Biophysical Journal, Volume 113

Supplemental Information

Influence of Protein Scaffold on Side-Chain Transfer Free Energies

Dagen C. Marx and Karen G. Fleming

Supporting Information for:

Influence of Protein Scaffold on Side Chain Transfer Free Energies

D.C. Marx and K. G. Fleming

Table of Contents:

Figure	S1.	PagP	site	111	exper	imentally	determined	side	chain	
energy values for all twenty amino acids.										
Figuro	52	M/T a	$d V_1$	11D	ΡοσΡ	molocula	r dynamics	system	a aro	
rigule	32.	equi	ilibrate	ed by	1 agi 100 r	noiecula	i uynannes	system	15 410	3
		equi	morute	Jaby	1001	13	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	

Figure S1. PagP site 111 experimentally determined side chain energy values for all twenty amino acids.

 $\Delta\Delta G_{w,l}^{o}$ values were calculated by taking the difference in the stability of the V111A variant of PagP and V111X variant, where X is any amino acid (equation shown in figure). We find that most nonpolar residues are favorable at site 111 in PagP, except proline, which was the most unfavorable residue in the series. Polar residues were all unfavorable with respect to alanine, except cysteine. The coloring system is follows the same convention as Figures 2 and 5.

Figure S2. WT and V111P PagP molecular dynamics systems are equilibrated by 100 ns.

The RMSD (Å) compared to the starting structure of the backbone atoms are shown for all heavy atoms found in beta sheets. We find that all four trajectories equilibrated after 100 ns.