## **Supplementary Information**

Rapid decline in pH of coral calcification fluid due to incorporation of anthropogenic CO<sub>2</sub>

Kaoru Kubota, Yusuke Yokoyama, Tsuyoshi Ishikawa, Atsushi Suzuki, Masao Ishii

Supplementary Text Supplementary Figures S1–S9 Supplementary Tables S1–S2 Supplementary References

## **Supplementary Text**

**1. Calculation of**  $\Omega_{CF}$ . Though  $\delta^{11}$ B of coral skeleton can be used to estimate pH<sub>CF</sub>, in order to fully describe CO<sub>2</sub> system in the calcification fluid more calculation is required (e.g., ref. 29,46). Thus from the following calculation we confirmed  $\Omega_{CF}$  is dependent on pH<sub>CF</sub>. All calculation were made in temperature of 25°C and salinity of 35 for simplicity. We used constants bellow:

 $[B]_{SW} = 416 \ \mu mol/kg \ (ref. 47);$ 

 $[Ca]_{SW} = 10.2821 \text{ mmol/kg (ref. 48)};$ 

Solubility constant,  $K_{sp}$  for aragonite = 6.5 \* 10<sup>-7</sup> (ref. 49);

Dissociation constants of carbonic acid in the seawater:  $K_1$  and  $K_2$  from Lueker *et al.*<sup>50</sup>;

Dissociation constants of boric acid in the seawater:  $K_{\rm B}$  from Dickson<sup>51</sup>.

We assume that calcium and boron concentration of the calcification fluid is same as seawater as its difference is less than 10% (ref. 6). Although how boron is incorporated into the aragonite skeleton from the seawater is still contested<sup>46,52</sup>, we employed the relationship reported by Hemming & Hanson<sup>53</sup> which is based on empirical calibration of biogenically precipitated aragonite such as skeletons of corals and coralline algae living in the ocean. To employ Hemming & Hanson<sup>53</sup>'s model is reasonable, because there is a statistically significant correlation between B/Ca and  $[B(OH)_4^-]/[HCO_3^-]$  in a boron concentration in the present seawater<sup>46</sup>. In this model, charged borate ion is selectively incorporated into aragonite lattice. Distribution constant,  $K_D$  is defined as:

$$K_{\rm D} = \frac{[{\rm HBO}_3^{2-} / {\rm CO}_3^{2-}]_{\rm solid}}{[{\rm B(OH)}_4^- / {\rm HCO}_3^-]_{\rm liquid}} \approx \frac{[{\rm B} / {\rm Ca}]_{\rm CaCO_3}}{[{\rm B(OH)}_4^- / {\rm HCO}_3^-]_{\rm seawater}}$$
(S1)

where B/Ca is equivalent to  $[HBO_3^{-7}]/[CO_3^{-2-7}]$ , because Ca and C are equimolar in CaCO<sub>3</sub>. We made calculation using  $K_D$  value of  $12*10^{-3}$  reported by Hemming & Hanson<sup>53</sup>, which lies within ones recently determined by Holcomb *et al.*<sup>46</sup>: 1.4–52 \*10<sup>-3</sup> and Mavromatis *et al.*<sup>52</sup>: 0.3–40 \*10<sup>-3</sup>.

For the Chichijima coral samples (3-year resolution), we newly measured B/Ca ratio by using a quadropole inductively coupled plasma mass spectrometry (Elan DRC, Perkin Elmer, USA). Average B/Ca value of the Chichijima coral is 0.536 mmol/mol during 1914–1997 (Table S2). For the Kikaijima coral, we used high-resolution B/Ca records determined by using a laser ablation inductively coupled plasma mass spectrometry (Element XR, Thermo Scientific, Germany)<sup>11</sup>. From smoothed monthly-resolution data, we calculated 3-year averages for each data points that we measured  $\delta^{11}$ B. Average B/Ca value of the Kikaijima coral is 0.457 mmol/mol during 1911–2006 (Table S2).

Saturation state of the calcification fluid with respect to aragonite,  $\Omega_{CF} = [Ca]_{CF}[CO_3^{2-}]_{CF}/K_{sp}$ , is calculated to be 20.1–31.7 (Table S2), which is consistent with the previous estimation for *Favia* coral<sup>6</sup>. Through these calculations, we confirmed that there is a clear positive relationship between pH<sub>CF</sub> and  $\Omega_{CF}$  (Fig. S2). Therefore we concluded that pH<sub>CF</sub> decrease would lead to  $\Omega_{CF}$  decrease.

**2.** Further verification of pH<sub>SW</sub> estimation using SOCAT  $fCO_2$  data for the vicinity of Chichijima. To see how much pH<sub>SW</sub> and  $pCO_{2 SW}$  time series for the grid point at 27°N, 137°E (Method) represent those of the ocean in the vicinity of Chichijima (27.1°N, 142.2°E) and Kikaijima (28.3°N, 130.0°E), as there are zonal distance of about 500–700 km between grid points, we estimated pH<sub>SW</sub> and  $pCO_{2 SW}$  using SOCAT  $fCO_2$ version 2 data closer to the islands<sup>34</sup>. We extracted the data from 1.0° latitude by 5.0° longitude grids centered on Chichijima and Kikaijima (Fig. S4). We calculated TA from the equation: SSS/35×2295 µmol kg<sup>-1</sup> (ref. 16). In the calculation, we used ancillary *in situ* data of SST and SSS to each  $fCO_2$  data-point. For grid points where SSS data was not available, we imported climatological salinity values from the World Ocean Atlas 2005. We calculated DIC using CO2Calc software, version 1.0 (ref. 54). We normalized DIC at salinity of 35 (nDIC) and fitted it to an empirical function of the timing of measurement (year), SST, and SSS by multi-parameter regression<sup>14</sup>:

$$nDIC = DIC * 35 / SSS$$
  
=  $C_0 + C_1 * (year - 2000) + C_2 * (SST - 24.7) + C_3 * (SST - 24.7)^2$   
+ $C_4 * (SST - 24.7)^3 + C_5 * (SSS - 34.5) + \varepsilon$  (S2)

The terms  $C_0 \sim C_5$  are coefficients of multiple regressions, and  $\varepsilon$  represents the residual of the fitting. The polynomial of (SST–24.7) in the equation exhibits strong correlation with nDIC and SST. From this calculation we obtained an empirical regression equation for Chichijima (R<sup>2</sup> = 0.74, n = 1,034) and Kikaijima (R<sup>2</sup> = 0.93, n = 4,401) using the

below parameters.

| Parameter | Chichijima | Kikaijima |
|-----------|------------|-----------|
| $C_{0}$   | 1958.9     | 1953.1    |
| $C_1$     | 1.14       | 1.16      |
| $C_2$     | -2.05      | -3.65     |
| $C_3$     | 0.26       | 0.38      |
| $C_4$     | -0.05      | -0.02     |
| $C_5$     | -12.0      | -5.62     |

Root mean squares of  $\varepsilon$  are 6.7 and 2.5 µmol/Kg, respectively. We used SST and SSS of the Simple Ocean Data Assimilation (SODA v2.2.4; ref. 55) to estimate monthly values of nDIC for the years 1983–2008, and calculated pH<sub>SW</sub> and *p*CO<sub>2 SW</sub> from DIC and assuming TA using CO2Calc (Fig. S4). We made calculations of seawater CO<sub>2</sub> chemistry using the dissociation constants of carbonic acid given by Lueker *et al.*<sup>50</sup>, that of hydrogen sulfate by Dickson<sup>51</sup>, and the pH scale of the total hydrogen ion concentration. We compared obtained pH<sub>SW</sub> and *p*CO<sub>2 SW</sub> time series with those for the grid point at 27°N, 137°E (Method). We observed no significant difference between them (Fig. S5).

**3. SST effects on pH calculation.** As pH is temperature-dependent, we evaluated SST effect on  $pH_{SW}$  estimation. In all calculations, SSS was kept constant at the present climatological value (34.8), as it had variation less than 0.05 during 1911–1997 (ref. 10), which can be regarded negligibly small. We calculated SST in the past from monthly Sr/Ca records of the Chichijima coral using equations reported by Felis *et al.*<sup>10</sup> for the same coral colony, and used them as a representative of past SST variation in the western North Pacific<sup>11</sup>:

$$Sr / Ca = \frac{10.33 - 0.051 * SST}{10^3}$$
(S3)

We calculated nDIC from obtained SST and SSS (34.8) using Eq. (S2), where the term

for the linear trend was removed to examine seasonal to inter-annual variations. Then, using CO2calc we calculated de-trended  $pH_{SW}$  in combination with assumed TA. We calculated averages for each 3-year period that corresponded to the same portions of the coral skeleton used for  $\delta^{11}B$  analyses. The 3-year averaged SST anomaly had a standard deviation of 0.9 °C, and that of the pH<sub>SW</sub> anomaly was only 0.006 (Fig. S6a,b). Therefore, owing to 3-year averaging, we confirmed that effects of SST changes in the past were negligible in pH<sub>SW</sub> calculation.

In addition, we confirmed the negligible effect of past SST changes on  $pH_{SW}$  estimation through the calculation using independently estimated reanalysis SST record, the extended reconstructed global sea surface temperature (ERSST version 4; ref. 56). The 3-year averaged SST anomaly had a standard deviation of 0.2 °C, and that of the  $pH_{SW}$  anomaly was only 0.002 (Fig. S6c,d).

Similarly, SST and SSS effects on  $pH_{CF}$  calculation were negligibly small as a standard deviation of  $pK_B$  change is less than 0.01.



**Figure S1.** (a) A X-ray image of the Kikaijima coral. (b) Annual extension rates of the Chichijima and the Kikaijima coral along the major growth direction. Data of the Chichijima coral is previously published from Felis *et al.*<sup>10</sup> and that of the Kikaijima coral is calculated from distances of adjoining Sr/Ca peaks in winter measured by a laser ablation ICPMS<sup>11</sup>.



**Figure S2.** Linear regression of  $\delta^{13}$ C versus  $\delta^{11}$ B of (**a**) the Chichijima coral and (**b**) the Kikaijima coral. Correlation coefficient and probability values are shown.



**Figure S3.** A cross-plot of pH and  $\Omega_{aragonite}$  of the calcification fluid (the Chichijima coral, closed diamonds; the Kikaijima coral, open rectangles). CF, calcification fluid.



**Figure S4.** (a)  $pH_{SW}$  and (b)  $pCO_{2 SW}$  calculated from SOCAT  $fCO_2$  (diamonds) and simulated time series (gray lines) using SODA SST and SSS for the years 1983–2008. Atmospheric  $pCO_2$  is shown by the black line in **b** and **d**.



**Figure S5.** Comparison of (**a**)  $pH_{SW}$  and (**b**)  $pCO_{2 SW}$  time series simulated at 27°N, 137°E (for the years 1993–2010, red dashed lines) and those of the restricted areas around Chichijima and Kikaijima (for the years 1983–2008, gray lines). Atmospheric  $pCO_2$  is shown by the black line in **b** and **d**. MOVE, multivariate ocean variational estimation system.



**Figure S6.** Monthly mean (**a**) SST (°C) and (**b**) resulting  $pH_{SW}$  anomalies estimated from Sr/Ca paleo-thermometer of the Chichijima coral for the years 1911–1994 (lines). Black circles represent 3-year averages that correspond to portions of skeletons for which  $\delta^{11}B$  were analyzed. (**c,d**) Same as (a,b) but estimated from reanalysis temperature record from ERSST version 4 at 28°N 142° E (ref. 56).



**Figure S7.** Geographical map of study areas in (**a**) Chichijima<sup>57</sup> and (**b**) Kikaijima<sup>58</sup>. Stars indicate positions of collected massive *Porites* spp.



**Figure S8.** Comparison between *in situ* seawater temperature measured every hour using a data logger fixed to the Kikaijima coral (thin gray line) and gridded data sets of global SST based on marine observational records at 28°N 130°E (ERSST version 4, thick black line)<sup>11,56</sup>. A good similarity between the two indicates that the coral was living in the environment directly exposed to open-ocean.



**Figure S9.** (a) Comparison of temporal  $\delta^{11}$ B variation of the Chichijima coral samples since 1914 determined by MC-CIPMS and TIMS (see Table S1). (b) Relationship between  $\delta^{11}$ B data obtained by MC-ICPMS and TIMS for the same set of *Porites* coral samples including JCp-1 and the ones shown in (a).

Supplementary Table 1. Measured  $\delta^{11}B$  values for Kikaijima and Chichijima corals using MC-ICPMS and TIMS, calculated pH<sub>CF</sub> from  $\delta^{11}B$  values, estimated pH<sub>sw</sub>, and measured  $\delta^{13}C$  values.

| Kikaijima  |               | δ <sup>11</sup> B (‰) |       |                   |                  |                  | δ                                  | 6 <sup>13</sup> C (% | <b>bo</b> )     |
|------------|---------------|-----------------------|-------|-------------------|------------------|------------------|------------------------------------|----------------------|-----------------|
| Years (AD) | Sample Name   | #1                    | #2    | Ave.              | pH <sub>CF</sub> | pH <sub>sw</sub> | #1                                 | #2                   | Ave.            |
| 2005-2007  | KAR09_C2_A1_1 | 23.20                 | 23.46 | 23.33             | 8.43             | 8.12             | -3.3                               | -3.4                 | -3.3            |
| 2000–2002  | KAR09_C2_A1_2 | 23.32                 | 23.98 | 23.65             | 8.45             | 8.13             | -2.8                               | -2.9                 | -2.9            |
| 1993–1995  | KAR09_C2_A2   | 23.71                 | 24.11 | 23.91             | 8.47             | 8.14             | -2.7                               | -2.5                 | -2.6            |
| 1987–1989  | KAR09_C2_A3   | 24.06                 | 23.46 | 23.76             | 8.46             | 8.14             | -2.6                               | -2.6                 | -2.6            |
| 1980–1982  | KAR09_C2_A4_1 | 24.69 <sup>a</sup>    | 24.90 | 24.81             | 8.53             | 8.15             | -1.8                               | -1.8                 | -1.8            |
|            |               | 24.76 <sup>a</sup>    |       |                   |                  |                  |                                    |                      |                 |
| 1974–1972  | KAR09_C2_A4_2 | 25.06                 | 24.48 | 24.77             | 8.53             | 8.16             | -2.0                               | -2.0                 | -2.0            |
| 1968–1970  | KAR09_C2_B2a  | 23.82 <sup>a</sup>    | 24.29 | 24.08             | 8.48             | 8.17             | -2.6                               | -2.3                 | -2.4            |
|            |               | 23.93 <sup>a</sup>    |       |                   |                  |                  |                                    |                      |                 |
| 1963–1965  | KAR09_C2_B2b  | 24.63                 | 24.64 | 24.63             | 8.52             | 8.17             | -1.5                               | -1.6                 | -1.5            |
| 1954–1956  | KAR09_C2_B3b  | 24.07 <sup>a</sup>    | 24.25 | 24.15             | 8.49             | 8.18             | -1.4                               | -1.6                 | -1.5            |
|            |               | 24.03 <sup>a</sup>    |       |                   |                  |                  |                                    |                      |                 |
| 1945–1947  | KAR09_C2_B7b  | 24.63                 | 24.48 | 24.56             | 8.51             | 8.18             | -1.9                               | -2.0                 | -2.0            |
| 1937–1939  | KAR09_C2_C1   | 24.94 <sup>a</sup>    | 24.61 | 24.74             | 8.52             | 8.18             | -1.5                               | -1.8                 | -1.6            |
|            |               | 24.79 <sup> a</sup>   |       |                   |                  |                  |                                    |                      |                 |
| 1928–1930  | KAR09_C2_C3   | 24.63                 | 24.09 | 24.36             | 8.50             | 8.19             | -1.8                               | -2.0                 | -1.9            |
| 1919–1921  | KAR09_C2_C4   | 24.66                 | 25.18 | 24.92             | 8.53             | 8.19             | -1.2                               | -1.8                 | -1.5            |
| 1910–1912  | KAR09_C2_D1   | 24.34                 | 24.39 | 24.37             | 8.50             | 8.19             | -1.5                               | -1.4                 | -1.5            |
| Chichijima |               | δ <sup>11</sup> B (‰) |       | )                 |                  |                  |                                    |                      |                 |
| Years (AD) | Sample Name   | MC-IO                 | CPMS  | TIMS <sup>b</sup> | рН <sub>CF</sub> | pH <sub>sw</sub> | δ <sup>13</sup> C (‰) <sup>c</sup> |                      | 0) <sup>c</sup> |
| 1996–1998  | OGA02_3Y_1997 | 23.                   | 65    | 23.84             | 8.47             | 8.12             | -2.7                               |                      |                 |
| 1991–1993  | OGA02_3Y_1992 | 23.77                 |       | 23.84             | 8.47             | 8.12             | -2.9                               |                      |                 |
| 1986–1988  | OGA02_3Y_1987 | 24.39                 |       | 24.22             | 8.50             | 8.13             | -2.3                               |                      |                 |
| 1981–1983  | OGA02_3Y_1982 | 24.08                 |       | 23.89             | 8.48             | 8.14             | -2.3                               |                      |                 |
| 1976–1978  | OGA02_3Y_1977 | 23.                   | 61    | 24.17             | 8.49             | 8.14             | -2.4                               |                      |                 |
| 1971–1973  | OGA02_3Y_1972 | 24.                   | 99    | 24.71             | 8.53             | 8.15             | -2.0                               |                      |                 |
| 1965–1967  | OGA02_3Y_1966 | 24.28                 |       | 24.16             | 8.49             | 8.16             | -2.1                               |                      |                 |

| 1959–1961 | OGA02_3Y_1960 | 24.47 | 24.43 | 8.51 | 8.16 | -2.4 |
|-----------|---------------|-------|-------|------|------|------|
| 1953–1955 | OGA02_3Y_1954 | 24.57 | 24.56 | 8.52 | 8.16 | -2.3 |
| 1947–1949 | OGA02_3Y_1948 | 24.48 | 24.28 | 8.50 | 8.16 | -2.4 |
| 1941–1943 | OGA02_3Y_1942 | 24.75 | 24.28 | 8.50 | 8.17 | -2.0 |
| 1934–1936 | OGA02_3Y_1935 | 24.40 | 24.38 | 8.51 | 8.17 | -1.8 |
| 1927–1929 | OGA02_3Y_1928 | 25.02 | 24.76 | 8.53 | 8.17 | -2.0 |
| 1920–1922 | OGA02_3Y_1921 | 23.87 | 24.06 | 8.49 | 8.17 | -2.1 |
| 1913–1915 | OGA02_3Y_1914 | 24.33 | 24.41 | 8.51 | 8.17 | -2.0 |

(a) The same sample solution was measured by MC-ICPMS twice.

(b) TIMS data are from Kubota *et al.*<sup>19</sup>

(c) Calculated using sub-monthly  $\delta^{13}$ C records reported by Felis *et al.*<sup>10</sup>

| Years (AD) | Sample Name   | pH <sub>CF</sub> | B/Ca       | [B(OH) <sub>3</sub> ] <sub>CF</sub> | [B(OH) <sub>4</sub> <sup>-</sup> ] <sub>CF</sub> | $[CO_3^{2-}]_{CF}$ $[HCO_3^{}]_{CF}$ |           | DIC <sub>CF</sub> | TA <sub>CF</sub> | $\Omega_{CF}$ |
|------------|---------------|------------------|------------|-------------------------------------|--------------------------------------------------|--------------------------------------|-----------|-------------------|------------------|---------------|
| _          |               |                  | (mmol/mol) | (µmol/kg)                           | (µmol/kg)                                        | (µmol/kg)                            | (µmol/kg) | (µmol/kg)         | (µmol/kg)        |               |
| Kikaijma   |               |                  |            |                                     |                                                  |                                      |           |                   |                  |               |
| 2005-2007  | KAR09_C2_A1_1 | 8.44             | 0.480      | 245                                 | 171                                              | 1272                                 | 4269      | 5542              | 6985             | 20.2          |
| 2000-2002  | KAR09_C2_A1_2 | 8.46             | 0.482      | 240                                 | 176                                              | 1368                                 | 4373      | 5740              | 7283             | 21.7          |
| 1993–1995  | KAR09_C2_A2   | 8.48             | 0.459      | 237                                 | 179                                              | 1524                                 | 4692      | 6216              | 7920             | 24.2          |
| 1987–1989  | KAR09_C2_A3   | 8.47             | 0.468      | 239                                 | 177                                              | 1444                                 | 4545      | 5989              | 7611             | 22.9          |
| 1980–1982  | KAR09_C2_A4_1 | 8.54             | 0.481      | 223                                 | 193                                              | 1788                                 | 4819      | 6606              | 8587             | 28.3          |
| 1974–1972  | KAR09_C2_A4_2 | 8.53             | 0.475      | 223                                 | 193                                              | 1795                                 | 4865      | 6660              | 8648             | 28.5          |
| 1968–1970  | KAR09_C2_B2a  | 8.49             | 0.436      | 234                                 | 182                                              | 1671                                 | 5013      | 6685              | 8538             | 26.5          |
| 1963–1965  | KAR09_C2_B2b  | 8.52             | 0.457      | 226                                 | 190                                              | 1807                                 | 5000      | 6807              | 8804             | 28.6          |
| 1954–1956  | KAR09_C2_B3b  | 8.49             | 0.448      | 233                                 | 183                                              | 1652                                 | 4906      | 6559              | 8394             | 26.2          |
| 1945–1947  | KAR09_C2_B7b  | 8.52             | 0.443      | 227                                 | 189                                              | 1832                                 | 5127      | 6959              | 8980             | 29.0          |
| 1937–1939  | KAR09_C2_C1   | 8.53             | 0.423      | 224                                 | 192                                              | 1999                                 | 5447      | 7446              | 9637             | 31.7          |
| 1928–1930  | KAR09_C2_C3   | 8.51             | 0.442      | 230                                 | 186                                              | 1756                                 | 5058      | 6813              | 8755             | 27.8          |
| 1919–1921  | KAR09_C2_C4   | 8.54             | 0.460      | 221                                 | 195                                              | 1916                                 | 5082      | 6997              | 9108             | 30.4          |
| 1910–1912  | KAR09_C2_D1   | 8.51             | 0.445      | 230                                 | 186                                              | 1748                                 | 5028      | 6777              | 8712             | 27.7          |
| Chichijima |               |                  |            |                                     |                                                  |                                      |           |                   |                  |               |
| 1996–1998  | OGA02_3Y_1997 | 8.47             | 0.544      | 238                                 | 178                                              | 1266                                 | 3938      | 5204              | 6648             | 20.1          |
| 1991–1993  | OGA02_3Y_1992 | 8.47             | 0.541      | 238                                 | 178                                              | 1273                                 | 3959      | 5232              | 6684             | 20.2          |

Supplementary Table 2. Calculated CO<sub>2</sub> system parameters in the calcification fluid.

| 1986–1988 | OGA02_3Y_1987 | 8.50 | 0.548 | 232 | 184 | 1372 | 4032 | 5403 | 6959 | 21.7 |
|-----------|---------------|------|-------|-----|-----|------|------|------|------|------|
| 1981–1983 | OGA02_3Y_1982 | 8.48 | 0.540 | 237 | 179 | 1289 | 3980 | 5269 | 6737 | 20.4 |
| 1976–1978 | OGA02_3Y_1977 | 8.49 | 0.528 | 233 | 183 | 1408 | 4169 | 5578 | 7169 | 22.3 |
| 1971–1973 | OGA02_3Y_1972 | 8.53 | 0.564 | 224 | 192 | 1490 | 4075 | 5565 | 7247 | 23.6 |
| 1965–1967 | OGA02_3Y_1966 | 8.49 | 0.539 | 233 | 183 | 1378 | 4085 | 5464 | 7025 | 21.8 |
| 1959–1961 | OGA02_3Y_1960 | 8.51 | 0.524 | 229 | 187 | 1504 | 4288 | 5793 | 7484 | 23.8 |
| 1953–1955 | OGA02_3Y_1954 | 8.52 | 0.531 | 227 | 189 | 1529 | 4276 | 5805 | 7523 | 24.2 |
| 1947–1949 | OGA02_3Y_1948 | 8.50 | 0.523 | 231 | 185 | 1455 | 4242 | 5697 | 7337 | 23.1 |
| 1941–1943 | OGA02_3Y_1942 | 8.50 | 0.521 | 231 | 185 | 1463 | 4264 | 5726 | 7374 | 23.2 |
| 1934–1936 | OGA02_3Y_1935 | 8.51 | 0.522 | 229 | 187 | 1494 | 4288 | 5782 | 7463 | 23.7 |
| 1927–1929 | OGA02_3Y_1928 | 8.53 | 0.553 | 224 | 192 | 1537 | 4173 | 5710 | 7439 | 24.4 |
| 1920–1922 | OGA02_3Y_1921 | 8.49 | 0.524 | 234 | 182 | 1381 | 4159 | 5540 | 7102 | 21.9 |
| 1913–1915 | OGA02_3Y_1914 | 8.51 | 0.542 | 229 | 187 | 1447 | 4141 | 5588 | 7222 | 22.9 |

## **Supplementary References**

- Holcomb, M., DeCarlo, T. M., Gaetani, G. A., & McCulloch, M. Factors affecting B/Ca ratios in synthetic aragonite. *Chem. Geol.* 437, 67–76 (2016).
- Millero, F. J. The thermodynamics of the carbonate system in sea- water. *Geochim. Cosmochim. Acta* 43, 1651–16 (1979).
- Millero, F. J., Feistel, R., Wright, D. G. & McDougall, T. J. The composition of standard seawater and the definition of the reference-composition salinity scale. *Deep-Sea Res. I* 55, 50–72 (2008).
- Mucci, A. & Morse, J. W. The incorporation of Mg<sup>2+</sup> and Sr<sup>2+</sup> into calcite overgrowths: Influences of growth rate and solution composition. *Geochim. Cosmochim. Acta* 47, 217–233 (1983).
- 50. Lueker, T. J., Dickson, A. G. & Keeling, C. D. Ocean  $pCO_2$  calculated from dissolved inorganic carbon, alkalinity, and equations for  $K_1$  and  $K_2$ : validation based on laboratory measurements of  $CO_2$  in gas and seawater at equilibrium. *Mar. Chem.* **70**, 105–119 (2000).
- Dickson, A. G. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. *Deep-Sea Res.* 37, 755–766 (1990).
- 52. Mavromatis, V., Montouillout, V., Noireaux, J., Gaillardet, J. & Schott, J. Characterization of boron incorporation and speciation in calcite and aragonite from co-precipitation experiments under controlled pH, temperature and precipitation rate. *Geochim. Cosmochim. Acta* **150**, 299–313 (2015).
- 53. Hemming, N. G. & Hanson, G. N. Boron isotopic composition and concentration in modern marine carbonates. *Geochim. Cosmochim. Acta* **56**, 537–543 (1992).
- Robbins, L. L., Hansen, M. E., Kleypas, J. A. & Meylan, S. C. CO2calc—A user-friendly seawater carbon calculator for Windows, Max OS X, and iOS (iPhone). U.S. Geological Survey Open-File Report 2010–1280 (2010).
- Carton, J. A. & Giese, B. S. A Reanalysis of Ocean Climate Using Simple Ocean Data Assimilation (SODA). *Mon. Wea. Rev.* 136, 2999–3017 (2008).
- 56. Huang, B. *et al.* Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I: upgrades and intercomparisons. *J. Clim.* **28**, 911–930 (2015).
- Maritime Safety Agency. Submarine structural chart, bathymetric chart, report of survey (Chichijima), basic map of the sea in coastal waters, Scale 1:50,000.
  <a href="http://www.jha.or.jp/shop/">http://www.jha.or.jp/shop/</a>, (1998) Date of access: 27/04/2017

58. Maritime Safety Agency. Submarine structural chart, bathymetric chart, report of survey (Eastern part of Amami Gunto), basic map of the sea in coastal waters, Scale 1:200,000. < http://www.jha.or.jp/shop/>, (1982) Date of access: 27/04/2017