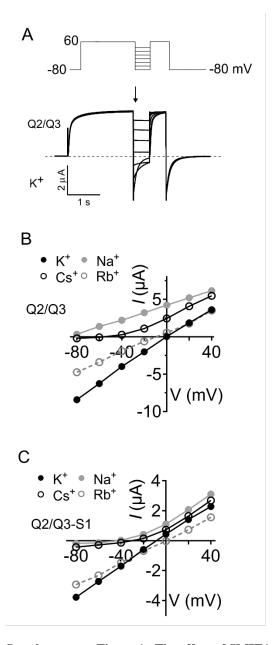
Biophysical Journal, Volume 113


Supplemental Information

SMIT1 Modifies KCNQ Channel Function and Pharmacology by Physical Interaction with the Pore

Rían W. Manville, Daniel L. Neverisky, and Geoffrey W. Abbott

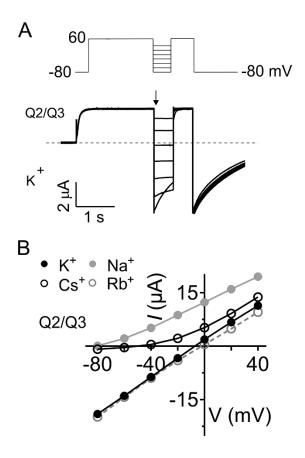
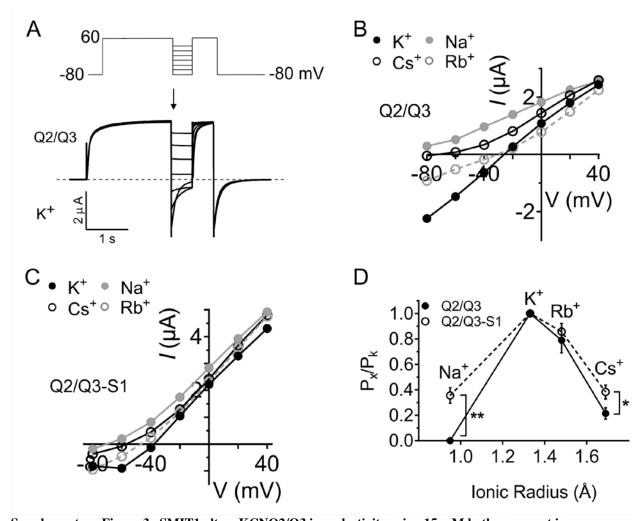
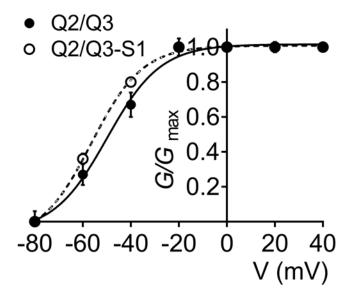

	Peak Current, +40 mV (μA)	τ act, -40 mV (ms)	τ deact, -30 mV (ms)	G/Gmax (mV)	Slope (mV)	TEA IC ₅₀ (mM)
Q1	1.79 ± 0.2 $(n = 97)$	1137.4 ± 20 $(n = 97)$	572.6 ± 39 $(n = 97)$	-25.4 ± 1.1 $(n = 97)$	14.1 ± 1.1 $(n = 97)$	29.3 ± 0.1 $(n = 5)$
Q1-S1	1.88 ± 0.2 $(n = 102)$	1189.1 ± 89 $(n = 102)$	550.6 ± 75 $(n = 102)$	-27.0 ± 1.5 $(n = 102)$	14.6 ± 1.4 $(n = 102)$	121 ± 0.09 $(n = 5) ****$
Q1/E1	11.40 ± 0.8 $(n = 100)$	4251.1 ± 347 (<i>n</i> = 12)	2006.5 ± 186 $(n = 12)$	-12.4 ± 3.7 $(n = 12)$	11.2 ± 3.3 $(n = 12)$	95 ± 0.25 $(n = 4)$
Q1/E1-S1	6.53 ± 0.8 (n = 90) ****	7166.7 ± 632 ($n = 12$) ***	1496.3 ± 83 (n = 12) *	5.1 ± 2.6 (n = 12) ****	14.8 ± 2.5 $(n = 12)$	103 ± 0.06 $(n = 5) ****$
Q1/E3	1.01 ± 0.1 $(n = 13)$	n.d.	n.d.	-40.8 ± 1.3 ($n = 13$)	9.57 ± 1.2 $(n = 13)$	n.d.
Q1/E3-S1	1.08 ± 0.2 $(n = 13)$	n.d.	n.d.	-47.8 ± 1.0 $(n = 13) ***$	10.1 ± 0.8 $(n = 13)$	n.d.
Q2	1.31 ± 0.2 $(n = 32)$	695.4 ± 25 ($n = 32$)	428 ± 17 (<i>n</i> = 32)	-37.5 ± 2.3 $(n = 32)$	17.9 ± 2.1 $(n = 32)$	n.d.
Q2-S1	1.05 ± 0.1 $(n = 29)$	638.9 ± 20 $(n = 29)$	507.3 ± 31 $(n = 29)$	-44.2 ± 3.3 $(n = 29)$	11.7 ± 2.8 $(n = 29)$	n.d.
Q2/Q3	4.08 ± 0.4 ($n = 13$)	1067.3 ± 117 $(n = 13)$	354.5 ± 32 ($n = 13$)	-30.7 ± 1.4 ($n = 13$)	9.4 ± 1.1 $(n = 13)$	6.9 ± 0.5 $(n = 5)$
Q2/Q3-S1	4.81 ± 0.9 $(n = 10)$	585.5 ± 36 $(n = 10) **$	331.7 ± 42 ($n = 10$)	-37.9 ± 0.7 ($n = 10$) ***	6.9 ± 0.9 $(n = 10)$	28.6 ± 0.4 $(n = 5)$ ****
Q2/Q3 (100 mM K ⁺)	n.d.	n.d.	n.d.	-49.91 ± 2.9 ($n = 11$)	11.2 ± 2.3 $(n = 11)$	n.d.
Q2/Q3-S1 (100 mM K ⁺)	n.d.	n.d.	n.d.	-56.36 ± 1.08 $(n = 11)$	10.6 ± 0.8 $(n = 11)$	n.d.
Kv1.1	2.43 ± 0.28 ($n = 13$)	n.d.	n.d.	-16.9 ± 1.7 ($n = 13$)	15.5 ± 1.7 $(n = 13)$	n.d.
Kv1.1-S1	1.78 ± 0.3 $(n = 13)$	n.d.	n.d.	-13.5 ± 1.0 $(n = 13)$	17.6 ± 1.2 $(n = 13)$	n.d.

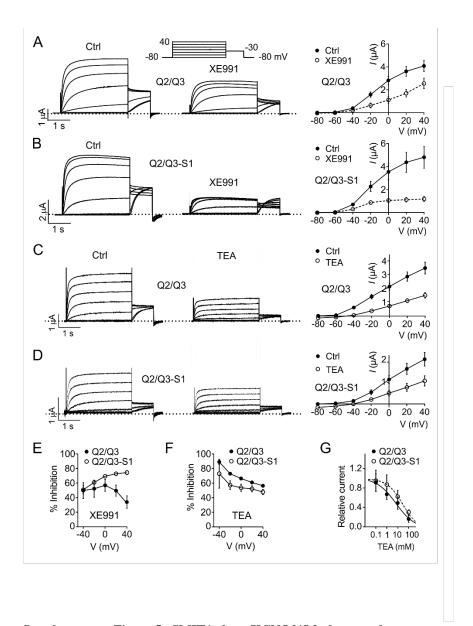
Table 1. KCNQ channel functional parameters ± KCNE1, KCNE3, SMIT1.Statistics versus same channel in absence of SMIT1: ****p<0.0001, ***p=0.0008, **p=0.0015, *p=0.002, n.d., not determined. Bath solution contained 4 mM K⁺ unless otherwise indicated. Abbreviations: E, KCNE; Q, KCNQ; S1, SMIT1; TEA, tetraethylammonium.


Supplementary Figure 1. The effect of SMIT1 on KCNQ2/Q3 ion selectivity is not removed by phlorizin

- A. Representative traces from two-electrode voltage-clamp recordings of *Xenopus laevis* oocytes injected with cRNA encoding KCNQ2/3 in 100 mM $\rm K^+$ and 500 μM phlorizin (voltage protocol inset. 1 s pulse to 60 mV followed by a 500-ms inactivation recovery step to voltages between -80 and 40 mV, then a 500-ms -80 mV tail pulse).
- B. Mean current-voltage relationship for KCNQ2/3 alone in 100 mM K⁺ (black circles), Cs⁺ (open circles) and Na⁺ (grey circles) and 500 μ M phlorizin, n = 13-14.
- C. Mean current-voltage relationship for KCNQ2/3 in combination with SMIT1 100 mM K⁺ (black circles), Cs⁺ (open circles) and Na⁺ (grey circles) and 500 μ M phlorizin, n = 13-14.

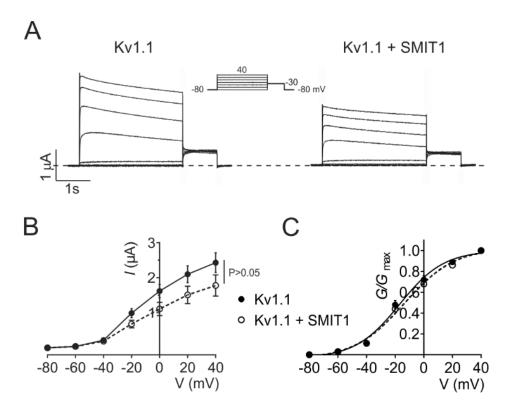
Supplementary Figure 2. The effect of SMIT1 on KCNQ2/Q3 ion selectivity is not mimicked by retigabine


- A. Representative traces from two-electrode voltage-clamp recordings of *Xenopus laevis* oocytes injected with cRNA encoding KCNQ2/3, in a bath solution containing 100 mM K⁺ with 10 μM retigabine (voltage protocol inset. 1 s pulse to 60 mV followed by a 500-ms inactivation recovery step to voltages between -80 and 40 mV, then a 500-ms -80 mV tail pulse).
- B. Mean current-voltage relationship for KCNQ2/3 alone in 100 mM K⁺ (black circles), Cs⁺ (open circles) and Na⁺ (grey circles) and 10 μ M retigabine, n = 8. See Fig. 3 F for corresponding selectivity series.

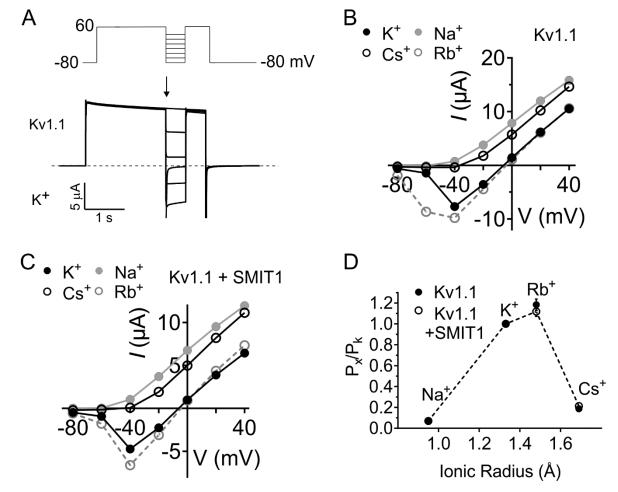

Supplementary Figure 3. SMIT1 alters KCNQ2/Q3 ion selectivity using 15 mM bath permeant ions

- A. Representative traces from two-electrode voltage-clamp recordings of *Xenopus laevis* oocytes injected with cRNA encoding KCNQ2/3 in 15 mM K⁺ (voltage protocol inset. 1 s pulse to 60 mV followed by a 500-ms inactivation recovery step to voltages between -80 and 40 mV, then a 500-ms -80 mV tail pulse).
- B. Mean current-voltage relationship for KCNQ2/3 alone in 15 mM K⁺ (black circles), Cs^+ (open circles) and Na^+ (grey circles), n = 6.
- C. Mean current-voltage relationship for KCNQ2/3 in combination with SMIT1 15 mM K⁺ (black circles), Cs⁺ (open circles) and Na⁺ (grey circles), n = 6.
- D. Estimated mean permeability relative to that of K^+ versus ionic radius (Pauling) for Na^+ , Rb^+ , and Cs^+ through KCNQ2/Q3 (solid circles) and KCNQ2/Q3+SMIT1 (open circles, dotted lines) channels, n = 6. Error bars indicate SEM. Statistical significance for comparison of relative permeability of Na^+ : **p<0.002, Cs^+ *p<0.03. Values for relative permeability ratios, in the order Na^+ , Rb^+ , and Cs^+ : KCNQ2/Q3, 0, 0.76, and 0.21; KCNQ2/Q3+SMIT1, 0.36, 0.85, and 0.38.

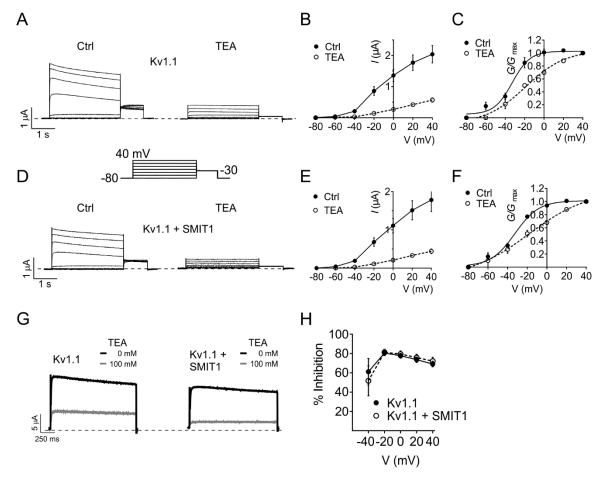
100 mM [K⁺]_o



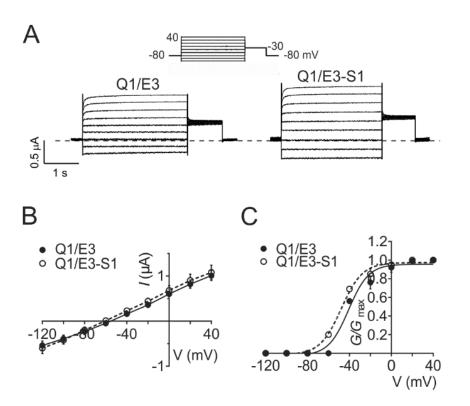
Supplementary Figure 4. SMIT1 negative-shifts KCNQ2/Q3 activation in 100 mM [K $^+$]_O Mean normalized tail current (at -30 mV) versus prepulse potential for *Xenopus laevis* oocytes injected with cRNA encoding KCNQ2/Q3, alone or co-injected with cRNA encoding SMIT1, n = 11. Error bars indicate SEM.


Supplementary Figure 5. SMIT1 alters KCNQ2/Q3 pharmacology

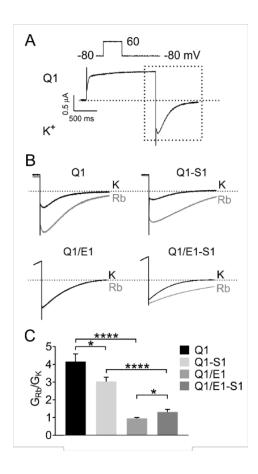
- **A.** Left, representative traces from two-electrode voltage-clamp recordings of *Xenopus laevis* oocytes injected with cRNA encoding KCNQ2/3 in ND96 or 50 μ M XE991. Right, mean current-voltage relationship for subunit combinations as in panel A, n = 13. Error bars indicate SEM.
- **B.** Left, representative traces from two-electrode voltage-clamp recordings of *Xenopus laevis* oocytes co-injected with cRNA encoding KCNQ2/3 and SMIT1 in ND96 or 50 μ M XE991. Right, mean current-voltage relationship for subunit combinations as in panel A, n = 10. Error bars indicate SEM.
- C. Left, representative traces from two-electrode voltage-clamp recordings of *Xenopus laevis* oocytes injected with cRNA encoding KCNQ2/3 in ND96 or 100 mM TEA. Right, mean current-voltage relationship for subunit combinations as in panel A, n = 13. Error bars indicate SEM.
- **D.** Left, representative traces from two-electrode voltage-clamp recordings of *Xenopus laevis* oocytes co-injected with cRNA encoding KCNQ2/3 and SMIT1 in ND96 or 100 mM TEA. Right, mean current-voltage relationship for subunit combinations as in panel A, n = 6. Error bars indicate SEM.
- **E.** Mean % inhibition (50 μ M XE991) versus voltage for KCNQ2/3 with or without SMIT1; n = 10-13. Error bars indicate SEM.
- **F.** Mean % inhibition (100 mM TEA) versus voltage for KCNQ2/3 with or without SMIT1; n = 6. Error bars indicate SEM.
- **G.** TEA dose response for KCNQ2/3 with or without SMIT1; n = 5. Error bars indicate SEM.


Supplementary Figure 6. SMIT1 does not alter Kv1.1 activity

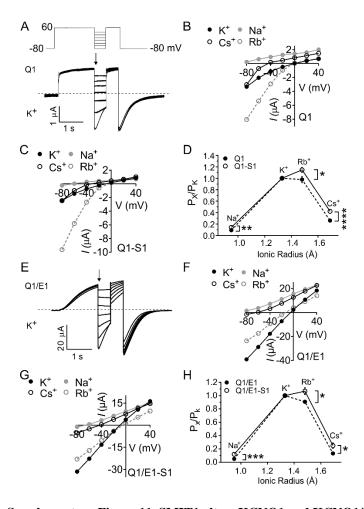
- A. Representative traces from two-electrode voltage-clamp recordings of *Xenopus laevis* oocytes injected with cRNA encoding Kv1.1, alone or co-injected with cRNA encoding SMIT1, n = 8-13.
- B. Mean current-voltage relationship for subunit combinations as in panel A, n = 8-13. Error bars indicate SEM.
- C. Mean normalized tail current (at -30 mV) versus prepulse potential for oocytes as in panel A, n = 8-13. Error bars indicate SEM.


Supplementary Figure 7. SMIT1 does not alter Kv1.1 ion selectivity

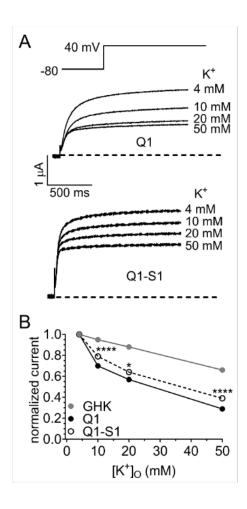
- A. Representative traces from two-electrode voltage-clamp recordings of *Xenopus laevis* oocytes injected with cRNA encoding Kv1.1 in 100 mM K⁺ (voltage protocol inset. 1 s pulse to 60 mV followed by a 500-ms inactivation recovery step to voltages between -80 and 40 mV, then a 500-ms -80 mV tail pulse).
- B. Mean current-voltage relationship for Kv1.1 alone in 100 mM K⁺ (black circles), Cs⁺ (open circles) and Na⁺ (grey circles), n = 12.
- C. Mean current-voltage relationship for Kv1.1 in combination with SMIT1 100 mM K⁺ (black circles), Cs⁺ (open circles) and Na⁺ (grey circles), n = 12.
- D. Estimated mean permeability relative to that of K^+ versus ionic radius (Pauling) for Na^+ , Rb^+ , and Cs^+ through Kv1.1 alone (solid circles) or when co-expressed with SMIT1 (open circles, dotted lines) channels, n = 12-14. Error bars indicate SEM. Values for relative permeability ratios, in the order Na^+ , Rb^+ , and Cs^+ : Kv1.1, 0.07, 1.18, and 0.18; Kv1.1+SMIT1, 0.07, 1.11, and 0.18.


Supplementary Figure 8. SMIT1 does not protect Kv1.1 from TEA block

- **A.** Representative traces from two-electrode voltage-clamp recordings of *Xenopus laevis* oocytes injected with cRNA encoding Kv1.1, in bath ND96 or 100 mM TEA, n = 13. Voltage protocol inset: 3 s pulse to voltages between -80 and 40 mV followed by a 1 s -30 mV tail pulse. Error bars indicate SEM.
- **B.** Mean current-voltage relationships for Kv1.1 recordings as in panel A, n = 13. Error bars indicate SEM.
- C. Mean normalized tail current (at -30 mV) versus prepulse potential for Kv1.1 recordings as in panel A, n = 13. Error bars indicate SEM.
- **D.** Representative traces from two-electrode voltage-clamp recordings of *Xenopus laevis* oocytes injected with cRNAs encoding Kv1.1 and SMIT1 in bath ND96 or 100 mM TEA, n = 8, using voltage protocol as in panel A. Error bars indicate SEM.
- **E.** Mean current-voltage relationship for Kv1.1 and SMIT1 cRNA-injected oocytes as in panel D, n = 8. Error bars indicate SEM.
- **F.** Mean normalized tail current (at -30 mV) versus prepulse potential for oocytes as in panel D, n = 8. Error bars indicate SEM.
- **G.** Representative traces recorded at 0 mV for Kv1.1 with or without SMIT1 in 0 mM (black) versus 100 mM (gray) bath TEA, n = 8-13.
- **H.** Mean % inhibition (100 mM bath TEA) versus voltage for Kv1.1 with or without SMIT1 (S1); n = 8-13. Error bars indicate SEM.

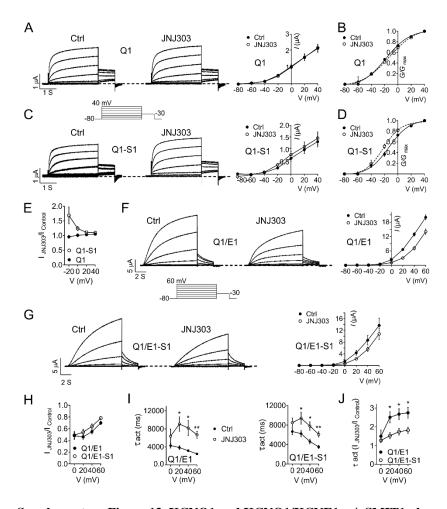

Supplementary Figure 9. SMIT1 negative-shifts KCNQ1/KCNE3 activation

- A. Representative traces from two-electrode voltage-clamp recordings of *Xenopus laevis* oocytes injected with cRNA encoding KCNQ1/KCNE3, alone or co-injected with cRNA encoding SMIT1, n = 15.
- B. Mean current-voltage relationship for subunit combinations as in panel A, n = 15. Error bars indicate SEM.
- C. Mean normalized tail current (at -30 mV) versus prepulse potential for oocytes as in panel A, n = 15. Error bars indicate SEM.


Supplementary Figure 10. SMIT1 alters KCNQ1 and KCNQ1/KCNE1 G_{Rb}/G_{K} permeability ratio

- **A.** Representative trace from two-electrode voltage-clamp recordings of *Xenopus laevis* oocytes injected with cRNA encoding KCNQ1 (Q1) in 100 mM K⁺ (voltage protocol inset. 1 s pulse to 60 mV followed by a 500-ms -80 mV tail pulse).
- **B.** Exemplar traces of tail currents recorded in 100 mM [K⁺] followed by 100 mM [Rb⁺] in the same oocyte for KCNQ1 (Q1) (n = 12), KCNQ1/SMIT1 (Q1-S1) (n = 18), KCNQ1/KCNE1 (Q1/E1) (n = 20), and KCNQ1/KCNE1/SMIT1 (Q1/E1-S1) (n = 16) (protocol inset). The G_{Rb}/G_K ratio was calculated by dividing the peak/plateau amplitude of the respective tail currents by the driving force (difference between -80 mV, and the equilibrium potential for K⁺ or Rb⁺ ions).
- C. Mean G_{Rb}/G_K values calculated from traces as in panel B; *p<0.05; ****p<0.0001.

Supplementary Figure 11. SMIT1 alters KCNQ1 and KCNQ1/KCNE1 ion selectivity


- A. Representative trace from two-electrode voltage-clamp recordings of *Xenopus laevis* oocytes injected with cRNA encoding KCNQ1 (Q1) in 100 mM K⁺ (voltage protocol inset. 1 s pulse to 60 mV followed by a 500-ms inactivation recovery step to voltages between -80 and 40 mV, then a 500-ms -80 mV tail pulse).
- B. Mean current-voltage relationship for KCNQ1 (Q1) alone in 100 mM K⁺ (black circles), Cs^+ (open circles) and Na^+ (grey circles), n = 8.
- C. Mean current-voltage relationship for KCNQ1-SMIT1 (Q1-S1) in 100 mM K⁺ (black circles), Cs⁺ (open circles) and Na⁺ (grey circles), n = 12.
- D. Estimated mean permeability relative to that of K^+ versus ionic radius (Pauling) for Na^+ , Rb^+ , and Cs^+ through KCNQ1 (solid circles) and KCNQ1/SMIT1 (open circles, dotted lines) channels, n = 8-12. Error bars indicate SEM. Statistical significance for comparison of relative permeability of Na^+ : **p<0.05, Rb^+ *p<0.05, and Cs^+ ****p<0.0001. Values for relative permeability ratios, in the order Na^+ , Rb^+ , and Cs^+ : KCNQ1, 0.11, 0.98, 0.3, and KCNQ1/SMIT1, 0.09, 1.15, and 0.42.
- E. Representative trace from two-electrode voltage-clamp recordings of *Xenopus laevis* oocytes injected with cRNA encoding KCNQ1/KCNE1 (Q1/E1) in 100 mM K⁺ (voltage protocol as in panel D).
- F. Mean current-voltage relationship for KCNQ1/KCNE1 (Q1/E1) in 100 mM K⁺ (black circles), Cs⁺ (open circles) and Na⁺ (grey circles), n = 6.
- G. Mean current-voltage relationship for KCNQ1/KCNE1-SMIT1 (Q1/E1-S1) in 100 mM K⁺ (black circles), Cs^+ (open circles) and Na^+ (grey circles), n = 10.
- H. Estimated mean permeability relative to that of K^+ versus ionic radius (Pauling) for Na^+ , Rb^+ , and Cs^+ through KCNQ1/KCNE1 (solid circles) and KCNQ1/KCNE1/SMIT1 (open circles, dotted lines) channels, n = 6-10. Error bars indicate SEM. Statistical significance for comparison of relative permeability of Na^+ : ***p<0.05, Rb^+ *p<0.05, and Cs^+ *p<0.05. Values for relative permeability ratios, in the order Na^+ , Rb^+ , and Cs^+ : KCNQ1/KCNE1, 0.05, 0.91, and 0.13, and KCNQ1/KCNE1/SMIT1, 0.12, 1.1, and 0.25.

Supplementary Figure 12. SMIT1 partially protects KCNQ1 from the inhibitory effects of high extracellular $\mathbf{K}^{\scriptscriptstyle{+}}$

A. Representative traces from two-electrode voltage-clamp recordings of *Xenopus laevis* oocytes injected with cRNA encoding KCNQ1, +/- SMIT1 in 4, 10, 20 and 50 mM K⁺ (voltage protocol inset. 1 s pulse to 60 mV). **B.** Relative steady-state current amplitude as a function of potassium concentration as measured experimentally for

KCNQ1 (filled circles, black line) n = 8, KCNQ1+SMIT1 (open circles, dotted line) n = 8, and theoretical values calculated from the GHK flux equation (filled circles, grey line). The currents are normalized to the current measured in 4 mM [K⁺]o.***p<0.0001, *p<0.05.

Supplementary Figure 13. KCNQ1 and KCNQ1/KCNE1, +/- SMIT1 pharmacology: JNJ303

- **A.** Left, Representative traces; right, Mean current-voltage relationship, from two-electrode voltage-clamp recordings of Xenopus laevis oocytes expressing KCNQ1 (Q1) in ND96 or 1 μ M JNJ303, n = 7. Voltage protocol (inset), 3 s pulse to voltages between -80 and 40 mV followed by a 1 s -30 mV tail pulse. Error bars indicate SEM.
- **B.** Mean normalized tail current (at -30 mV) versus prepulse potential for oocytes as in panel A, n = 7. Error bars indicate SEM.
- C. Left, Representative traces; right, Mean current-voltage relationship, from two-electrode voltage-clamp recordings of Xenopus laevis oocytes expressing KCNQ1-SMIT1 (Q1-S1) in ND96 or 1 μ M JNJ303, n = 7. Voltage protocol as in A. Error bars indicate SEM.
- **D.** Mean normalized tail current (at -30 mV) versus prepulse potential for oocytes as in panel C, n = 7. Error bars indicate SEM.
- **E.** Voltage dependence of mean effects, on Q1 versus Q1-S1 current, of 1 μ M JNJ303, quantified from traces as in A and C, n = 7, error bars indicate SEM.
- **F.** Left, representative traces; right, mean current-voltage relationship, from two-electrode voltage-clamp recordings of *Xenopus laevis* oocytes expressing KCNQ1/KCNE1 (Q1/E1) in ND96 or 1 μ M JNJ303, n = 7. Voltage protocol inset. Error bars indicate SEM.
- **G.** Left, representative traces; right, mean current-voltage relationship, from two-electrode voltage-clamp recordings of *Xenopus laevis* oocytes expressing KCNQ1/KCNE1-SMIT1 (Q1/E1-S1) in ND96 or 1 μ M JNJ303, n=7. Voltage protocol as in panel F.
- **H.** Voltage dependence of mean effects, on Q1/E1 versus Q1/E1-S1 current, of 1 μ M JNJ303, quantified from traces as in F and G, n = 7, error bars indicate SEM.
- **I.** Voltage dependence of mean effects, on Q1/E1 versus Q1/E1-S1 activation rate, of 1 μ M JNJ303, quantified from traces as in F and G, n = 7, error bars indicate SEM.
- **J.** Effect of SMIT1 (S1) on Q1/E1 activation slowing by 1 μ M JNJ303, quantified from values in panel I, n = 7, error bars indicate SEM.