
BAYESIAN MODEL FITTING AND OPTIMAL PARAMETERS

Our Bayesian model describes how participants combine previously acquired information about

lateral shifts (prior) with sensed visual feedback of a lateral shift (likelihood) to generate an esti-

mate of the lateral shift (posterior). This lateral shift estimate is then used to generate a compen-

sation for any given lateral shift on a trial by trial basis. The four fitted parameters of the Bayesian

model provide an estimate of how error was minimized (αopt) and participants’ estimate of uncer-

tainty (σopt
1 , σopt

2 , σopt
3 ) for the single dot, medium cloud and large cloud of dots, respectively. An

example of a participant’s behavior and their corresponding best-fit model is shown in Fig. S1.

The results of αopt are discussed and displayed in the Results section of the manuscript and

in this Supplementary (Fig. 3D and Fig. S2, respectively). In summary, we found that reinforce-

ment feedback did not influence behavior when provided in combination with error feedback.

This resulted in all three groups minimizing approximately squared error.

The three fitted parameters, σopt
1 , σopt

2 , σopt
3 , represent the average participant uncertainty

associated with a lateral shift, which was presented visually as either a single dot (ς0mm), medium

cloud of dots (ς15mm), or large cloud of dots (ς30mm). In the Bayesian model, larger values of σopt
j

correspond to a less informative likelihood. With a less informative likelihood, we would expect

participants to rely more heavily on the prior. Thus, across participants, if σopt
1 < σopt

2 < σopt
3 , this

would support the idea that the sensorimotor system accounts for environmental uncertainty in a

way that aligns with Bayesian inference (see Methods).

A two-way, mixed factorial ANOVA was used to assess our estimate of participants’ visual

uncertainty (σopt
j ). Here, imposed visual uncertainty (ς0mm, ς15mm, ς30mm) and group (ErrorSR,

ErrorSL, Reinforcement+ErrorSR) were independent variables. To test whether participants

were combining prior experience and current information about lateral shifts in a statistically op-

timal way, we examined the effect of imposed visual uncertainty (ςj) on model estimates of partic-

ipants’ visual uncertainty σopt
j . As expected, we found a significant main effect of imposed visual

uncertainty on model estimates of participants’ visual uncertainty (σj) [F (1.2, 31.2) = 37.778,
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Figure S1: An individual’s pattern of compensation (unfilled circles) and corresponding Bayesian fit (solid line) for
different magnitudes of lateral shift (x-axes). Each panel corresponds to whether visual (error) feedback was provided
as A) a single dot (ς0mm), B) a medium cloud of dots (ς15mm), C) a large cloud of dots (ς30mm) or D) withheld (ς∞).
Error bars represent ± 1 standard deviation.
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Figure S2: Best-fit, Bayesian model parameters. A) The average power-loss function exponent (αopt) of each group.
There were no significant differences between groups. An exponent of 2.0 corresponds to minimizing squared error
(upper dashed line), while an exponent of 1.0 corresponds to minimizing absolute error (lower dashed line). B)
Estimates of participant visual uncertainty (αopt, σopt

1 , σopt
2 , σopt

3 ) for different amounts of imposed visual uncertainty
(single dot = ς0mm; medium cloud of dots = ς15mm; large cloud of dots = ς30mm, respectively). Error bars represent
±1 standard error of the mean. ∗p < 0.05.

p < 0.001, ω̂2
G = 0.245]. There was no effect of group [F (2, 27) = 3.132, p = 0.060,

ω̂2
G = 0.042] nor an interaction between group and imposed uncertainty [F (2.3, 31.2) = 1.157,

p = 0.333, ω̂2
G = 0.002]. Planned, paired bootstrap tests showed, with a change in imposed

visual uncertainty (ςj), that σopt
1 << σopt

2 << σopt
3 , where p < 0.001 and θ̂ ≥ 90.0% was found

for each comparison (Fig. S2B). These data are consistent with the idea that, with decreases in

error feedback quality, participants were performing in a way aligned with Bayesian inference by

systematically relying more on previous experience (i.e., the prior) and less on mid-reach trial by

trial feedback.

For each group, a coefficient of determination (R2) was computed to examine the qual-

ity of fit between participants’ compensatory behavior (compdatai,j ) and our estimates of optimal

positional compensation (compopti,j ) based on the best-fit parameters (αopt, σopt
1 , σopt

2 , σopt
3 ). To

further assess the ability of our Bayesian model to describe behavior, we compared participants’

compensatory pattern of compensation (compdatai,j ) to predictions made from our Bayesian model

(compopti,j ). As seen in Fig. S3, we found a strong relationship between behavioural measures and
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Figure S3: Comparison of individual patterns of compensation (unfilled circles) to the outputs of their best-fit
Bayesian model are shown, for all 28 combinations of lateral shift and imposed visually uncertainty (ςj), for each
participant receiving A) error feedback laterally shifted by skewed-right probability distribution distribution, B) er-
ror feedback laterally shifted by skewed-left probability distribution, and C) both reinforcement and error feedback
laterally shifted by skewed-right probability distribution.

model predictions for each group. Specifically, for the ErrorSR, ErrorSL, Reinforcement +

ErrorSR, we found significant correlations between compdatai,j and compopti,j ; R2 values were

0.80 (p ≤ 0.001), 0.81 (p ≤ 0.001) and 0.89 (p ≤ 0.001), respectively.
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