Stem Cell Reports, Volume 9

### **Supplemental Information**

### **Reactive Astrocytes Promote ALS-like Degeneration and Intracellular**

#### Protein Aggregation in Human Motor Neurons by Disrupting Autophagy

### through TGF-β1

Pratibha Tripathi, Natalia Rodriguez-Muela, Joseph R. Klim, A. Sophie de Boer, Sahil Agrawal, Jackson Sandoe, Claudia S. Lopes, Karolyn Sassi Ogliari, Luis A. Williams, Matthew Shear, Lee L. Rubin, Kevin Eggan, and Qiao Zhou

#### Supplementary Figures and Legends



# Figure S1: Immunohistochemical analysis of mutant astrocytes (associated with Figure 1).

Immunohistochemistry showed that astrocyte cultures obtained from adult and postnatal mouse spinal cord are highly enriched for GFAP<sup>+</sup>S100b<sup>+</sup>astrocytes (**A**, **D**) and devoid of TUJ1<sup>+</sup> neurons, O4<sup>+</sup> oligodendrocytes, and IBA1<sup>+</sup> microglia (**B**, **C**, **E**, **G**). A small number of NG2<sup>+</sup> cells are present in the cultures (**B**, **E**). A mixed

culture of embryonic mouse brain served as positive controls for O4 and IBA1 antibody staining (**H**, **I**).



HB9-GFP-WT motor neurons cocultured with mutant adult astrocytes



HB9-GFP-WI Motor Neurons Mutant postnatal Astrocytes Astrocytes





Figure S2: FACS purified human embryonic stem cells derived wild-type hMNs co-cultured with SOD1 mutant adult astrocytes display protein inclusions and axonal swelling (associated with Figure 1 and Figure 2).

(**A**) Diagram of the motor neuron differentiation protocol. For details, see "Methods" section. (**B**) hES cell colony carrying the HB9-GFP transgene was expanded and differentiated for 14 days showing numerous GFP<sup>+</sup> motor neurons. (**C**) FACS plots of differentiated cell cultures from an HB9-GFP<sup>-</sup> hES line. Approximately 20% of the cells were GFP<sup>+</sup>.

There was no significant difference in the survival and neurite branching of wildtype hMNs co-cultured with either mutant postnatal astrocytes (**D**) or mutant adult astrocytes (**E**) at day 3, suggesting that the initial attachment, survival, and branching of hMNs are comparable in either condition. Quantifications are presented as mean<u>+</u>s.e.m from three separate experiments (**F**, **G**).

Additional examples of UBIQUITIN<sup>+</sup>, P62<sup>+</sup>, pNF-H<sup>+</sup> protein inclusion formation in wild-type human motor neurons co-cultured with mutant adult astrocytes for 60 days (**H-O'**). Abnormal axonal swellings were revealed by TAU staining in wild-type human motor neurons co-cultured with SOD mutant adult astrocytes (**Q**, arrowheads) in contrast to co-cultures with mutant postnatal astrocytes (**P**).



HB9-GFP-WT motor neurons cocultured with wild-type reactive astrocytes







HB9+ hMNs cocultured with WT Non Reactive Astrocytes



HB9+ hMNs cocultured with WT <u>Reactive Astrocyte</u>s



Figure S3. Wild-type hMNs co-cultured with reactive astrocytes isolated from the cortex of stab injury models of adult mice display protein inclusions and axonal swelling (associated with Figure 3).

(**A-F**) Immunohistochemistry detected robust expression of GFAP, S100b, and ALDOC of wild-type reactive astrocytes isolated from adult mice (**A-C**). No expression of these genes was seen in control fibroblasts (**D-F**). qPCR analysis of cultured wild-type adult reactive astrocyte. Compared with early postnatal astrocytes, the adult reactive astrocytes have significantly elevated expression of multiple "reactive" factors (**G**).

(**H-N**) Additional examples of TDP43<sup>+</sup>, UBIQUITIN<sup>+</sup>, hSOD1<sup>+</sup>, and p-NF-H inclusions in wild-type human motor neurons co-cultured with reactive astrocytes for 60 days. (**P**) Abnormal axonal swellings observed by TAU staining in wild-type human motor neurons co-cultured with WT reactive astrocytes (**O**, arrowheads) in comparison to non-reactive astrocytes.

## HB9-GFP-WT Motor Neurons

WT Non Reactive Astrocytes WT Reactive Astrocytes



## Figure S4. WT reactive astrocytes enhance stress granule formation in human motor neurons (associated with Figure 3).

In 3-day co-cultures of hMNs and astrocytes, the acute stress inducer Arsenite was used to induce stress granules (SG). Immunostaining with the SG marker TIA1 showed that in co-cultures with reactive astrocytes, there was a significant increase in the number of hMNs bearing SGs (**C**, **D**, **F**, **G**), as well as increased number of SGs per motor neuron (**C**, **D**, **F**, **H**), compared with controls (**A**, **B**, **E**, **G**, **H**). These data suggest increased environmental stress on hMNs from the reactive astrocytes. Quantifications are presented as mean<u>+</u>s.e.m. Data collected from at least three independent experiments each with triplicates. Three asterisks (P<0.001). Mann-Whitney test.



Figure S5. Dose response of P62 inclusion formation in wild-type human motor neurons treated with various cytokines for 14 days (associated with Figure 4).

At 2ng/ml, none of the cytokine-treated hMNs showed significant P62 inclusions. At 20ng/ml, TGF $\beta$ 1 induced large numbers of P62 inclusions in hMNs whereas IL6, CXCL1, and CXCL12 induced a small number of P62 aggregates. Inclusion formation did not appear to increase significantly at 200ng/ml for CXCL1 and CXCL12, but more were seen in IL6-treated hMNs (albeit less than that of TGF $\beta$ 1-treated samples).



## Figure S6. P62 mRNA levels in wild-type human motor neurons treated with various cytokines for 14 days (associated with Figure 6).

The ventral spinal cord tissues of wild-type control mice and hSOD1<sup>G93A</sup> mutant mice were micro-dissected and analyzed with Western Blot (**A**). P62 and UBIQUITIN levels were significantly increased in the mutant animals (**A-C**). Significant increase of p-S6, p-AKT, and p-PI3K were detected in late stage hSOD1<sup>G93A</sup> mutant mice, indicating activation of mTOR-PI3K-AKT signaling (**D-F**). Data collected from three independent experiments each with triplicates. One asterisk (P<0.05); two asterisks (P<0.01). Mann-Whitney test.

### Supplemental Tables

| Name of the RT primers | Sequence                   |
|------------------------|----------------------------|
| Gfap iso1_Fw           | acagactttctccaacctccag     |
| Gfap iso1_Rw           | ccttctgacacggatttggt       |
| Nf1a-isoA_Fw           | ccagaacttggtggatgga        |
| Nf1a-isoA_Rw           | gaaccatgtgtaggcgaagg       |
| S100b_Fw               | aacaacgagctctctcacttcc     |
| S100b_Rw               | ctccatcactttgtccacca       |
| Aldoc_Fw               | cgtaggcatcaaggttgaca       |
| Aldoc_Rw               | gagcacagcgttccaagag        |
| Aldh1l1_Fw             | tccctacttcccgtctttga       |
| Aldh1I1_Rw             | acaggctctgcccgattac        |
| Glt1_iso1&3_Fw         | ttctacagctgagagaatggtca    |
| Glt1_iso1&3_Rw         | ttcggtgctttggctcat         |
| Aqp4_Fw                | tggaggattgggagtcacc        |
| Aqp4_Rw                | tgaacaccaactggaaagtga      |
| Glast_Fw               | agaaggtaaaatcgtgcaggtc     |
| Glast_Rw               | accagattgggagggaacat       |
| Glul_Fw                | ctcgctctcctgacctgttc       |
| Glul_Rw                | ttcaagtgggaacttgctga       |
| Vim_Fw                 | gcctcagagaggtcagcaaa       |
| Vim_Rw                 | tgcgccagcagtatgaaa         |
| Acan_Fw                | gagggtgggaagccatgt         |
| Acan_Rw                | ccagcctacaccccagtg         |
| Vcan_Fw_iso1           | cagcggcaaagttcagagt        |
| Vcan_Rw_iso1           | cactggctgtggatggtg         |
| Ncan_Fw                | gcttcgacgcctactgctt        |
| Ncan_Rw                | tccagatgaggggatctcag       |
| Cspg4_Fw               | cacctccaggtggttctcc        |
| Cspg4_Rw               | cttggccttgttggtcagat       |
| Lcn2_Fw                | tctgatccagtagcgacagc       |
| Lcn2_Rw                | ccatctatgagctacaagagaacaat |
| Serpina3n_Fw           | acatcgggagtcagctatcac      |
| Serpina3n_Rw           | ccatcttctgtgttctgcagtc     |
| IL6_Fw                 | ccaggtagctatggtactccagaa   |
| IL6_Rw                 | gctaccaaactggatataatcagga  |
| Tgfb1_Fw               | gtcagcagccggttacca         |
| Tgfb1_Rw               | tggagcaacatgtggaactc       |
| IL-1β Fw               | agctggatgctctcatcagg       |

## Table S1: RT primer sequences (Related to Figure 1 and Figure S3)

| IL-1β_Rw     | agttgacggaccccaaaag        |
|--------------|----------------------------|
| iNOS2_Fw     | tcattgtactctgagggctgac     |
| iNOS2_Rw     | ctttgccacggacgagac         |
| Cxcl1_Rw     | gactccagccacactccaac       |
| Cxcl1_Fw     | tgacagcgcagctcattg         |
| Ptges_Rw     | gcacactgctggtcatcaag       |
| Ptges_Fw     | acgtttcagcgcatcctc         |
| Serping1_Fw  | ccaaaggtgtcacttctgtgtc     |
| Serping1_Rw  | gagatgcattcacataggtgtcc    |
| Cxcl12_Rw    | ctgtgcccttcagattgttg       |
| Cxcl12_Fw    | ctctgcgccccttgttta         |
| Cxcl16_Rw    | tcagccctgacagtcctaaaa      |
| Cxcl16_Fw    | ccccaagagcagtcctttaat      |
| Spp1_iso1_Rw | caaggtaagcctgcagtgg        |
| Spp1_iso1_Fw | catggtcgtagttagtccctca     |
| Stat6_Rw     | ctgcgaacccttgtgacc         |
| Stat6_Fw     | ttggctgaggtccctagaaa       |
| Hspb1_Rw     | aggagctcacagtgaagacca      |
| Hspb1_Fw     | ctttcttcgtgcttgccagt       |
| Slc7a11_Rw   | ttgaacatttctcttagtaagcatgg |
| Slc7a11_Fw   | tggacactcatgacctcacaa      |
| Tnc_Fw       | cagttggatgtccccaatct       |
| Tnc Rw       | gcacccagagactttgcttt       |