Supplementary Materials (S2 Text) for

History of Antibiotic Adaptation Influences Microbial Evolutionary Dynamics During Subsequent Treatment

Phillip Yen and Jason Papin*

*Corresponding author. E-mail: papin@virginia.edu

This file contains the calculations for all statistical tests performed in this study:

[Drug order-specific effects \(Fig](#page-1-0) 3 of main text) Fig 3A (top) (PIP^R lineages) Fig [3A \(middle\) \(TOB](#page-3-0)^R lineages) Fig 3A (bottom) (CIP^R lineages) Fig 3A (bottom) for Day 25 (CIP^R lineages) [Fig](#page-6-0) 3B Fig [3C \(top\)](#page-7-0) Fig [3C \(middle\)](#page-8-0) Fig [3C \(bottom\)](#page-9-0) **[Collateral sensitivity \(S4](#page-10-0) Fig)** [S4A Fig \(left\)](#page-10-1) [S4A Fig \(right\)](#page-11-0) [S4B Fig](#page-12-0) [S4C Fig](#page-13-0) **[Piperacillin-resistant clinical isolates \(Fig](#page-14-0) 7 of main text)** [Clinical Isolate #1](#page-14-1) [Clinical Isolate #2](#page-16-0) [Clinical Isolate #3](#page-18-0) **[Hocquet Isolates \(Fig](#page-20-0) 8 of main text)** A_{WT} [vs. A](#page-20-1)_{PM} B_{WT} [vs. B](#page-21-0)_{PM} C_{WT} vs. C_{PM} D_{WT} vs. D_{PM}

Drug order-specific effects (Fig 3 of main text)

Fig 3A (top) (PIP^R lineages)

A one-way ANOVA is performed (anova1 in MATLAB) on the $log₂$ MIC_{PIP} values of these lineages:

We also performed the non-parametric Kruskal-Wallis test (in R):

> kruskal.test(value ~ lineage, data = Fig3AtopPIPR)

Kruskal-Wallis rank sum test

data: value by lineage Kruskal-Wallis chi-squared = 12.063, df = 4, p-value = 0.01689 With an **ANOVA p-value of 0.0025**, and a **Kruskal-Wallis p-value of 0.01689,** the treatments are significantly different at the alpha=0.05 level, and we continue with multiple comparisons testing with the Tukey HSD test (multcompare in MATLAB), and the Dunn's test (PMCMR package in R).

Fig 3A (middle) (TOB^R lineages)

A one-way ANOVA is performed (anova1 in MATLAB) on the $log₂$ MIC_{TOB} values of these lineages:

We also performed the non-parametric Kruskal-Wallis test (in R): > kruskal.test(value ~ lineage, data = Fig3AmiddleTOBR)

Kruskal-Wallis rank sum test

data: value by lineage Kruskal-Wallis chi-squared = 17.303, df = 4, p-value = 0.001687

With an **ANOVA p-value of 2.6x10-8** and a **Kruskal-Wallis p-value of 0.001687,** the

treatments are significantly different at the alpha=0.05 level, and we continue with multiple comparisons testing with the Tukey HSD test (multcompare in MATLAB), and the Dunn's test (PMCMR package in R).

Fig 3A (bottom) (CIP^R lineages)

A one-way ANOVA is performed (anova1 in MATLAB) on the $log₂$ MIC_{CIP} values of these lineages:

We also performed the non-parametric Kruskal-Wallis test (in R): > kruskal.test(value ~ lineage, data = Fig3AbottomCIPR)

Kruskal-Wallis rank sum test

data: value by lineage Kruskal-Wallis chi-squared = 13.966, df = 4, p-value = 0.007406

With an **ANOVA p-value of 0.0003** and a **Kruskal-Wallis p-value of 0.007406**, the treatments are significantly different at the alpha=0.05 level, and we continue with multiple comparisons testing with the Tukey HSD test (multcompare in MATLAB), and the Dunn's test (PMCMR package in R).

Fig 3A (bottom) for Day 25 (CIP^R lineages)

A one-way ANOVA is performed (anova1 in MATLAB) on the $log₂$ MIC_{CIP} values of these lineages:

We also performed the non-parametric Kruskal-Wallis test (in R): > kruskal.test(value ~ lineage, data = Fig3AbottomCIPR_day25)

Kruskal-Wallis rank sum test

data: value by lineage Kruskal-Wallis chi-squared = 15.179, df = 4, p-value = 0.004345

With an **ANOVA p-value of 4.4x10-6** and a **Kruskal-Wallis p-value of 0.004345**, the treatments are significantly different at the alpha=0.05 level, and we continue with multiple comparisons testing with the Tukey HSD test (multcompare in MATLAB), and the Dunn's test (PMCMR package in R).

Fig 3B

A one-way ANOVA is performed (anova1 in MATLAB) on the $log₂$ MIC_{TOB} values of these lineages:

We also performed the non-parametric Kruskal-Wallis test (in R): > kruskal.test(value ~ lineage, data = Fig3B)

Kruskal-Wallis rank sum test

data: value by lineage Kruskal-Wallis chi-squared = 12.987, df = 3, p-value = 0.004665

With an **ANOVA p-value of 1.48x10-5** and a **Kruskal-Wallis p-value of 0.004665**, the treatments are significantly different at the alpha=0.05 level, and we continue with multiple comparisons testing with the Tukey HSD test (multcompare in MATLAB), and the Dunn's test (PMCMR package in R).

Fig 3C (top)

A one-way ANOVA is performed (anoval in MATLAB) on the $log₂$ MIC_{PIP} values of these lineages:

We also performed the non-parametric Kruskal-Wallis test (in R): > kruskal.test(value ~ lineage, data = Fig3Ctop)

Kruskal-Wallis rank sum test

data: value by lineage Kruskal-Wallis chi-squared = 10.211, df = 3, p-value = 0.01685

With an **ANOVA p-value of 0.0014** and a **Kruskal-Wallis p-value of 0.01685**, the treatments are significantly different at the alpha=0.05 level, and we continue with multiple comparisons testing with the Tukey HSD test (multcompare in MATLAB), and the Dunn's test (PMCMR package in R).

Fig 3C (middle)

A one-way ANOVA is performed (anoval in MATLAB) on the $log₂$ MIC_{PIP} values of these lineages:

We also performed the non-parametric Kruskal-Wallis test (in R): > kruskal.test(value ~ lineage, data = Fig3Cmiddle)

Kruskal-Wallis rank sum test

data: value by lineage Kruskal-Wallis chi-squared = 10.788, df = 3, p-value = 0.01293

With an **ANOVA p-value of 0.0008** and a **Kruskal-Wallis p-value of 0.01293**, the treatments are significantly different at the alpha=0.05 level, and we continue with multiple comparisons testing with the Tukey HSD test (multcompare in MATLAB), and the Dunn's test (PMCMR package in R).

Fig 3C (bottom)

A one-way ANOVA is performed (anova1 in MATLAB) on the $log₂$ MIC_{CIP} values of these lineages:

We also performed the non-parametric Kruskal-Wallis test (in R): > kruskal.test(value ~ lineage, data = Fig3Cbottom)

Kruskal-Wallis rank sum test

data: value by lineage Kruskal-Wallis chi-squared = 11.901, df = 3, p-value = 0.00773

With an **ANOVA p-value of 5.23x10-5** and a **Kruskal-Wallis p-value of 0.00773**, the treatments are significantly different at the alpha=0.05 level, and we continue with multiple comparisons testing with the Tukey HSD test (multcompare in MATLAB), and the Dunn's test (PMCMR package in R).

Collateral sensitivity (S4 Fig)

S4A Fig (left)

A one-way ANOVA is performed (anoval in MATLAB) on the $log₂$ MIC_{TOB} values of these lineages:

We also performed the non-parametric Kruskal-Wallis test (in R):

> kruskal.test(value ~ lineage, data = FigS4Aleft)

Kruskal-Wallis rank sum test

data: value by lineage Kruskal-Wallis chi-squared = 13.175, df = 3, p-value = 0.004272

With an **ANOVA p-value of 1.74x10-5** and a **Kruskal-Wallis p-value of 0.004272**, the

treatments are significantly different at the alpha=0.05 level, and we continue with multiple comparisons testing with the Tukey HSD test (multcompare in MATLAB), and the Dunn's test (PMCMR package in R).

S4A Fig (right)

A one-way ANOVA is performed (anoval in MATLAB) on the $log₂$ MIC_{PIP} values of these lineages:

We also performed the non-parametric Kruskal-Wallis test (in R): > kruskal.test(value ~ lineage, data = FigS4Aright)

Kruskal-Wallis rank sum test

data: value by lineage Kruskal-Wallis chi-squared = 11.454, df = 3, p-value = 0.009507

With an **ANOVA p-value of 0.009507** and a **Kruskal-Wallis p-value of 0.009507**, the treatments are significantly different at the alpha=0.05 level, and we continue with multiple comparisons testing with the Tukey HSD test (multcompare in MATLAB), and the Dunn's test (PMCMR package in R).

S4B Fig

A one-way ANOVA is performed (anova1 in MATLAB) on the $log₂$ MIC_{TOB} values of these lineages:

We also performed the non-parametric Kruskal-Wallis test (in R): > kruskal.test(value ~ lineage, data = FigS4B)

Kruskal-Wallis rank sum test

data: value by lineage Kruskal-Wallis chi-squared = 11.16, df = 3, p-value = 0.01089

With an **ANOVA p-value of 0.004** and a **Kruskal-Wallis p-value of 0.01089**, the treatments are significantly different at the alpha=0.05 level, and we continue with multiple comparisons testing with the Tukey HSD test (multcompare in MATLAB), and the Dunn's test (PMCMR package in R).

S4C Fig

A one-way ANOVA is performed (anoval in MATLAB) on the $log₂$ MIC_{PIP} values of these lineages:

We also performed the non-parametric Kruskal-Wallis test (in R): > kruskal.test(value ~ lineage, data = FigS4C)

Kruskal-Wallis rank sum test

data: value by lineage Kruskal-Wallis chi-squared = 11.53, df = 3, p-value = 0.009178

With an **ANOVA p-value of 0.001** and a **Kruskal-Wallis p-value of 0.009178**, the treatments are significantly different at the alpha=0.05 level, and we continue with multiple comparisons testing with the Tukey HSD test (multcompare in MATLAB), and the Dunn's test (PMCMR package in R).

Piperacillin-resistant clinical isolates (Fig 7 of main text)

Clinical Isolate #1

The normalized values are calculated by subtracting the average of the Day $1 \log_2 MIC_{\text{PIP}}$ values from the raw values. More explicitly,

Normalized $log_2 MIC_{PIP}$ of Day 1 Clinical Isolate #1 evolved to tobramycin: $[6 7 5]$ - mean($[6 7 5]$) = $[0 1 -1]$

Normalized log_2 MIC_{PIP} of Day 10 Clinical Isolate #1 evolved to tobramycin: $[2 7 5]$ - mean($[6 7 5]$) = $[-4 1 -1]$

Normalized log_2 MIC_{PIP} of Day 1 Clinical Isolate #1 evolved to ciprofloxacin: $[6 5 6]$ - mean($[6 5 6]$) = $[0.33 -0.67 0.33]$

Normalized log_2 MIC_{PIP} of Day 10 Clinical Isolate #1 evolved to ciprofloxacin: $[5 6 6]$ - mean($[6 5 6]$) = $[-0.67 0.33 0.33]$

Normalized log_2 MIC_{PIP} of Day 1 Clinical Isolate #1 evolved to LB: $[7 7 7]$ - mean($[7 7 7]$) = $[0 0 0]$

Normalized log_2 MIC_{PIP} of Day 10 Clinical Isolate #1 evolved to LB:

 $[8 8 8]$ - mean($[7 7 7]$) = $[1 1 1]$

Similar calculations are done for Clinical Isolates #2 and #3.

Next, a one-way ANOVA is performed (anova1 in MATLAB) on the normalized Day 10 $log₂$ MIC_{PIP} values:

We also performed the non-parametric Kruskal-Wallis test (in R): > kruskal.test(value ~ lineage, data = PIPRCI1)

Kruskal-Wallis rank sum test

```
data: value by lineage
Kruskal-Wallis chi-squared = 4.1835, df = 2, p-value = 0.1235
```
With an **ANOVA p-value of 0.2367** and a **Kruskal-Wallis p-value of 0.1235**, the treatments are not significantly different at the alpha=0.05 level, and we do not continue with multiple comparisons testing.

Clinical Isolate #2

A one-way ANOVA is performed (anova1 in MATLAB) on the normalized Day 10 log² MIC_{PIP} values:

We also performed the non-parametric Kruskal-Wallis test (in R): > kruskal.test(value ~ lineage, data = PIPRCI2)

Kruskal-Wallis rank sum test

data: value by lineage Kruskal-Wallis chi-squared = 7.5789, df = 2, p-value = 0.02261 With an **ANOVA p-value of 0.0041** and a **Kruskal-Wallis p-value of 0.02261**, the treatments are significantly different at the alpha=0.05 level, and we continue with multiple comparisons testing with the Tukey HSD test (multcompare in MATLAB), and the Dunn's test (PMCMR package in R).

Clinical Isolate #3

A one-way ANOVA is performed (anova1 in MATLAB) on the normalized Day 10 log² MIC_{PIP} values:

We also performed the non-parametric Kruskal-Wallis test (in R): > kruskal.test(value ~ lineage, data = PIPRCI3)

Kruskal-Wallis rank sum test

data: value by lineage Kruskal-Wallis chi-squared = 6.9524, df = 2, p-value = 0.03092 With an **ANOVA p-value of 0.0004** and a **Kruskal-Wallis p-value of 0.03092** and a **Kruskal-Wallis p-value of 0.03092**, the treatments are significantly different at the alpha=0.05 level, and we continue with multiple comparisons testing with the Tukey HSD test (multcompare in MATLAB).

Hocquet Isolates (Fig 8 of main text)

AWT vs. APM

The normalized values are calculated by subtracting the average of the Day 1 $log_2 MIC_{TOB}$ values from the raw values. More explicitly,

Normalized log_2 MIC_{TOB} of Day 1 A_{WT}: $[0 2 3]$ - mean($[0 2 3]$) = $[-1.67 0.33 1.33]$

Normalized log_2 MIC_{TOB} of Day 1 A_{PM}:

 $[1 1 1]$ - mean($[1 1 1]$) = $[0 0 0]$

Normalized log_2 MIC_{TOB} of Day 15 A_{WT}: $[6 6 5]$ - mean($[0 2 3]$) = $[4.33 4.33 3.33]$

Normalized log_2 MIC_{TOB} of Day 15 A_{PM}: $[3 2 3]$ - mean($[1 1 1]$) = $[2 1 2]$

A two-sample t-test is (t test2 in MATLAB) then performed on the normalized log_2 MIC_{TOB} values of Day 15 A_{WT} vs. Day 15 A_{PM} and yields $p = 0.0078$.

A Wilcoxon rank sum test (ranksum in MATLAB) was also performed on the normalized $log₂$ MIC_{TOB} values of Day 15 A_{WT} vs. Day 15 A_{PM} and yielded $p= 0.1$. Note that the smallest p-value that can be detected with a two-sided Wilcoxon rank sum test with three samples in both groups is 0.1.

Similar calculations are done for the B, C, and D pairs of clinical isolates.

BWT vs. BPM

Two-sample t-test of normalized Day 15 B_{WT} vs. Day 15 B_{PM} yields: $p = 0.040$

A Wilcoxon rank sum test (ranksum in MATLAB) was also performed on the normalized log₂ MIC_{TOB} values of Day 15 B_{WT} vs. Day 15 B_{PM} and yielded $p= 0.1$. Note that the smallest p-value that can be detected with a two-sided Wilcoxon rank sum test with three samples in both groups is 0.1.

CWT vs. CPM

Two-sample t-test of normalized Day 15 C_{WT} vs. Day 15 C_{PM} yields: $p = 0.040$

A Wilcoxon rank sum test (ranksum in MATLAB) was also performed on the normalized \log_2 MIC_{TOB} values of Day 15 C_{WT} vs. Day 15 C_{PM} and yielded $p= 0.1$. Note that the smallest p-value that can be detected with a two-sided Wilcoxon rank sum test with three samples in both groups is 0.1.

DWT vs. DPM

Two-sample t-test of normalized Day 15 D_{WT} vs. Day 15 D_{PM} yields: $p = 1$

A Wilcoxon rank sum test (ranksum in MATLAB) was also performed on the normalized log₂ MIC_{TOB} values of Day 15 D_{WT} vs. Day 15 D_{PM} and yielded $p=0.4$.