use of a modified version of the standard  -periodic von Mises distribution function with dispersion 
parameter b  [8, 10]: 

 
exp( [cos(2 ) 1])

( ) 4
2 erfi( 2 )

bb

b


 




  (27) 
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where erfi  is the imaginary error function defined as: 

 
2

0

2
erfi( ) e

i x
tx i dt


    (28) 

It can be shown [11] that the dispersion parameter   of the structure tensor approach of Gasser et al. [7] 
can be expressed as: 

 
 

exp(2 )1 1 1 2

2 8 4 erfi 2

b

b b b



     (29) 

Instead of using a MacLaurin series expansion to approximate the imaginary error function (which is often 
not standard in low-level programming languages), here, it is proposed to use a global Padé decomposition 
established by Winitzki [12]. This approximation offers the simultaneous advantages of low computing 
requirement and high accuracy: 
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
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!
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n
k

n
C

n k k



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The relative error between erfi  and its Padé approximant can be estimated [12]: 

 
( )

erfi( ) 2 erfi( )
( ) 2

nn

n

p x n
x x

q x


    (34) 

In a numerical context, to prevent a singularity at the origin, a small numerical parameter   can be 
introduced in the approximation (30) so that: 
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( )( )

x
n

n

p x
x
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The very accurate 4-term Padé approximant of the imaginary error function erfi , Padé
4

erfi  is provided below: 
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Figure 6. Comparison between erfi 2b  (grey dots) and its approximation using 1 term (pink dotted line) and 4 terms (pink 
continuous line) in the Padé series. The 4-term series defined in Equation (36) shows an excellent agreement with the exact 
imaginary error function Erfi available in Mathematica® (Wolfram Research Inc., Champaign, IL, USA) to a nearly arbitrary 
order of precision. 

 
Figure 7.  -periodic von Mises angular distribution function calculated for the following dispersion parameter values: 

{1,5,10,20,30,40,50}b  . The continuous pink lines represent the distribution values calculated using the 4-term Padé 
approximant of erfi 2b  defined by Equation (36) while the grey dots are corresponding discrete values calculated using the 
exact imaginary function Erfi available in Mathematica® (Wolfram Research Inc., Champaign, IL, USA). 

 
  

0b 

b  
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1.4 Network models 
Chain network models such as the Arruda-Boyce eight-chain model originates from concepts borrowed 
from statistical mechanics, namely, entropic elasticity of macromolecules [13]. In this theory, long 
molecular chains are assumed to rearrange their conformation under the influence of random thermal 
fluctuations so that their possible geometrical configurations can only be known in a statistical sense. 
Polymer chains in rubber are typically described as uncorrelated [14] as their conformation is reminiscent 
of a random walk. The term freely jointed chains is also used. In contrast, biopolymer chains such as 
collagen assemblies feature smoothly varying curvature and are therefore considered correlated. These 
chains are best described using the concept of worm-like chains of Kratky and Porod [15]. In the context 
of soft tissue mechanics, several authors used this approach to describe the structure and mechanics of 
the basic building block of collagen assemblies, the tropocollagen molecule, the so-called collagen triple-
helix [14, 16-21]. 
Both freely-jointed and worm-like entropic chains are assumed to be made of beads connected by N  
rigid links of equal length d , the so-called Kuhn length [22], so that the maximum length of a chain, 
the contour length, is L Nd . The mechanics of macromolecular polymer structures is not only 
governed by the mechanical properties of individual chains but also by their electromagnetic and 
mechanical interactions which can take the form of covalent bonds, entanglement and physical cross-
links. These combined effects give rise to strong network properties which can be implicitly captured by 
network models such as the eight-chain model of Arruda and Boyce [23]. The central idea behind these 
formulations is that there exists a representative nano-/microscopic unit cell able to capture network 
properties. The eight-chain model assumes that the unit cell is made of eight entropic chains of equal 
lengths connected from the centre of the cell to each of its corners (Figure 8), each equipped with their 
own strain energy chain

 . For uncorrelated and correlated chains one can consider respectively the freely 
jointed chain energy [Equation (39)] and the worm-like chain energy [Equation (41)] The unit cell is 
further assumed to feature a solid phase conferring isotropic bulk properties through the strain energy 

bulk
 . 

 
Figure 8. Schematic representation of the orthotropic eight chain network model of Bischoff et al. [16]. The light grey solid 
volume represents the bulk material admitting the strain energy function bulk

  while the eight single polymer chains are 
governed by the strain energy function chain

 . When  a b c  the Bischoff et al.’s model [16]degenerates to the 
Arruda-Boyce’s model while the Kuhl et al.’s model [14] is recovered is two cell dimensions are identical (e.g. a b ).  
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1.4.1 The freely jointed chain model for uncorrelated chains 

 chain

1
1

0 1

( )ˆ ˆ( ) ( ) ln
sinh( ( ))

FJC FJC
Langevin

rr
r N r

L r
   






                  






K   (39) 

where 0
ˆFJC  is the ground state chain energy in the unperturbed state, r  the current end-to-end 

distance of the chain and 1  is the inverse of the Langevin function defined as ( ) coth( ) 1 /x x x 
, 23 2 2 11.3806503  10 m kg s K       K  is the Boltzmann constant and   is the absolute temperature 
[K]. 1  can be approximated using a Padé approximant [24] as:  

 
2

1

2

3
( )

1

x
x x

x

 


  (40) 

For a more in-depth analysis and alternative approximations of the inverse Langevin function, see recent 
papers by Nguessong et al. [25], Jedynak [26], Marchi and Arruda [27] and Darabi and Itskov [28]. 

1.4.2 The worm-like chain model for correlated chains 

 0chain

2

2

1ˆ ˆ( ) 2 1
1

WLC WLC
L r

r
rL
L


 

 
 
 
             



 

K
 (41) 

where 0, ,L r  and r  are respectively the contour, persistence, initial end-to-end length and the current end-
to-end length of the chain. Similarly to the freely jointed chain model, 0

ŴLC  is the chain energy in the 
unperturbed state. 
 

1.5 Flynn-Rubin-Nielsen’s formulation [29] 

1.5.1 Discrete fibre vectors 
The model developed by Flynn et al. [29] is based on a discrete rather than continuous fibre orientation 
distribution kernel which allows closed-form solutions for strain energy and stress. Six discrete directions 
are considered 

0
{ 1,..., 6}i i n : they are oriented parallel to the lines connecting opposing vertices of a 

regular icosahedron (i.e. a 20-faced polyhedron). These six directions, corresponding to distinct fibre 
bundles, are defined as: 

 

1 2
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3 4
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0 1

2 1 1 1 1 1 1
; 1 1

2 25 5 5 5 5

1 1 1 1 1 1 1 1 1 1
1 1 , 1 1
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1 1 1
1

2 5

                     
                                                    

      

e e e e e

e e e e e e

e

n n

n n

n 6
2 3 0 3

1 1
1 ,

2 5 5

       
e e en

 (42) 

From these six unit vectors, Flynn et al. [29] defined six structural tensors: 

 
6

0 0 0 0
1

{ 1,..., 6}(no summation on ),	with 2i i i i

i

i i


    IB Bn n   (43) 

1.5.2 A particular strain energy function for collagen fibre bundles assuming a unit step distribution 
If one injects the definition of a unit step distribution function D : 

  
1 3

3 1

0, or

1
, otherwise

x x x x

D x

x x

    

 (44) 

into Equation (35), after simplification, one arrives to the following expression for the strain energy function 
of a single collagen fibre bundle: 
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 (45) 
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1.6 Description of the constitutive parameters of Limbert’s model [30] 
Limbert’s model [30] features a set of twenty three constitutive parameters 

1 2
1 2 1 20 ,

, , , , ,{ , , , , , , , }i i i c
i i
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p i ii i i
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
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 



p

p
n n m m n m n m

n m
n n m m m

K
 (46) 

Limbert [30] determined the parameter set 2p  using a numerical global optimisation algorithm while the 
parameter set 1p  was assumed a priori based on existing data [14] and data obtained via visual inspection 
of biaxial stress-strain curves for rabbit skin [31]. 

Table 1. Description of the constitutive parameters of decoupled-invariant orthotropic hyperelastic developed by Limbert 
[30] with assumed and numerically-optimised values obtained by identification with the rabbit skin data of Lanir and Fung 
[32]. 

 Measured or estimated constitutive parameters  
K   Boltzmann constant 1.3806503.10-23  [J.K-1] 
   Absolute temperature 310 [K] 

   Bulk modulus of the matrix 50 [kPa] 

0
   Shear modulus of collagen fibres 0 [Pa] 

0 0
,a an m  First shape parameter for sigmoid coupling function (families 1 and 2) 50 

0 0
,b bn m   Second shape parameter for sigmoid coupling function (families 1 and 2) 20 

0 0
,c c n m  Critical stretch for sigmoid coupling function (families 1 and 2) 1.15 | 1.40 

0 0
, n m  Density of collagen fibres (families 1 and 2) 7.1021 [m-3] 

 Constitutive parameters determined by numerical optimisation  

1
  Matrix shear modulus 150.123 [Pa] 

2
  Maximum fibre-fibre/matrix-fibre shear modulus 9.981 [Pa] 

0 0
,L Ln m  Contour length of a tropocollagen molecule (families 1 and 2) 2.792 

0 0,
p p

L Ln m  Persistence length of a tropocollagen molecule (families 1 and 2) 0.200 | 0.591 

0 0
,r rn m  Initial length of a crimpled collagen molecule (families 1 and 2) 1.368 | 1.741 

 

 
Figure 9. Experimental data from uniaxial tensile tests (stretch-nominal stress) on rabbit skin from Lanir and Fung [32] and 
the corresponding theoretical values (continuous lines) calculated after identification of the constitutive parameters of the 
decoupled invariant model developed by Limbert [30](Blue: head-to-tail fibre direction, r2 = 0.997; Red: perpendicular to 
head-to-tail direction, r2 = 0.998).  
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1.7 Finite strain viscoelasticity – Viscosity tensors 
From the formulation established in section 4.3.3, the viscosity tensor for the matrix and fibre phases, denoted 
respectively as M

  and F
  are defined as: 

 1 1 1 1

2 3 9
S B

v v v v v v
M matrix matrix matrix matrix matrix matrix

M M
 


         
C C C C C C   (47) 

 
1 2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
: ( ) : ( ) : ( ) : ( )F F Fv v v v

fibre fibre fibre fibre

 
   

   
   C C C C


n n n n m m m m

n n n n m m m m
 (48) 

where the non-standard tensor product 


 is defined as: 

 
1

( ) ( ) ( )
2ijkl ijkl ik jl il jk

              (49) 

and 
SM

  and 
BM

  are the deviatoric and bulk viscosities of the matrix while 
1F

  and 
2F

 are the viscosities 
associated with the two families of fibres. 

Particular non-equilibrium potentials for anisotropic viscoelasticity 
The particular forms of the non-equilibrium viscous potentials are given as follows: 

  2
1 1

1 1
( , ) ( 1) 2

2 2
v e e v e v e
M M

J J          (50) 

  
2

21
( ) 1

2
v e v e
          (51) 

v , e
M

 , 1
v  and 2

v  are material parameters that define the properties of the elastic part of the non-
equilibrium Maxwell component. This non-linear orthotropic viscohyperelastic constitutive model was 
implemented into a commercial finite element code and constitutive parameters were identified from 
proprietary experimental data. 

1.8 Softening and damage 
Preconditioning effects are often associated with viscoelasticity [33]. They are linked to short-term 
rearrangement of the tissue microstructure and, in some instances, permanent deformation and/or 
damage of the microstructure. Preconditioning of biological soft tissues before in vitro tensile tests is 
often recommended. On one hand, it is a way to re-load the tissue into a state closer to in vivo conditions, 
on the other hand, depending on the amount of pre-conditioning, this could lead to microstructural 
rearrangements going beyond what would be physiologically experienced by the tissue. Muñoz et al. [34] 
observed a typical softening effect—known as the Mullins effect in the context of filled rubber 
mechanics—during cyclic uniaxial testing of murine skin at large deformations. A similar effect was 
reported by Edsberg et al. [35] for human skin under cyclic pressures. Ehret and Itskov [36] developed 
a constitutive framework to capture the Mullins effects observed in biological soft tissues and fitted it 
to the experimental data of Muñoz et al. [34] demonstrating an excellent agreement. 
Ehret et al. [37] later applied their constitutive model to porcine dermis and corroborated observations 
made by Muñoz et al., namely the occurrence of significant residual deformations upon cycling loading. 
Recently, Li and Luo [38] proposed an invariant-based softening damage and failure constitutive model 
for human and animal skins. The 9-parameter model is based on a combination of the GOH model [7] 
and the energy-limiter approach of Volokh [39, 40]. The performance of the model was tested on a series 
of orthogonal uniaxial tensile tests on human, swine, bovine and rabbit skins and exhibited excellent 
results. The main drawback of the model is its conservative nature: upon unloading the material would 
fully recover its original shape and return to its virgin undamaged state, effectively healing. This 
shortcoming could easily be rectified [41]. 
Considering its soft interfacial and protective nature, it is reasonable to assume that, at an evolutionary 
level, the skin of mammals in general, and that of humans, in particular, must have evolved damage 
resistance strategies through optimisation of their ultrastructure.  
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Recently, Yang et al. [42] have discovered four microstructural mechanisms that explain the extreme 
tear resistance of rabbit skin by conducting a very comprehensive multi-modality study. This study 
combined physical tensile tests, scanning electron microscope, in situ synchrotron X-ray characterisation 
and constitutive modelling. The viscoelastic constitutive model used to represent the tensile response of 
skin is based on the mechanics of a wire made of circular segments and captures two hierarchical levels 
of the skin: nanometre level (collagen fibrils) and micrometer level (collagen fibres). 

1.9 Plasticity 
Mazza et al. [43, 44] developed a non-linear elasto-visco-plastic model to simulate ageing of the human 
face [43, 44]. It is based on the constitutive formulation of Rubin and Bodner [45] to model the dissipative 
response of soft tissues. In this study the dissipative effects were a combination of elastic and visco-
plastic mechanisms. Rubin and Bodner [45] demonstrated the relevance of their model by capturing 
very well the cyclic dissipative response of superficial musculoaponeurotic system tissue. The 
constitutive equations were implemented  as a user subroutine in the commercial finite element code 
Abaqus (Simulia, Dassault Systèmes, Providence, RI, USA) to simulate gravimetric descent of facial 
tissue [43]. Mazza et al. [43, 44] extended the model of Rubin and Bodner [45] by including an ageing 
parameter equipped with its own time evolution equation. This ageing-driven parameter was a 
modulator of tissue. A four-layer model of facial skin combined with a face-like geometrical base was 
developed and highlighted the great potential of this kind of computational models to study the effects 
of skin ageing on facial appearance. The Rubin and Bodner’s constitutive model [45] was generalised by 
Weickenmeier and Jabareen [46] in terms of the viscoplasticity equations and hardening parameter 
whilst establishing a robust finite element framework featuring a strongly objective integration scheme. 
In this paper, this modelling framework was applied to identify the mechanical properties of facial skin 
by combining suction measurements obtained via a Cutometer® MPA 580 (Courage and Khazaka 
Electronic GmbH, Köln, Germany) and inverse finite element techniques. The procedure is described in 
more details in a subsequent paper by Weickenmeier et al. [47]. 

1.10 Growth 
As any biological soft tissue, the skin undergoes growth and remodelling in physiological and abnormal 
conditions. This starts from morphogenesis of the embryo and continues through life as the skin ages 
and adapts in response to various types of physiological and abnormal physical stimulations. Examples 
include stretching of the skin during pregnancy and natural growth, healing and scarring in response to 
injury, tanning and extrinsic ageing in response to the photo-chemical effects of solar radiations, 
stiffening of the dermal collagen network as the result of glycation associated with diabetes.  
In his seminal review paper, Taber [48] defined growth as the process of adding mass while remodelling 
“involves changes in material properties” and morphogenesis “is the generation of animal form”. Epstein 
[49] recently refined these definitions by demonstrating that, given an arbitrary time-dependent 
constitutive law, one can establish a canonical decomposition into growth, remodelling, ageing and 
morphogenesis parts. 
Motivated by surgical tissue expansion procedures [50], Socci et al. [51] developed an axisymmetric 
computational model of skin growth. The constitutive model was based on a multiplicative 
decomposition of the deformation gradient using three distinct configurations: (1) the stress-free 
configuration before growth; (2) the configuration at the end of the growth process, not necessarily 
geometrically compatible, as grown stress-free configuration; (3) the configuration of the grown body 
after restoring strain compatibility via elastic deformations and 4) the configuration of the grown body 
after subsequent application of external loads. The general point of departure of growth theories consists 
in multiplicatively splitting the deformation gradient .e gF F F  into a growth part (inelastic) gF  and 
an elastic deformation gradient eF [52].  
This effectively assumes that there exists an intermediate virtual configuration between the reference 
and current configurations in which individual material particles have their volume changed. 
However, the growth (positive or negative) of each material particle renders them geometrically 
incompatible with their neighbours [48, 53]. The elastic deformations characterised by eF  bring back 
compatibility and, by so doing, introduce residual stress [54]. 
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In the context of skin expansion procedures for reconstructive surgery, Tepole et al. [55] formulated a 
3D constitutive model for skin growth embedded into a rigorous theoretical framework based on the 
thermodynamics of open systems [56]. The essence of this theory is encapsulated by the equivalence 
between the rate of variation of the material density 0

  and the mass in- and out-fluxes .X R  and 
mass sources/sinks 0

R  : 

 0
0

.
d

R
dt


  X R   (52) 

To replicate the clinically observed supra-physiological skin growth induced by balloon expansion, 
Tepole et al. [55] considered in-plane skin growth driven by a strain-based stimulus: growth occurs when 
a critical in-plane stretch is reached. The growth factor was described by a temporal evolution equation 
and the skin was modelled as a homogeneous neo-Hookean material. 3D tissue expansions were simulated 
by considering a series of expanders with different shapes and showed the promising potential of the 
computational model of skin growth. Tepole et al. [57] later extended this model by considering skin as 
an eight-chain transversely isotropic material [14]. Computational relaxation and creep tests were 
conducted to study the evolution of in-plane area stretch. Skin growth due to the application of circular-
, square-, rectangular- and crescent-shape tissue expanders was also simulated and confirmed that such 
computational tools can assist clinicians in planning and providing quantitative insight into complex 
surgical procedures.  Several iterations of the original Tepole et al.’s model [55] were made by the same 
group, mostly focusing on refining the computational procedures for simulating the inflation of the tissue 
expander [3, 58, 59]. Tepole et al. [60, 61] integrated in vivo experiments conducted on pig and 
isogeometric finite element techniques to calibrate and validate their computational growth simulations. 

1.11 Thermomechanics 
Thermomechanical phenomena are an essential aspect of skin physiology [62] through the natural functions 
of the skin such as thermo-regulation but also play a central role in traumatic injury scenarios such as 
multiple-degree burns induced by high temperature resulting from external heat sources (e.g. fire) or from 
friction interactions (e.g. deployment of airbag in automotive accidents can create severe burns of the upper 
body, particularly of the face, by heat-generating rubbing of the airbag membrane against the skin) [63]. The 
coupling between thermal effects and mechanical loads, and its subsequent effect on the biochemistry of the 
skin is particularly relevant to the formation of pressure ulcers (also known as pressure sores) and skin blisters 
[64, 65] where the notion of skin microclimate is key [66]. Skin microclimate is embodied by the intimate 
coupling of temperature and relative humidity at the surface of the skin which affects the microstructure 
and mechanical properties of the skin, and, can therefore lead to loss of skin mechanical integrity and barrier 
function. These few examples illustrate why it is relevant to develop advanced mechanistic constitutive 
models of the skin capable of replicating and predicting the potentially strong interplay between mechanics, 
thermodynamics and biochemistry. 
The need to develop a fundamental understanding of how thermal exchanges across and at the surface of 
the skin operate is two-fold. At a fundamental level, it is first essential to unveil the complex physiology of 
skin in health, disease and ageing. From the knowledge bases previously established, one can seek to optimise 
the design and functionalities of devices intended to interact with the skin whilst ensuring protection of this 
vital organ. A discussion of these aspects and a review of state-of-the-art models up to 2011 are discussed in 
the excellent monograph by Xu and Lu [62].  
The development of medical therapies involving thermal phenomena such as laser surgery, hyperthermia 
procedures for cancer treatment, infrared light therapy or cryotherapy has been responsible for driving 
research efforts toward the formulation of mathematical models of skin thermomechanics [62, 67]. Abnormal 
and potentially harmful thermomechanical loading of the skin can arise from diverse sources such as those 
discussed below. Associated with the ever-growing popular practice of skin tattooing as a decorative art form 
[68], is the subsequent need to have tattoos removed, typically after a few years [69].  
Removal procedures are mainly based on the sublimation of ink pigment particles by generation of localised 
very high temperatures produced by Q-switched lasers [69, 70]. The wavelength of the laser source is tuned 
to match that of the absorption wave length of the specific colour of a given tattoo pigment. A laser pulse is 
then emitted for a duration shorter than the thermal relaxation time which represents the time required for 
a structure to cool down to half of its heating temperature. 
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However, the immediate and long-term thermal, photochemical and biological effects of such a destructive 
technique on a living tissue remain unclear. Severe side effects have been observed including dyspigmentation 
and textural changes because of the role of melanin which may have absorption wave lengths overlapping 
those of the targeted tattoo pigments. Other consequences of laser treatment include rupture of blood vessels, 
aerosolisation of tissue (i.e. generation of an instantaneous and localised plasma) and carcinogenicity. Another 
significant side effect of tattoos is the potential for patients undergoing MRI scanning procedures to sustain 
burn injuries [71, 72]. The presence of ferromagnetic metallic compounds in tattoo pigments, especially iron 
oxide, leads to electromagnetic interactions with the magnetic field produced by MRI machines. This 
effectively generates an electric induction current that heats the skin tissue from the inside. Recent armed 
conflicts in the Middle-East have highlighted the need to develop efficient soldier clothing and protection 
equipment that can be optimised to operate in extreme temperature environments [73]. This also apply to 
space exploration, and is also of particular relevance, considering alarming climate change facts and 
predictions [74]. Military and law-enforcement forces have also pioneered the use of directed-energy weapons 
(e.g. Active Denial System developed by the US Air Force Research Laboratory [75]) which rely on high-
powered beam of high-frequency waves (95 GHz). Like a traditional microwave oven, these millimeter waves 
excite water and lipid molecules producing instant intense heat and pain in the skin [76]. As a complementary 
role to clinical and biological studies, modelling has the potential to shed light on complex multiphysics 
phenomena involving thermal transfer, operating in a highly compliant multiscale living structure. A brief 
review of state-of-the-art continuum models of skin thermomechanics post-2011 can be found in [67]. These 
authors developed the first finite deformation thermomechanical model of the skin that accounts for biological 
heat sources as proposed by Pennes [77]. Accounting for the finite deformations that the skin can sustain, 
within a thermomechanical fully coupled constitutive model, is essential for some applications: for example, 
deformations induced by the application of a thermal treatment device or by the growth of a cancerous 
tumour growth can be large. Moreover, even in physiological situations, the skin can sustain finite strains. 
McBride et al. [67] implemented their constitutive law into a finite element code and analysed a geometrically 
idealised four-layer finite element skin model. Although limited by the availability of dedicated experimental 
data in terms of thermomechanical and geometrical properties for each skin layer, the coupled-physics 
framework enjoys a sound thermodynamically consistent formulation that could be experimentally validated 
in the future. 
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1.12 Skin microrelief 
Skin microrelief is made of a network of furrows and ridges—also called sulcus cutis or glyphic patterns—
criss-crossing each other and thus delimiting polygonal plateaux with rectangular, square, trapezoidal 
and triangular shapes. These polygonal patterns—present at birth—lose their isotropic distribution with 
age and become more anisotropic by forming preferred structural orientations [78-80]. The 
characteristics of skin microrelief can be classified according to the orientation and depth of featured 
lines into primary, secondary, tertiary and quaternary lines [78, 79, 81-84]. 

 

Figure 10. Synthetic image representing the typical microrelief of the skin surface (ridges and furrows), reconstructed from 
laser scanning profilometry of a silicone replica of a human volar forearm skin patch (40-years old healthy male subject). The 
acquisition features a 400 x 400 grid of points that was fitted to a NURBS surface. 

  

Secondary line 

10 mm 

10 mm 

Primary line 
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1.13 Skin wrinkles and the stratum corneum 

 
Figure 11. Anatomically-based bi-layer finite element model of human skin featuring a 20 microns-thick stratum corneum 
(top) and a 2.6 mm thick epidermal-dermal substrate, in its undeformed and deformed configurations. In-plane compression 
of the skin was simulated to trigger wrinkle formation using a robust path-following solving procedure. Young’s modulus of 
the stratum corneum is 400 times that of the underlying thicker layer (0.6 MPa). Adapted from Limbert and Kuhl [85]. 

1    20   

100   200   

400   600   

Figure 12. Plot of the deformed stratum corneum layer as a function of the ratio of ground state Young’s moduli of the 
stratum corneum (20 microns-thick) and underlying substrate (0.6 MPa for the substrate)  . Both layers were modelled as 
neo-Hookean solids and subjected to 25% in-plane compression. This is the same finite element model depicted on Figure 
11. Adapted from Limbert and Kuhl [85].  
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