
Supplementary Information

Adding tsetse control to medical activities contributes to decreasing

transmission of sleeping sickness in the Mandoul focus (Chad)

Mahamat Hissene Mahamat1, Mallaye Peka2, Jean-Baptiste Rayaisse*3, Kat S. Rock4,
Mahamat Abdelrahim Toko1, Justin Darnas2, Guihini Mollo Brahim1, Ali Bachar Alkatib†1,

Wilfrid Yoni3, Inaki Tirados5, Fabrice Courtin6, Samuel P. C. Brand4, Cyrus Nersy1,
Idriss Oumar Alfaroukh1, Steve J. Torr4,5, Mike J. Lehane5, Philippe Solano6

* Corresponding author: jbrayaisse@hotmail.com
† In memory of Ali Bachar Alkatib, killed by bees during the field work reported here.
1 Institut de Recherche en Elevage pour le Développement (IRED), Ndjaména, Chad
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en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
4 University of Warwick, Coventry, United Kingdom

5 Liverpool School of Tropical Medicine, Liverpool, United Kingdom
6 Institut de Recherche pour le Développement,
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S1 Statistical model selection

To assess the impact of the tiny target intervention on the tsetse population size a statistical analysis
was performed using an ensemble of generalised linear mixed effects models (GLMMs) with the
number of tsetse flies capture per trapping event as the response variable. As is standard with count
data Poisson error distributions were assumed and a log link function was used to transform the
linear predictor into a Poisson mean prediction. A plausible range of fixed and random effect were
considered which included both intervention impact, climatic predictors and spatial location. A full
list of the considered effects is given in Table S1 and a list of considered GLME models and their
corresponding corrected Akaike Information Criterions (AICcs) is presented in Table S2.

The model with the lowest AICc was found to be Model G, which included the location specific
baselines, the target deployment indictor as fixed effects and overdispersion. The other selected
model, Model F, was chosen as it was within 2 AICc of the best model; it was identical to model
G except that mean daily precipitation over the 2 weeks before trap collection was included as a
fixed effect.. Both selected models (G and F) found that the target deployment indicator was highly
significant (P < 10−18 and P < 10−11 respectively). These results are evidence that the intervention
was impactful as the selected models were strongly selected over the null statistical model (Model
I). Coefficients and standard errors of models F and G are given in Tables S3 and S4 respectively.
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Table S1: Possible fixed and random effects list

Name Description

1T0 Indicator for whether the catch occurred in T0 (before target deployment)
or not (after target deployment)

Temp Temperature (◦C) given as the mean over the monitoring period and the
proceeding week as measured from the closest weather station (Moundou)
[S11]

Rain Rainfall (mm) given as the mean over the monitoring period and the pro-
ceeding week as measured from the closest weather station (Moundou)
[S11]

Capture Specific capture (i.e. specific trap at given sampling period, 396 captures)

Trap Specific trap location (44 traps)

Loc Grouped spatial locations of traps (15 locations)

16days Indicator for whether the trap was deployed for 6 days or not (2 days)

Table S2: GLME model selection

Model AICc

A Number ∼ 1 + 1T0 + Rain*Temp+ loc + 16days + (1|Capture) + (1|Trap) 203.3

B Number ∼ 1 + 1T0 + Rain*Temp+ loc + 16days + (1|Capture) 201.6

C Number ∼ 1 + 1T0 + Rain*Temp - Temp + loc + 16days + (1|Capture) 200.1

D Number ∼ 1 + 1T0 + Rain + Temp + loc + 16days + (1|Capture) 200.1

E Number ∼ 1 + 1T0 + Rain + loc + 16days + (1|Capture) 198.4

F Number ∼ 1 + 1T0 + Rain + loc + (1|Capture) 196.8

G Number ∼ 1 + 1T0 + loc + (1|Capture) 195.0

H Number ∼ 1 + 1T0 + (1|Capture) 224.2

I Number ∼ 1 + (1|Capture) 249.87

Table S3: Model F fixed effects coefficients

Name Estimate Standard error p Value

Intercept -5.65 1.48 0.000151

Loc: Taboumti -15.7 2020 0.994

Loc: Bekono -15.7 2020 0.994

Loc: Dedaye -15.7 2020 0.994

Loc: Danmandja 1.64 1.46 0.260

Loc: Sananga -15.7 2020 0.994

Loc: Daraibe 2.30 1.40 0.102

Loc: Dankou 2.73 1.39 0.0500

Loc: Betoyo 2 1.27 1.37 0.357

Loc: Deb Sanadjio 2 -0.737 1.77 0.678

Loc: Kobitoye 0.716 1.48 0.630

Loc: Danmandja1 -15.7 2020 0.994

Loc: Kousseri -0.737 1.77 0.678

Loc: Lapia -15.7 884 0.986

1T0 5.40 0.734 1.20×10−12

Rain 0.0475 0.299 0.874
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Table S4: Model G fixed effects coefficients

Name Estimate Standard error p Value

Intercept -5.57 1.40 7.73×10−5

Loc: Taboumti -15.6 1870 0.993

Loc: Bekono -15.6 1870 0.993

Loc: Dedaye -15.6 1870 0.993

Loc: Danmandja 1.64 1.46 0.260

Loc: Sananga -15.6 1880 0.993

Loc: Daraibe 2.29 1.40 0.102

Loc: Dankou 2.73 1.39 0.0501

Loc: Betoyo 2 1.27 1.37 0.357

Loc: Deb Sanadjio 2 -0.737 1.77 0.678

Loc: Kobitoye 0.716 1.48 0.630

Loc: Danmandja1 -15.6 1880 0.993

Loc: Kousseri -0.737 1.77 0.678

Loc: Lapia -16.0 1060 0.988

1T0 5.33 0.555 1.08×10−19
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An observed power calculation was performed retrospectively [S16]. Because closed form distribution
functions are unavailable for GLMMs the methodology of Johnson et al. [S9] was followed in sampling
from the GLMM models that best fitted the data in order to construct an estimate of the power of
the study as a function of the critical significance level (α). This was done by:

1. Resampling a synthetic capture data set 10,000 times from each of the best two GLMMs.

2. Refitting each of the best two GLMMs for each synthetic data set and calculating the p-value
associated with the null hypothesis that the intervention effect was 0.

3. The observed power estimate for any given critical significance level, α, is the relative frequency
of p-values below the significance level. Confidence intervals for the observed power were
constructed using bootstrapping.

Using “highly significant” (α = 0.001) as the critical value for rejecting the null hypothesis (that
the intervention did nothing) in favour of the intervention having an effect, implied that an observed
power for Model F is 0.9739 [0.9706, 0.9768] and for Model G observed power is 0.9946 [0.9930,
0.9960]. Figure S1 shows a plot of the observed power of the study against α (the critical value
chosen for rejecting the null hypothesis). The exceptionally high retrospective observed power for the
study is unsurprising because the intervention effect estimated from the study was large and highly
statistically significant.

A couple of statistical points should be noted: (i) that the hypothesis test for rejecting the null
hypothesis is two-sided due to the MATLAB method of calculating the p-value, however each re-
fitted GLMM found the intervention effect as negative for the expected number of tsetse flies trapped
and (ii) the effect of clustering in the underlying data on statistical prediction is accounted for within
the GLMM framework by allowing cluster specific fixed and/or random effects, e.g. the trap location
specific fixed effects in the best fitting models in this study (see Bolker et al [S1] for a discussion of
GLMM best-practice in ecological modelling). Therefore, effective sample size corrections (e.g. the
design effect) and measures of clustered data relatedness (e.g. intraclass correlation) are unnecessary
in this context.

4



10
-20

10
-15

10
-10

10
-5

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
b
s
e
rv

e
d
 P

o
w

e
r

Model F

10
-20

10
-15

10
-10

10
-5

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
b
s
e
rv

e
d
 P

o
w

e
r

Model G

Figure S1: Observed power by significance level (α) under the two best GLMMs, Model F and Model
G.
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Figure S2: Multi-host model of HAT with one host species able to confer HAT (humans), a further
non-reservoir species (others) and tsetse. Human hosts follow the progression which includes an
infectious stage 1 disease, IH1, infectious stage 2 disease, IH2, and a non-infectious (due to hospi-
talisation) disease, R1. PV are pupal stage tsetse which emerge into unfed adults. Unfed tsetse are
susceptible, SV , and following a blood-meal become either exposed, EV , or have reduce susceptibility
to the trypanosomes, GV . Tsetse select their blood-meal from one of the two host species depen-
dant upon innate feeding preference, s, and relative host abundance, k. Any blood-meals taken upon
“other” hosts do not result in infection. The transmission of infection between humans/tsetse and
reservoirs/tsetse is shown by grey paths. This figure is adapted from the original model schematic
[S13].

S2 Dynamic model structure

S2.1 Model description and equations

The HAT model equations are given below (S2.1) and correspond with the compartmental diagram,
Fig S2, and the model outputs, Fig S3. The model is largely the same as that presented by Rock et
al [S13] and [S14].

Human hosts are assumed to be in one of four distinct classes: either low-risk and randomly participate
in screening (subscript H1), high-risk and random participation (H2), low-risk and never participate
in screening (H3) or high-risk and never participate. Tsetse bites are assumed to be taken on humans
or animals. The model incorporates reservoir animals which can become infected and assumes that
the remainder of the bites are taken on non-reservoir animal species which do not need to be explicitly
modelled.
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The free parameters, k1, k2, k3, k4,meff , r, fA, NA, u, d1 (denoted by “Fitted’ in the table) were
fitted to data using MCMC.
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dSHi

dt
= µHNHi + ωHRHi − αmefffi

SHi

NHi
IV − µHSHi

dEHi

dt
= αmefffi

SHi

NHi
IV − (σH + µH)EHi

dI1Hi

dt
= σHEHi − (ϕH + d1 + µH)I1Hi

dI2Hi

dt
= ϕHI1Hi − (γH + µH)I2Hi
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dt
= d1I1Hi + γHI2Hi − (ωH + µH)RHi

Animals
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(S2.1)

The function which describes the probability of both hitting a target and dying is time dependent
(days) from when the targets where placed:

fT (t) = fmax

(
1− 1

1 + exp(−0.068(mod(t, 365)− 127.75))

)
(S2.2)

and fmax is chosen to be 0.42 so that the tsetse population is at the observed 99% reduction four
months after deployment.

NH =
∑

iNHi and the actual number of vectors is SV , E1V , E2V , E3V and IV multiplied by NV /NH .
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∑
i fi = fH i.e. the total proportion of tsetse bites taken on humans. si is the relative availabil-

ity/attractiveness of different host types, so for the 4 different humans types (low/random partici-
pant, high/random, low/non-participant, high/non), where high risk humans are r-fold more likely

to receive bites, s = (1, r, 1, r). The fi’s are calculated using fi =
siNHi∑
j sjNHj

.

S2.2 Parameter table

S2.3 Output

The compartmental ODE model is simulated to compute the disease dynamics in humans, animals
and tsetse (see Fig S3). The total annual passive reported cases for year, T is calculated by integrating
over the new hospitalisations from self-presentation multiplied by the reporting parameter, u, to
compensate for underreporting of passive cases:

PM = u
∑
i

∫ T+1

T
d1I1Hi(t) + γHI2Hi(t) dt (S2.3)

where i ∈ all human types), whereas the active number of reported cases is given as:

AM =
∑

j proportion screened

× test sensitivity
× compliance
×(I1Hj(T ) + I2Hj(T ))

+ proportion screened
× (1− test specificity)
× compliance
×(NHj(T )− I1Hj(T )− I2Hj(T ))

(S2.4)

where j ∈ random participants. The number of reported cases seen under the model is also shown
in Fig S3.

S3 Model analysis

S3.1 Fitting and selection

Data was provided at an annual temporal resolution, however it is known that many years had
multiple rounds of active screening. Since the number and timing of screenings is largely unclear, an
algorithm which estimates these was used in this analysis and is summarised in Table S6.

The model was fitted to human case data between 2000 and 2013. Out of these years, 2000–2004
and 2006 had no (or very little) staging information for passive cases. For active detections or passive
detections in other years, any cases without staging information were assumed to occur with the same
proportion of stage 1 and 2 to those with staging information. Using this the model could be fitted
to staged case data using the likelihood function:

LL(θ|x) ∝ log(P(x|θ))
=

∑2013
i=2000 ln

[
Bin(A1D(i); z(i)NH ,

A1M (i)
NH

)
]

+ ln
[
Bin(A2D(i); z(i)NH ,

A2M (i)
NH

)
]

+
∑

i=j ln
[
Bin(PD(i);NH ,

PM (i)
NH

)
]

+
∑

i=k ln
[
Bin(P1D(i);NH ,

P1M (i)
NH

)
]

+ ln
[
Bin(P2D(i);NH ,

P2M (i)
NH

)
]

(S3.1)
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where j = {2000, 2001, 2002, 2003, 2004, 2006}, k = {2000, ..., 2013} \ j. The model takes the
parameterisation θ = (R0, r, k1, k2, k3, k4, kA, fA, d1, u), x is the data, Bin(m;n, p) is the binomial
probability of obtaining m successes out of n trials with probability p. A1D(i), A2D(i), P1D(i), P2D(i)
are the number of stage 1 and 2 active/stage 1 and 2 passive cases in year i of the data. PD(i) is the
number of unstaged passive cases in year i of the data. Similarly, A1M (i), A2M (i), P1M (i), P2M (i)
are the number of stage 1 and 2 active/stage 1 and 2 passive cases in year i of the model. PD(i) is
the number of unstaged passive cases in year i of the model. z(i) is the percentage of the population
screening in year i.

Metropolis Hastings MCMC was used to produce 10,000 samples with parameters drawn from the
posterior parameter distribution. Few assumptions were made about the parameter distribution
before fitting and so typically uninformative priors were used, the prior distributions are given in
Table S7. Mean posterior estimates with 95% credible intervals obtained from fitting to data are
given in Table S9.

Different variations of the model were fitted to determine the best choice of model structure. Variants
were the same as those described in Rock et al [S13] and included ones with and without non-human
animal reservoirs and different types of active screening participation in the human population (see
Table S8).

Model selection was performed using the popular deviance information criterion (DIC),

DIC = −2LL(θ̄) + 4V ar(LL(θ)) (S3.2)

which assigns a lower score to models with high posterior mean log-likelihood whilst penalising models
with a larger number of parameters [S8]. The relative likelihood of model i was computed using,

Relative DIC = exp ((DICmin −DICi)/2) (S3.3)

and was used to compare models. As shown in Table S8, it was found that Model 5 which had both
low and high-risk human groups, with some humans not participating in screening but no infected
animals, was best supported by the available data. Model 8 which is the same but with animal
infection, had slightly less support. Models 4 and 7 also had some support, but all other models
were found to be less well supported by current data. In further analysis, the Models 4, 5, 7 and 8
were used for the analysis, weighted by their DIC score.
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Table S5: Parameter notation and values used in this analysis, following Rock et al [S13]

Notation Description Value Source

µH Natural human mortality rate 5.4795 ×10−5 days−1 [45]

BH Human birth rate = µHNH -

σH Human incubation rate 0.0833 days−1 [S15]

ϕH Stage 1 to 2 progression rate 0.0019 days−1 [S3, S4]

d1 Passive detection rate from
stage 1

- Fitted

γH Passive detection rate from
stage 2

0.006 days−1 Assumed

Frequency of screening Annual -

Active screen diagnostic algo-
rithm sensitivity

0.91 Averaged from [S2]

Active screen diagnostic algo-
rithm specificity

1 [S2]

Treatment compliance 1 Assumed

ηH Pulsed active screening

ωH Recovery rate 0.006 days−1 [S10]

NH Total human population size 38674

k1 Proportion of low-risk, ran-
domly participating individuals

- Fitted

m Relative tsetse density = NV /NH -

µV Tsetse mortality rate 0.03 days−1 [S15]

α Tsetse bite rate 0.333 days−1 [S17]

σV Tsetse incubation rate 0.034 days−1 [S5, S12]

pV Probability of tsetse infection
per single infective bite

0.065 [S13]

pH Probability of human infection
per single infective bite

- Fitted

meff Effective tsetse density = mpH Fitted

ε Reduced non-teneral suscepti-
bility

0.05 [S13]

fH Proportion of blood-meal on
humans

0.5 Assumed, but other values
use in preliminary analysis
did not impact results

r relative risk of taken on high-
risk humans compared to low-
risk

- Fitted

µA Reservoir animal mortality rate 0.0014 days−1 Assumed

BA Reservoir animal birth rate = µANA -

σA Reservoir animal incubation
rate

0.0833 days−1 [S15]

fA Proportion of blood-meals on
reservoir animals

- Fitted

NA Reservoir animal population
size

- Fitted

pA Probability of reservoir animal
infection per single infective
bite

- Fitted
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Figure S3: Example disease dynamics of the human, animal, tsetse model. The top 3 graphs show
the continuous disease dynamics generated by the ODE model, with active, pulsed screening taking
place from 2002 and a passive reporting level of u = 0.22. Additionally vector control with a 99%
reduction in tsetse after 4 months is started in 2014, and improved passive detection and reporting
is started in 2015. The bottom graph shows the expect number of cases and new infections which
are computed after obtaining the solutions to the ODE (see (S2.3) and (S2.4)).

Table S6: Algorithm for estimating number and timing of active screening

Annual total people screened Assumed number of screenings Assumed screening timing

0–9,999 1 January
10,000–19,999 2 January, July

20,000+ 3 January, May, September
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Parameter Prior

R0* U(0, ∞)
r U(1, 100)
k1 U(0, 1)
k2 U(0, 1)
k3 U(0, 1)
kA U(0, ∞)
fA U(0, 0.5)
d1 U(0, ∞)
u Beta(2,2)

*meff was fitted by varying R0

Table S7: Prior distributions for target parameters

Model
Random participation Non-participation

Animals Relative DIC
Low-risk High-risk Low-risk High-risk

1 X 10−87

2 X X 10−21

3 X X 10−23

4 X X 0.250
5 X X X X 1
6 X X 10−13

7 X X X 0.129
8 X X X X X 0.683

Table S8: Different model structures under consideration and their relative DIC values in fitting using
2000–2013 data
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Model 4 Model 5 Model 7 Model 8

Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

R0 1.029949 [1.028260, 1.032260] 1.052750 [1.044050, 1.065790] 1.029149 [1.025800, 1.031890] 1.051330 [1.040890, 1.064960]
R2

0 1.060795 [1.057319, 1.065561] 1.108283 [1.090040, 1.135908] 1.059148 [1.052266, 1.064797] 1.105295 [1.083452, 1.134140]
r 1.747933 [1.480120, 2.192525] 54.935923 [8.259660, 97.733500] 1.730117 [1.444420, 2.196685] 53.238791 [10.259400, 97.238400]
k1 0.664222 [0.540762, 0.806268] 0.386807 [0.271427, 0.514917] 0.664711 [0.536321, 0.811379] 0.389278 [0.266366, 0.529115]
k2 0 - 0.261779 [0.205645, 0.305139] 0 - 0.267121 [0.218550, 0.313704]
k3 0 - 0.032780 [0.000910, 0.118150] 0 - 0.029539 [0.000800, 0.100289]
k4 0.335778 [0.459238, 0.193732] 0.318634 [0.209325, 0.433786] 0.335289 [0.188621, 0.463679] 0.314063 [0.198777, 0.430251]
kA - - - - 6.035863 [0.769011, 9.834170] 5.684467 [0.733206, 9.799450]
fA 0 - 0 - 0.106916 [0.003943, 0.323657] 0.128419 [0.004618, 0.385374]
d1 0.000467 [0.000390, 0.000552] 0.000465 [0.000389, 0.000546] 0.000465 [0.000389, 0.000553] 0.000464 [0.000387, 0.000551]
u 0.218124 [0.195748 0.244360] 0.186389 [0.166166, 0.208225] 0.220168 [0.197305, 0.246615] 0.188980 [0.167143, 0.212998]

Table S9: Parameter means and 95% credible intervals for models with moderate support from DIC
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S3.1.1 Parameter uncertainty

Using MCMC allowed many parameters in the model to be estimated. These fitted parameters were
the ones for which there was most uncertainty and are hard or impossible to directly measure. Other
parameters, such as the tsetse bite rate and human life expectancy, have already been established
directly and so these were not varied. For each of the fitted parameters, a posterior distribution was
generated which captures the uncertainty in the parameter distribution. These are shown for Models
4, 5, 7 and 8 (Fig S4).
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(b) Model 5
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(c) Model 7
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(d) Model 8

Figure S4: Posterior parameter distributions

Some parameters have quite tight posterior distributions, for example the basic reproduction number
(R0), the reporting rate from stage 1 disease (d1) and the reporting probability (u). Under all models
their mean values and credible intervals were similar.
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In models with animal reservoirs (Models 7 and 8), there was large uncertainty in both the relative
size of the reservoir (kA) and frequency of tsetse bites on them (fA) and so their posterior distribution
have wide ranges. Likewise it is hard to disentangle the relative exposure of high-risk individuals from
low-risk ones (r) from proportions of people in different groups if all combinations of low/high risk
and participating/non-participating groups are included in the model (Models 5 and 8).

S3.2 Model validation

In order to assess the predictive ability of the model, an additional fitting round was performed using
epidemiological data for the years 2000–2006 and only the number of people screened for 2007–2015.
In this case, model outputs for 2007–2013 are the model’s prediction for the number of cases in these
years which had only medical interventions (see green box and whisker plots in Fig S5).

Analysis using DIC indicated that there is strong support for models with a mixture of high and low
risk people participating/not participating in screening (Models 5 and 8) as demonstrated by the
relative DIC scores (Table S10).

It is seen that the model predictions for years 2007–2015 (Fig S5) are very similar to the full model fit
shown in Fig 5 (main text) and match the observed trend in the data, whilst slightly overestimating
the number of active detections in some years. This demonstrates the predictive ability of the model
despite some missing information such as the timing of active screenings and staging information in
the early part of this period (e.g. passive detection between 2000–2004 had no staging information).
As would be anticipated, credible intervals for 2014 onwards are notably larger when fewer years
were used to fit the model. However, the predictions from the two fits still display similar dynamics,
with any combined medical/vector control strategy leading to very low numbers of cases from 2017
onwards, compared to a slower decline under the medical-only strategies. Using a longer period of
epidemiological data leads to less variation in model predictions and more confidence in short-range
predictions as the data used for fitting are more recent.

Model
Random participation Non-participation

Animals Relative DIC
Low-risk High-risk Low-risk High-risk

1 X 10−48

2 X X 10−27

3 X X 10−19

4 X X 0.0204
5 X X X X 1
6 X X 10−21

7 X X X 0.0056
8 X X X X X 0.3203

Table S10: Different model structures under consideration and their relative DIC values in fitting
using only 2000–2006 data

16



2000 2005 2010 2015 2020
0

20

40

60

%
 s

c
re

e
n

e
d

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020
0

100

200

300

400

500

600

A
c
ti
v
e

 D
e

te
c
ti
o

n
s

Data

Fitted

Basic medical

Improved medical

Basic medical + VC

Improved medical + VC

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Year

0

50

100

150

200

250

P
a

s
s
iv

e
 D

e
te

c
ti
o

n
s

Figure S5: Grey box plots show the model fit to data from years 2000–2006. Green box plots for the
years 2007–2013 are model predictions generated using the known level of active screening in each
year. 2014 onwards was simulated under four strategies: (1) basic medical, using known levels of
active screening and assuming passive detection continued unchanged in 2015, (2) improved medical,
using known active screening and assuming passive detection and reporting rates doubled in 2015,
(3) basic medical and vector control, the same as basic medical with vector control from 2014, and
(4) improved medical and vector control, the same as improved medical with vector control from
2014. Strategy 4 represents the strategy that occurred in 2014–2015 and is coloured purple.
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S4 Contribution to R0

Using the Next Generation Matrix (NGM) approach [S6], a vector-host system can be analysed to
determine the roles of different host types in maintaining infection. The NGM for this system (but
which does not include stage 1 passive detection) is given elsewhere [S13].

Following Funk et al [S7], if K is the NGM, then R0 is the spectral radius of the NGM, ρ(K),
and the ’host-specific’ reproduction numbers for this system, Uh and Ua for humans and animals
respectively, are computed using:

Ui = ρ((Pv + Pi)K), i ∈ {h, a}

with

Pv =

 08 0
. . .

...
0 . . . 14


Ph =

 16 0
. . .

...
0 . . . 06


Pa =

 06 0

12
...

0 . . . 04


By using parameterisation from the posterior distribution under Models 7 and 8, in 5.3% and 1.6%
of parameter space respectively both Uh < 1 and Ua < 1, meaning that neither host species is
classified as a maintenance host, but both are necessary for disease persistence. In the rest, Uh > 1
and Ua < 1, meaning that humans are both a maintenance host (can sustain disease without animals)
and a reservoir (are necessary to have endemic disease).
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