
Supporting Text
Automated Incorporation of Pairwise Dependency in Transcription

Factor Binding Site Prediction Using Dinucleotide Weight Tensors

Saeed Omidi, Mihaela Zavolan, Mikhail Pachkov, Jeremie Breda, Severin Berger
Erik van Nimwegen

Biozentrum, the University of Basel, and Swiss Institute of Bioinformatics
Klingelbergstrasse 50/70, 4056-CH, Basel, Switzerland,

email: erik.vannimwegen@unibas.ch

Contents
1 Calculating posterior probabilities for the pairwise dependencies 1

2 Rescaling of the dependency matrix 3

3 Scoring of partial site matches 4

4 DWTs with only adjacent dependencies: The ADJ model 5

5 Training and testing the PIM model 5

6 Training and test the FMM model 5

7 Table 1 6

1 Calculating posterior probabilities for the pairwise dependencies
As part of the dilogo we calculate, for each pair of positions (i, j) the posterior probability P (i, j|S),
that a direct dependency between exists between positions i and j, given the sequence alignment S. As
we have shown previously [1], the posterior probability P (i, j|S) is given by of the sum of P (S|π) over
all spanning trees in which the edge (i, j) occurs, divided by P (S), i.e. P (S|π) summed over all trees,
irrespective of the occurrence of the edge (i, j). That is, we have

P (i, j|S) =
∑
π|(i,j)∈π P (S|π)∑

π P (S|π)
, (1)

and Fig. 1 illustrates all the topologies that contribute to the sum in the numerator and denominator of
this ratio for a sequence of length 4.

As we also derived previously [1], this posterior can be calculated by defining a new (l−1) by (l−1)
matrix R(i,j) in which the two nodes i and j have been ‘contracted’ into a single node (i, j). The entries
for the matrix elements involving this node are given by

R
(i,j)
(i,j)k = Rik +Rjk, (2)

1

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

Supplementary Figure 1: Illustration of the calculation of the posterior probability that positions 1 and
2 are directly connected, for the simple case of sequences of length 4. Each position is represented by
a node in the possible spanning tree graphs π. In the numerator are all trees in which the edge (1, 2)
appears, and in the denominator are all possible spanning trees.

whereas
R

(i,j)
kl = Rkl, (3)

for all other nodes. Using this contracted matrix R(i,j), the posterior is given by

P (i, j|S) = RijD(R(i,j))

D(R)
. (4)

Note, however, that these calculations assume that each position has 1 parent that it depends on, i.e.
it is impossible for a position not to have a dependency. While this is a reasonable approximation for ap-
plications where dependencies are common, in our case there are a considerable number of motifs where
the PSWM appears to be an excellent approximation, i.e. there is almost no evidence for dependencies,
and forcing each position to have a dependency is inappropriate. To account for this, we extended the
calculations to not just sum over all possible spanning trees, but over all possible forests of the positions
in a site. Spanning forests consist of all factorizations of the positions into one or more trees. Equiva-
lently, each position in the site can either have zero or 1 other position that it depends on. We assign a
prior to the space of forests in proportion to the number of edges occurring in the forest, i.e. if φ is a for-
est of the l positions with n edges in total, we assign a prior probability P (φ) ∝ ρn(1− ρ)l−1−n, where
ρ can be interpreted as the prior probability that a given position has a dependency. All calculations the
apply to sums over spanning trees can be easily extended to sums over forests by replacing the matrix R
with a matrix Q given by

Qij(ρ) = Rijρ+ (1− ρ). (5)

The contracting of the edge works exactly the same for matrix Q(ρ) as for matrix R and equation (4) is
replaced by

P (i, j|S) = ρRijD(Q(i,j)(ρ))

D(Q(ρ))
. (6)

Note that the expression D(Q(ρ)) corresponds to the the log-likelihood of the sequences S given

2

ρ. Thus, to calculate the posterior probabilities of dependency for a given DWT, we first determine the
value ρ∗ that maximizes D(Q(ρ)) and then calculate posteriors using equation (6) with ρ set to ρ∗.

2 Rescaling of the dependency matrix

When the pair-counts nijαβ are large, the entries Rij of the dependency matrix R may range over many
orders of magnitude. When this happens, the calculation of the determinant D(R) may become nu-
merically unstable. As far as we are aware, there is no principled method for avoiding this numerically
instability of determinant calculations and we therefore rely on an ad hoc procedure for ensuring the
determinant calculation is numerically stable. In particular, when the largest and smallest values of the
R matrix, call them Rmax and Rmin, vary by more than a factor ek we rescale all entries in log-space the
transformation

log[Rij]→ log[R̃ij] = α log[Rij], (7)

where α = k/(log[Rmax] − log[Rmin]). Note that, consequently, the entries of the transformed matrix
span a range of ek. In this study we chose k = 25, i.e. the maximum ratio between the largest and
smallest entry of the rescaled R̃ is e25 ≈ 7 ∗ 1010. Note that matrix entries for which the dependent
and independent models have equal likelihood, i.e. when Rij = 1, are invariant under this rescaling
transformation.

As explained in the main text, calculation of the conditional probability P (s|S) involves the ratio of
determinantsD(R(s, S))/D(R(S)), i.e. see equation (9) of the main text. When both the matricesR(S)
and R(s, S) are naively rescaled to R̃(s, S) and R̃(S) according to the formula (7), then the resulting
P (s|S) may no longer be precisely normalized, i.e. the sum

∑
s P (s|S) over all possible sequence

segments s is no longer strictly 1. However, for the stability of the iterative motif finding procedure it is
essential that the conditional probabilities P (s|S) are strictly normalized. To ensure this we adapted the
rescaling procedure as follows.

Note that the conditional probability P (s|S) can also be written as

P (s|S) =
∑
π

P (π|S)P (s|S, π), (8)

with
P (s|S, π) = P (sr|S)

∏
i 6=r

P (si|sπ(i), S), (9)

the conditional probabilities P (si|sj , S) are given by

P (si|sj , S) =
P (si, sj |S)
P (sj |S)

=
nijsisj + λ′

n+ 16λ′

[
njsj + λ

n+ 4λ

]−1
, (10)

and the posterior probability P (π|S) of the spanning tree π given alignment S is given by

P (π|S) =
∏

(i,j)∈π Rij(S)∑
π′
∏

(i,j)∈π′ Rij(S)
=

∏
(i,j)∈π Rij(S)

D(R(S))
. (11)

That is, the probability P (s|S) can be written as a weighted sum over all possible spanning trees π
of the conditional probability P (s|S, π) given the sequences in S and the spanning tree π, weighing each
spanning tree with its posterior probability P (π|S) given the sequences in S. To ensure numerical stabil-
ity while retaining the strict normalization of P (s|S) we only rescale the entries of R in the expression
P (π|S). That is we replace P (π|S) with

P̃ (π|S) =
∏

(i,j)∈π R̃ij(S)

D(R̃(S))
, (12)

3

and substitute this in equation (8). This corresponds to calculating the conditional probabilities P (s|S, π)
exactly for each spanning tree π, while letting the rescaling only affect the relative probabilities P (π|S)
of the different spanning trees in the sum.

Finally, note that if we define the new matrix

R̃(s, S) = R̃ij(S)
(nijsisj + λ′)(n+ 4λ)

(nisi + λ)(njsj + λ)
, (13)

then equation (8) can be rewritten as

P (s|S) = D(R̃(s, s))

D(R(S))

l∏
i=1

nisi + λ

n+ 4λ
, (14)

i.e. just as equation (9) in the main text.

3 Scoring of partial site matches
Here we derive an approximation for scoring sequence segments that contain one or more N (i.e. un-
known) nucleotides. Formally, let x be a sequence segment that contains one or more N nucleotides
and let eE(x) = P (x|M)/P (x|B) correspond to the score of this degenerate sequence. Formally,
P (x|M)/P (x|B) corresponds to the average of P (s|M)/P (s|B) over all sequence segments s that are
consistent with x, and weighing each possible segment s with probability proportional to its probability
under the background model, i.e.

P (x|M)

P (x|B)
=
∑
s∈x

P (s|x)P (s|M)

P (s|B)
, (15)

where by a small abuse of notation we also use x to represent the set of sequence segments consistent
with x and P (s|x) is given by

P (s|x) = P (s|B)∑
s′∈x P (s

′|B)
. (16)

Combining these equations we find

P (x|M)

P (x|B)
=

∑
s∈x P (s|M)∑
s∈x P (s|B)

. (17)

For the PSWM model the scores are given by simple products, i.e. P (s|M) =
∏l
i=1 w

i
si and

P (s|B) =
∏l
i=1 bsi . For each position i in sequence x that is N, the sum over all s involves a sum

over all possible values that si can take. Since
∑
α w

i
α = 1, we have

∑
s∈x

l∏
i=1

wisi =
∏

i|si 6=N

wisi

∏
i|si=N

[∑
α

wisi

]
=

∏
i|si 6=N

wisi , (18)

i.e. the contribution of all positions i where si = N just disappears from the sum. The same applies to
the probability P (x|B) and, consequently, the score P (x|M)/P (x|B) is simple given by the product of
contributions from all letters that are not N:

P (x|M)

P (x|B)
=

∏
i|si 6=N

wisi
bsi

. (19)

4

As we saw in equation (8) above, under the DWT model the probability P (s|S) can be written as a
weighted sum over spanning trees π, of the conditional probabilities P (s|S, π) given a spanning π. In
turn, the probabilities P (s|S, π) can be written as a product over conditional probabilities P (si|sj , S)
for each base si given its parent base sj , i.e equation (9), and the conditional probability can be written
as the product of the PSWM condition, and a factor that incorporates the effect of the dependency

P (si|sj , S) = P (si|S)
P (si, sj |S)

P (si|S)P (sj |S)
=

[
nisi + λ

n+ 4λ

][
(nijsisj + λ′)(n+ 4λ)

(nisi + λ)(njsj + λ)

]
. (20)

Note that the second factor on the right is precisely the factor by which the matrix R̃(S) is multiplied
to obtain R̃(s, S) in equation (13). Finally, we saw that for the PSWM case, the score for sequences
containing N nucleotides are obtained simply by only including the contributions from all nucleotides
that are not N in the product over positions. In other words, the contribution P (si|S) is set to 1 for
positions i where si = N . This generalizes in a straight-forward way to the DWT case. In particular,
the whenever letter si = N , we set P (si|sj , S) = 1, which is equivalent to setting both P (si|S) = 1,
and the factor P (si, sj |S)/(P (si|S)P (sj |S)) = 1. That is, to obtain matrix R̃(s, S) of equation (13),
we only multiply R̃ij(S) by the factor P (si, sj |S)/(P (si|S)P (sj |S)) when neither si nor sj are N.

4 DWTs with only adjacent dependencies: The ADJ model
To assess the contribution of distal dependencies to the motif finding we investigated the performance
of a restricted DWT model in which only dependencies between neighboring positions are allowed,
which we call the adjacent (ADJ) model. Instead of summing over all spanning trees π, in the adjacent
model each position i is only allowed to depend on the immediately adjacent positions (i−1) and (i+1).
Restricting the sum over spanning trees in this way can be easily accomplished by simply settingRij = 0
whenever i 6= (j+1) and i 6= (j−1). That is, only the entries with i = j+1 and i = j−1 are retained.

5 Training and testing the PIM model
To train a motif the PIM model of Santolini et al. [2] requires an initial PSWM motif and, for a motif
of length l, all l-mers occurring in the training data. Besides using the exact same training and test data
for the 121 ChIP-seq datasets, we made sure train the PIM model starting from the exact same PSWM
models as were used as a starting points to train the DWT models. However, since the method calculates
statistics over all l-mers, and this becomes intractable for long motifs, e.g. l = 20, we needed to prune
long motifs. Thus, whenever the initial PSWM motif was longer than PIM’s default length of l = 12,
we pruned the PSWM to the 12 consecutive columns with the highest information content. In addition,
while PIM’s motif training typically finished within half an hour, some datasets took many hours, and
for 3 of the 121 datasets the training had not converged after several weeks of running. Time constraints
necessitated us to terminate these runs and we thus did not obtain PIM results for 3 of the 121 datasets.
We set the average precision to 0.2, i.e. equal to random performance, for these 3 datasets.

We adapted the PIM MATLAB code to use the trained model to calculate binding energies E(s)
for each sequence segment s occurring in the test set and we calculated total binding energies E(S) =
log[
∑
s∈s e

E(s)] for each training sequence S in the exact same manner as for the DWT models.

6 Training and test the FMM model
The FMM method of Sharon et al. [3] differs from the other methods in that it does not require an initial
PSWM motif (or a motif length), but in contrast to the other algorithms it requires not only a set of

5

positive sequences but also a set of negative sequences. For this we used a set of 2000 random sequences
with the same dinucleotide content as the input sequences, i.e. just as the decoy sequences for testing
were created. Because all other methods were asked to only infer one motif, we also instructed the FMM
algorithm to infer a single motif.

Eilon Sharon graciously provided us with a python script that calculates FMM scores for every
sequence segment s in the input sequences and we used this to calculate, for each sequence S in the test
set, a total binding energy E(S) from the binding energy of each segment s.

For 2 datasets the FMM model did not report a motif, presumably because it failed to detect any
statistically significant sequence patterns, and we set the average precision to 0.2 for these 2 datasets.

7 Table 1
Combinations of HT-SELEX and ENCODE ChIP-seq dataset that were analyzed. The IDs in the
first column each correspond to a dataset from [4] and the descriptions in the second column correspond
to ENCODE ChIP-seq datasets (see crunch.unibas.ch/ENCODE REPORTS/ for links to the processed
and raw input data).

HT-SELEX dataset ChIP-seq dataset
IRF4 TCAAGG20NCG AD Myers HudsonAlpha-BG 1 2-IRF4
MEF2A TAATAG20NTA Q Myers HudsonAlpha-BG 8-MEF2A
BHLHE41 TGTGCT20NCGG AD Snyder Stanford-IggMus-BHLHE
EBF1 TATAAG20NCG AC Snyder Stanford-StandardControl-EBF1
BATF3 TAAGAC20NAGA AC Myers HudsonAlpha-BG 1 2-BATF
ETS1 TGTAAA20NGA AF Myers HudsonAlpha-BG 8-ETS1
YY1 TCCGGC20NCG AC Myers HudsonAlpha-BG 4 8-YY1
YY1 TCCGGC20NCG AC Snyder Farnham USC-StandardControl-YY1
BHLHE23 TATATC20NCG Y Snyder Stanford-IggMus-BHLHE
ELK1 TCGGAA20NAGT AG HeLaS3 Snyder Stanford-IggRab-ELK1
ELK1 TCGGAA20NAGT AG Snyder Stanford-IggMus-ELK1
POU2F2 TGACAG20NGA AC Myers HudsonAlpha-BG 1 5-POU2
POU2F2 TGACAG20NGA AC Myers HudsonAlpha-BG 1-POU2
RFX3 TGGCTT20NGA AC Snyder Stanford-IggMus-RFX
GABPA TGGCCC20NCCT AG Myers HudsonAlpha-BG 6 7-GABP
CEBPB TCAACC20NCAA W Myers HudsonAlpha-BG 10-CEBP
ZNF143 TGCAAG20NCG V Snyder Stanford-StandardControl-ZNF143
ZNF143 TGCAAG20NCG V HeLaS3 Snyder Stanford-IggRab-ZNF143
MAX TGACCT20NGA Y Snyder Stanford-IggMus-MAX
MAX TGACCT20NGA Y HeLaS3 Snyder Stanford-IggRab-MAX
NFKB2 TTCAAT20NGA R Snyder Stanford-IggRabTNFa-NFKB
E2F4 AGCAG14N U Snyder Stanford-IggMus-E2F4
POU2F1 TCTTTC20NGA AC Myers HudsonAlpha-BG 1 5-POU2
POU2F1 TCTTTC20NGA AC Myers HudsonAlpha-BG 1-POU2
CTCF full AJ TAGCGA20NGCT Snyder Stanford-StandardControl-CTCF
CTCF full AJ TAGCGA20NGCT Bernstein BroadInstitute-StandardControl-CTCF
CTCF full AJ TAGCGA20NGCT Crawford Iyer UTAustin-StandardControl-CTCF
CTCF full AJ TAGCGA20NGCT Stamatoyannopoulous UW-StandardControl-CTCF
ELK1 TGAGTG20NTGA AG HeLaS3 Snyder Stanford-IggRab-ELK1

6

http://crunch.unibas.ch/ENCODE_REPORTS/

ELK1 TGAGTG20NTGA AG Snyder Stanford-IggMus-ELK1
NRF1 TAGCGA20NCG AC HeLaS3 Snyder Stanford-IggMus-NRF1
NRF1 TAGCGA20NCG AC Snyder Stanford-IggMus-NRF1
TCF3 TACCCG20NCCC Y Myers HudsonAlpha-BG 4 5-TCF3
CEBPG TAAAAT20NCG AC Myers HudsonAlpha-BG 10-CEBP
RUNX3 TCTCCC20NGA AE Myers HudsonAlpha-BG 10-RUNX3
SRF TGGAAT20NAAT W Myers HudsonAlpha-BG 8-SRF
SRF TGGAAT20NAAT W Myers HudsonAlpha-BG 6 7-SRF
MAFK TTAAAG20NTA AE Snyder Stanford-IggMus-MAFK
MAFK TTAAAG20NTA AE HeLaS3 Snyder Stanford-IggRab-MAFK
PRDM1 TTGAGG20NGAT AE HeLaS3 Snyder Stanford-IggRab-PRDM1
NFE2 TGTAGG20NGA AC Snyder Stanford-StandardControl-NFE2
NFATC1 TTCGTA20NTGC AE Myers HudsonAlpha-BG 10-NFATC1
IRF3 TCCTAA40NATC AI HeLaS3 Snyder Stanford-IggRab-IRF3
IRF3 TCCTAA40NATC AI Snyder Stanford-IggMus-IRF3
USF1 TGACGA20NGCA Z Myers HudsonAlpha-BG 6 7-USF1

References
[1] Burger L, van Nimwegen E. Disentangling Direct from Indirect Co-Evolution of Residues in Protein

Alignments. PLoS Comput Biol. 2010;6(1):e1000633.

[2] Santolini M, Mora T, Hakim V. Beyond position weight matrices: nucleotide correlations in tran-
scription factor binding sites and their description. arXiv:13024424v1. 2013;.

[3] Sharon E, Lubliner S, Segal E. A feature-based approach to modeling protein-DNA interactions.
PLoS Comput Biol. 2008;4(8):e1000154.

[4] Jolma A, Yan J, Whitington T, Toivonen J, Nitta KR, Rastas P, et al. DNA-binding specificities of
human transcription factors. Cell. 2013;152(1-2):327–39.

7

	Calculating posterior probabilities for the pairwise dependencies
	Rescaling of the dependency matrix
	Scoring of partial site matches
	DWTs with only adjacent dependencies: The ADJ model
	Training and testing the PIM model
	Training and test the FMM model
	Table 1

