Supplementary information

TDP-43 stabilises the processing intermediates of mitochondrial transcripts

Keiichi Izumikawa^{1, 2}, Yuko Nobe^{2, 3}, Harunori Yoshikawa^{1, 2, 4}, Hideaki Ishikawa^{1, 2}, Yutaka Miura¹, Hiroshi Nakayama⁵, Takashi Nonaka⁶, Masato Hasegawa⁶, Naohiro Egawa⁷, Haruhisa Inoue⁷, Kouki Nishikawa⁸, Koji Yamano⁹, Richard J. Simpson^{1, 10}, Masato Taoka^{2, 3}, Yoshio Yamauchi^{2, 3}, Toshiaki Isobe^{2, 3}, and Nobuhiro Takahashi^{1, 2}*

¹ Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan

² Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan

- ³ Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan
- ⁴ Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
- ⁵ Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan
- ⁶ Department of Dementia and Higher Brain Function/Dementia Research Project Tokyo Metropolitan Institute of Medical Science 2-1-6 Kamikitazawa Setagaya-ku Tokyo 156-8506 Japan
- ⁷ Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
- ⁸ Cellular and Structural Physiology Institute (CeSPI) Nagoya University Nagoya 464-8601 Japan
- ⁹ Ubiquitin project Tokyo Metropolitan Institute of Medical Sciences Setagaya-ku Tokyo 156-8506 Japan
- ¹⁰ La Trobe Institute for Molecular Science (LIMS), LIMS Building 1, Room 412 La Trobe University, Bundoora Victoria 3086, Australia

Materials and Methods

Antibodies and Reagents

Antibodies used in this study were: Mouse monoclonal anti-TDP-43 (ProteinTech, Chicago, IL; 60019-2-Ig), rabbit polyclonal anti-TDP-43 (ProteinTech; 10782-2-AP), mouse monoclonal anti-FLAG (Sigma-Aldrich, St Louis, MO; M2), nonspecific rabbit IgG (Abcam, Cambridge, MA; ab46540), FITC-conjugated anti-mouse IgG (KPL, Gaithersburg, MD), mouse monoclonal anti-GAPDH (Ambion, Austin, TX; AM4300), rabbit polyclonal anti-ND2 (Abgent, San Diego, CA; AP9387a), rabbit polyclonal anti-ND3 (Abgent; AP12310a), rabbit polyclonal anti-ND4 (Santa Cruz Biotechnology, Santa Cruz, CA; sc-20499R), rabbit polyclonal anti-ND4L (Santa Cruz Biotechnology; sc-20665), rabbit polyclonal anti-ND5 (Abgent; AP6939b), rabbit polyclonal anti-ND6 (Lifespan Biosciences, Seattle, WA; LS-C82589-50), rabbit polyclonal anti-CYB (Abgent; AP9621C), mouse monoclonal anti-COX II (Abcam; ab110258), rabbit polyclonal anti-ATP8 (Santa Cruz Biotechnology; sc-84231), rabbit polyclonal anti-ELAC2 (Proteintech; 10071-1-AP), rabbit anti-MRPP3 (GeneTex; GTX121658), anti-TFAM (BETHYL; A303-226A), anti-TOM22 (GTX10436), horseradish peroxidase (HRP)-conjugated anti-mouse IgG (Cell Signaling Technology, Beverly, MA, #7076), and HRP-conjugated anti-rabbit IgG (Cell Signaling Technology, Beverly, MA, #7074). For the detection of biotinylated oligonucleotide, we used Stabilized Streptavidin-HRP Conjugate (Thermo Scientific, 89880D). All general reagents were purchased from Wako Pure Chemical, Osaka, Japan; Kanto Chemical Co., or Nacalai Tesque.

Cell culture

HeLa, MCF7, 293T (HEK293 cells transformed with large T antigen) and Flp-In T-REx 293 cells were cultured as described previously^{1,2}. Cells were treated with EtBr (Invitrogen, Carlsbad, CA) at 250 ng/ml for the indicated time periods.

Construction of epitope-tagged protein expression vectors

To construct the FLAG-tagged TDP-43 expression vector, the TDP-43 DNA fragment was amplified by from pEGFP-TDP-43 prepared by Arai *et al*³ with KOD-plus DNA polymerase (Toyobo, Osaka, Japan). The PCR product was

cloned into the KpnI/XhoI sites of pcDNA5/FRT/TO (Invitrogen); the resulting vector was designated as FLAG-TDP-43 pcDNA5-FRT/TO. A triple affinity-tag (DAP) used for the inducible TDP-43 expression cell line was constructed by PCR amplification of a cDNA encoding 6 histidines and a biotinylated sequence using the vector pcDNA3.1(+)-bio as a template based on the method described previously⁴. The PCR product was cloned into the HindIII/KpnI sites of FLAG-TDP-43 pcDNA5-FRT/TO; the resulting vector was designated as DAP-TDP-43 pcDNA5/FRT/TO. To construct Δ RRM1, Δ RRM2, or Δ GR. DNA fragments were amplified using KOD plus DNA polymerase with the primer sets (Δ RRM1; Clal-TDP43(170-)-For/TDP43(-104)-Clal-Rev, Δ RRM2; Clal-TDP43(258-)-For/TDP43(-192)-Clal-Rev, Δ GR: Clal-TDP43(315-)-For/TDP43(-273)-Clal-Rev), digested with Clal, and subjected to the self-ligation. To construct Δ 315, DNA fragments were KOD DNA polymerase with the amplified bv plus primer set (BamHI-TDP43-1-For/TDP43(-314)-Xhol-Rev), digested with BamHI/Xhol, and inserted into the BamHI/XhoI site of DAP-tag pcDNA5/FRT/TO that was generated by exciting TDP-43 fragment with BamHI/XhoI from DAP-TDP-43 pcDNA5/FRT/TO. To construct K136A, K140A, K145A, or F147/149L, DNA fragments were amplified using KOD plus DNA polymerase with the primer sets (K136A; K136A-For/K136A-Rev, K140A; K140A-For/K140A-Rev, K145A; K145A-For/K145A-Rev, F147/149L; F147/149L-For/ F147/149L-Rev), and template DNA was degraded with Dpnl. Construction of DAP-Fibrillarin pcDNA5FRT/TO was described before⁵. To construct pCold-TF-FLAG, the primer set (pCold-FLAG-For/ pCold-FLAG-Rev) was annealed, digested with HindIII/Xbal, and inserted into the HindIII/Xbal site of pCold-TF vector (Clontech). To construct pCold-TF-TDP43-FL, DNA fragments were amplified using KOD plus DNA polymerase with the primer set (BamHI-TDP43-HindIII-For/ BamHI-TDP43-HindIII-Rev), digested with BamHI/HindIII, and inserted into the BamHI/HindIII site of pCold-TF-FLAG. All constructs were verified by DNA sequencing. The primer sets used to amplify each gene are shown in Supplementary Table 2.

Construction of doxycycline-inducible cell lines

The cell lines expressing doxycycline inducible DAP-tagged protein was established as described previously^{1,2}. To induce expression of the DAP- tagged protein, 100 ng/ml of doxycycline was treated to the cells for the indicated time periods.

Immunoprecipitation of endogenous TDP-43 complex

Rabbit polyclonal anti-TDP-43 antibody (3 μ g) (ProteinTech; 10782-2-AP) was bound to Dynabeads by incubating with 15 μ l of protein G Dynabeads (Invitrogen) in PBS containing 0.01% Triton X-100 for 30 min at 25°C and then washing three times with PBS containing 0.01% Triton X-100. The antibody-bound Dynabeads were mixed with 2 mg of total cell lysate (prepared from 1.0 x 10⁷ cells) for 4 h at 4°C and washed five times with 1 ml of lysis buffer. Proteins and RNA were recovered from the antibody-bound Dynabeads as described above. (See Method section for Immunoprecipitation of DAP-tagged protein associated complex).

Immunoblot analysis

Immunoblot analysis was performed as described^{1,2}. Signal intensity of each band was measured and quantified using MultiGauge software (Fujifilm, Tokyo, Japan).

Immunoelectron microscopy

Cells were fixed with 4% paraformaldehyde and 0.1% glutaraldehyde in PBS and harvested by centrifugation for 5 min at 4°C at 200 x g, followed by emersion in 55°C 2% agar. After cooling, the cell-containing agar was cut into 1 mm square blocks. The blocks were immersed in 2% uranyl acetate dissolved in water for contrast and dehydrated by immersion in graded concentrations of ethanol (50, 60, 70, 80, 90, and 100%). The temperature was lowered by 10°C in each methanol step from 0°C to -50°C in a cryo-substitution unit (Leica EM AFS). The samples were infiltrated with Lowicryl HM20 resin (Polysciences, Inc., Warrington) at -50°C with a progressive increase in the ratio of resin to ethanol (1:2, 1:1, 2:1). Finally, the samples were incubated in pure resin overnight at -

50°C. Polymerization was carried out under ultraviolet light for 48 h at -50° C and for 24 h at room temperature. Samples were conventionally sectioned (70 nm thickness) with the Leica EM UC6 microtome. The ultrathin sections were treated with the following solutions: (1) 5% BSA, 0.005% saponin and 0.001% sodium azide in PBS to prevent non-specific reactions; (2) primary antibodies against TDP-43 (ProteinTech 60019-2-Ig; 50 µg/ml or 10 µg/ml) in PBS containing 1% BSA, 0.005% saponin and 0.001% sodium azide for 3 h at room temperature and overnight at 4°C; and (3) 15 nm gold-conjugated secondary antibody (BBInternational; 1:100) in PBS containing 1% BSA, 0.005% saponin and 0.001% sodium azide for 3 h at room temperature. The sections were negatively stained with 2% uranyl acetate and 2% lead acetate. Electron microscope equipped with a 2K CMOS camera (TVIPS TemCam F216) at 2,500 and 8,000× magnification and operated at 100 kV. TDP-43 was visualised by 15 nm immunogold particles.

RT-PCR analysis

Total RNA was treated with Baseline-ZERO DNase (Epicentre Biotechnologies, Madison, WI) for 1 h at 37°C, and purified using the RNAgents Total RNA Isolation System (Promega). For RT-PCR analysis, the DNase treated total RNA was reverse-transcribed with gene specific primers using the PrimeScript RT-PCR kit (Takara Bio, Japan). PCR was performed using TaKaRa Ex Taq Hot Start Version (Takara Bio), and the products were separated in an 8% polyacrylamide gel (1× Tris-borate-EDTA) or 1.5% agarose gel (0.5× Tris-acetate-EDTA). The polyacrylamide gels were stained with SYBR Gold and the agarose gels with EtBr. The amplified genes were visualised using the LAS4000 Luminescent Image Analyzer System and MultiGauge software (Fujifilm). For RT-qPCR analysis, the DNase treated total RNA was reverse transcribed with random hexamers and oligo dT primers using the PrimeScript RT Reagent kit (Takara Bio, Japan). For ND6, specific primers were used in the reverse transcription. qPCR was performed using SYBR Premix Ex Taq II (Takara Bio) and the Thermal Cycler Dice Real Time System (Takara Bio).

Relative gene expression was determined by the $\Delta \Delta CT$ method and the quantified values were normalised to the values obtained for GAPDH mRNA. The primer sets used to amplify each gene are shown in Supplementary Table 2.

Purification of TF-fused Protein

TF-TDP-43-FL (TF-TDP-43) or TF-FL was expressed in Escherichia coli Rosetta2 (DE3) via a 24 h induction at 15°C by the presence of 0.1 mM Isopropyl β -D-1-thiogalactopyranoside. Escherichia coli expressing TF-TDP-43-FL or TF-FL was lysed with xTractor Buffer (Clontech), and TF-fused proteins were purified using Ni-NTA agarose (Qiagen), and eluted with 250 mM imidazole in 50 mM Tris-HCl pH7.4 and 150 mM NaCl. The eluted TF-fused proteins were isolated by ANTI-FLAG M2 Affinity Agarose Gel (SIGMA), and eluted with FLAG peptide. The eluted solution containing TF-fused proteins were dialyzed with Tris-buffered saline for 12 h at 4°C, and quantified with the BCA protein assay (Thermo Scientific).

RNA interference.

Stealth siRNA1, siRNA3 or scRNA (negative control) (Invitrogen) transfection was performed using Lipofectamine RNAiMax (Invitrogen). In 35-mm Petri dishes, HeLa and MCF7 cells were transfected with 50 pmol of scRNA or siRNA, and 293T cells were transfected with 100 pmol of scRNA or siRNA. The siRNA1, siRNA3 and scRNA sequences are shown in Supplementary Table 2.

Immunocytostaining.

Immunocytostaining was performed as described previously^{1,2,4}. Cells were cultured in the wells of collagen-coated culture slides (BD-Falcon Biosciences, Lexington, TN) and incubated for 20 min with 100 nM MitoTracker Orange CMTMRos (Invitrogen) for mitochondria staining before the cells were fixed. Fluorescence of the cells was visualised with an Axiovert 200 M microscope (Carl Zeiss, Oberkochen, Germany).

Measurement of ROS production.

Intracellular ROS levels were assessed by flow cytometric analyses using a

fluorometric probe (2',7'-dichlorofluorescein diacetate; Molecular Probes, Eugene, OR) with the EPICS Elite EPS cell sorting system (Beckman-Coulter, Hialeah, FL) as described previously⁶.

Cell proliferation assay

To assese cell proliferation cell number was calculated visually using a Burker-Turk chamber (Hirschmann, Laborgeräte Hilgenberg, Germany).

Measurement of mitochondrial membrane potential

Cells were cultured for 20 min with 100 nM MitoTracker Orange CMTMRos (Invitrogen) and then washed with ice-cold PBS. Luminescence was measured using the GloMax-Multi Detection System (Promega). The luminescence detected was normalised to the protein content of each sample measured by Pierce BCA assay (Thermo Fisher Scientific).

Measurement of cellular ATP levels

Cells were harvested and washed with ice cold PBS. ATP levels in the cells were measured using the CellTiter-Glo Luminescent Cell Viability Assay (Promega). The luminescence was detected with the LAS4000 Luminescent Image Analyzer System and quantified by MultiGauge software (Fujifilm). Signal intensity was normalised to the cell number of each sample.

Measurement of complex I enzyme activity

Mitochondrial complex I enzyme activity was measured using the Complex I Enzyme Activity Dipstick Assay Kit (Abcam). The Signal intensities were measured with the LAS4000 system and quantified by MultiGauge software (Fujifilm).

Supplementary Figure 1. TDP-43 associates with a subset of L-strand-encoded mt-tRNAs.

a, Schematic diagram of a tandem affinity tag (DAP-tag). **b**, T-REx 293 cells inducibly expressing DAP-TDP-43 treated with (+) or without (-) doxycycline for 48 h, and endogenous TDP-43 was detected by immunobot using anti-TDP-43. Immunoblot using GAPDH served as loading controls. c, RNA was immunoprecipitated (IP) with anti-FLAG from T-REx 293 cells inducibly expressing DAP-TDP-43 or DAP-fibrillarin, and analysed by northern blotting (NB) with probes indicated on the right. DAP-TDP-43 and DAP-fibrillarin were detected by western blotting (WB) using HRP-conjugated streptavidin. T-REx 293 cells served as a negative control, and DAP-fibrillarin served as a control for DAP-tag. d, Schematic representation of DAP-TDP-43 and its deletion or point mutants. RRM, RNA recognition motif; G-rich, glycine rich. e, RNA immunoprecipitated using anti-FLAG from T-REX 293 cells expressing DAP-TDP-43 deletion mutants was analysed by NB with the indicated probes on the right. DAP-tagged proteins were detected by WB using HRP-conjugated streptavidin. f, Nucleotide sequences of the synthesised mt-tRNA^{Asn} and its mutants; the sequences in red were replaced by sequences corresponding to the region of acceptor stem [Ac-stem(Leu)], D-loop(Leu), anticodon loop [pAntiCdn(Leu)], variable region [Var-R(Leu)], or T-loop(Leu) in mt-tRNA^{Leu}. The sequence of the synthesised mt-tRNA^{Leu} [Leu(UUR)] is also shown. The residue numbers of the nucleotide sequence are shown above. Lines with arrows indicate DNA probes (Asn1 and Asn2) corresponding to the sequence used. g, Purified recombinant trigger factor (TF, 500 ng), TF-fused TDP-43 (TF-TDP-43, 500 ng), and bovine serum albumin (BSA, 250, 500, 1000 ng) were separated by SDS-PAGE and visualised by Coomassie Brilliant Blue staining (left). The synthesised mt-tRNA^{Asn} or mt-tRNA^{Leu(UUR)} was mixed with TF-TDP-43, analysed by electrophoretic mobility shift assay, and detected by NB with probe Asn1 and Leu that is complementary to mt-tRNA^{Leu}(UUR). NT indicates the absence of recombinant protein.

Supplementary Figure 2. Mitochondria transcription was inhibited by ethidium bromide.

a, Schematic diagram of mt-rRNA, mt-tRNA, and mt-mRNA encoded in the mitochondrial genome. The H-strand and L-strand of mtDNA are indicated. **b**, **c**, T-REx 293 cells were treated with EtBr to inhibit mitochondrial transcription for the indicated periods. Total RNA separated on a denaturing urea gel (b) or agarose gel (c) were analysed by northern blotting with the probes indicated on the right. 28S rRNA stained with methylene blue were used as loading controls.

Supplementary Figure 3. MRPP3 deficiency causes accumulation of intermediates of mitochondrial transcript processing similar to that observed after TDP-43 overexpression.

a, RNA regions corresponding to the boundary between ND2 mRNA and mirrorN and the mirrorA and COXI mRNAs were detected by RT-PCR. PCR fragments were separated on an agarose gel and stained with EtBr. Size standards (bp) are shown to the left. 5S rRNA and ACTB mRNA served as loading controls. **b**, Total RNA extracted from DAP-TDP-43-expressing T-REx 293 cells harvested at 0, 24, or 48 h after Dox induction were reverse transcribed and analysed by real-time quantitative PCR. The mt-mRNA levels measured by quantitative RT-PCR are graphed. Both exogenous and endogenous TDP-43 mRNA (TDP-43 code) and endogenous TDP-43 mRNA (TDP-43 3' untranslated region, UTR) were measured as controls for exogenous TDP-43 expression. Values were normalised to GAPDH mRNA. Data are the average \pm SD, n = 3–8. **P < 0.01; *P < 0.05 (paired t test between values with (24 or 48 h) and without (0 h) Dox induction). c, 293T cells in which ELAC2 or MRPP3 was knocked down with siRNA were analysed by western blotting with the indicated antibodies on the right. d, Total RNA extracted from ELAC2 or MRPP3 knocked-down 293T cells (treated with siRNA/scRNA for 48 h) was analysed by northern blotting with the probes indicated under the figures. EtBr served as a negative control for the mitochondrial transcripts. The processing intermediates of mitochondrial transcripts identified from the results of northern blotting are indicated on the right side of figures. +16S-mirrorQ; *W-COXII; **mirrorANCY-COXI. 28S and 18S rRNA stained with Methylene blue served as loading controls.

- Izumikawa, K. *et al.* Friend of Prmt1, FOP is a Novel Component of the Nuclear SMN Complex Isolated Using Biotin Affinity Purification. *Journal of Proteomics & Bioinformatics* 07, doi:10.4172/jpb.S7-002 (2014).
- Ishikawa, H. *et al.* Identification of truncated forms of U1 snRNA reveals a novel RNA degradation pathway during snRNP biogenesis. *Nucleic Acids Res* 42, 2708-2724, doi:10.1093/nar/gkt1271 (2014).
- 3 Arai, T. *et al.* TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. *Biochem Biophys Res Commun* **351**, 602-611, doi:10.1016/j.bbrc.2006.10.093 (2006).
- 4 Miyazawa, N. *et al.* Human cell growth regulator Ly-1 antibody reactive homologue accelerates processing of preribosomal RNA. *Genes Cells* **19**, 273-286, doi:10.1111/gtc.12129 (2014).
- 5 Sato, S. *et al.* Collaborator of alternative reading frame protein (CARF) regulates early processing of pre-ribosomal RNA by retaining XRN2 (5'-3' exoribonuclease) in the nucleoplasm. *Nucleic Acids Res* **43**, 10397-10410, doi:10.1093/nar/gkv1069 (2015).
- 6 Yagihashi, S., Miura, Y. & Yagasaki, K. Inhibitory effect of gingerol on the proliferation and invasion of hepatoma cells in culture. *Cytotechnology* 57, 129-136, doi:10.1007/s10616-008-9121-8 (2008).

	Observe	d	Theoretical							MS	/MS fragm	ent ions de	etected	
		Molecular	Molecular	error			Residue		Idenitificatio					
m/z	charge	mass (Da)	mass (Da)	(ppm)	Rt	RNA	numbers	Sequence	n method ^ª	a series	c series	w series	y series	Remarks
691.1027	1	692.1105	692.1105	0.0	29.71	mt tRNA ^{Pro}	4-5, 48-49	AGp	М	2	1		1	
834.1209	2	1670.2575	1670.2565	0.6	36.57	mt tRNA ^{Pro}	6-10	AAU(mA)Gp	Α	3,4,5	1,2,3,4	1,3,4,	1,2,3,4	Bsae loss of monomethylated adenine was detected in the MS/MS spectrum.
1068.7909	3	3209.3961	3209.3946	0.5	38.62	mt tRNA ^{Pro}	11-20	UUUAAAUUAGp	Α	4,8,10	2,3,4,5,6, 7,8,9	3,4,5,6	1,2,3,4,5,6, 7,8,9	
1285.6598	2	2573.3352	2573.3328	1.0	38.45	mt tRNA ^{Pro}	21-28	AAUCUUAGp	Α	4,8	2,3,4,5,6, 7	3,4,6,7	2,3,4,5,6,7	
792.0803	2	1586.1762	1586.1752	0.6	28.21	mt tRNA ^{Pro}	29-33	CUUUGp	Α	2,3,5	1,2,3,4	1,2,3,4	1,2,3,4	
792.0804	2	1586.1764	1586.1752	0.8	29.30	mt tRNA ^{Pro}	29-33	CUUUGp	Α	3,5	2,3,4	1,2,4	1,2,3,4	
1027.1400	1	1028.1478	1028.1464	1.4	30.11	mt tRNA ^{Pro}	35-37	(mG)UGp	М	2,3	1,2	1,2	1,2	Bsae loss of monomethylated guanine was detected in the MS/MS spectrum.
968.1210	2	1938.2577	1938.2549	1.4	32.70	mt tRNA ^{Pro}	38-43	CUAAUGp	Α	4,6	2,3,4,5	3,5	1,2,3,4,5	
987.1333	2	1976.2823	1976.2818	0.2	35.33	mt tRNA ^{Pro}	50-55	(mU)UAAAGp	Α	2,6	2,3,4,5	1,2,3,4	1,2,3,4,5	
980.1260	2	1962.2676	1962.2662	0.7	33.87	mt tRNA ^{Pro}	50-55	UUAAAGp	M	2,6	2,3,4,5		1,2,3,4,5	
980.1259	2	1962.2674	1962.2662	0.6	35.10	mt tRNA ^{Pro}	50-55	UUAAAGp	Α	6	2,3,4,5	2	1,2,3,4,5	
1248.7969	3	3749.4141	3749.4115	0.7	34.95	mt tRNA ^{Pro}	56-67	ACUUUUUCUCUGp	Α	4,12	2,3,6,8,9, 11	2,4	2,3,4,5,6,7, 9,10,11	
1248.7964	3	3749.4126	3749.4115	0.3	35.85	mt tRNA ^{Pro}	56-67	ACUUUUUCUCUGp	Α	5,12	2,3,5,6,7, 8.9.10	2,4,9,11	2,3,4,5,6,7, 9.10.11	
602.1092	2	1206.2340	1206.2318	1.8	36.81	mt tRNA ^{Pro}	68-71	ACCA-OH	м	2,3	2,3	2	2,3	
1077.0924	1	1078.1002	1078.1022	-1.8	26.06	mt tRNA ^{Asn}	1-3	pUAGp	М	2	1,2	1,2	2,3	
651.0730	2	1304.1617	1304.1611	0.4	35.37	mt tRNA ^{Asn}	4-7	AUUGp	Α	2,3,4	1,2,3	2,3	1,2,3	
1048.1854	1	1049.1932	1049.1943	-1.0	37.01	mt tRNA ^{Asn}	8-10	A(mA)(mG)p	М	3	2	1	1,2	Bsae losses of monomethylated adenine and monomethylated guanine were detected in the MS/MS spectrum.
650.0877	2	1302.1910	1302.1931	-1.6	32.39	mt tRNA ^{Asn}	11-14	CCAGp	Α	2,3,4	1,2,3	1,2,3	1,2,3	
974.1002	1	975.1080	975.1086	-0.6	29.59	mt tRNA ^{Asn}	15-17	UUGp	м	2.3	1.2	1.2	1.2	
976,1157	1	977.1235	977,1243	-0.7	25.68		15-17	UDGn	м	3	2	1.2	1.2	
815 5976	2	1633 2109	1633 2136	-17	36 75		18-22	AlliaGn	M	5	23	2	124	
816 6067	2	1635 2200	1635 2202	0.2	25.05		19 22		M A	3 4 5	1 2 2 4	4 2	1,2,4	
668 0740	1	669 0819	669 0833	-0.2	25 11		25-26 50-51	HGn	А М	3, 4 ,5 2	1,2,3,4	1,5	1,2,3,4	
000.0740	I	005.0015	009.0055	-2.1	23.11	mt tRNA ^{Aam}	23-20,30-31	UGp	IVI	2	1		•	Bsae loss of dimethylated
1143.1447	2	2288.3050	2288.3065	-0.7	35.63	mt tRNA ^{Asn}	25-31	U(mmG)CUUAGp	Α	2,3,5,7	1,2,3,4,5,0	6 4,5,6	1,2,3,4,5,6	guanine was detected in the MS/MS spectrum.
803.5927	2	1609.2011	1609.2024	-0.8	33.08	mt tRNA ^{Asn}	27-31	CUUAGp	Α	2,3,4,5	1,2,3,4	1,2,3	1,2,3,4	
803.5931	2	1609.2018	1609.2024	-0.4	34.67	mt tRNA ^{Asn}	27-31	CUUAGp	Α	3,4,5	1,2,3,4	1,2,3	1,2,3,4	
973.1152	1	974.1231	974.1246	-1.6	26.44	mt tRNA ^{Asn}	32-34	CUGp	м	2,3	1,2	1,2	1,2	
1522.7011	2	3047.4178	3047.4228	-1.7	36.92	mt tRNA ^{Asn}	35-43	UU(t⁵A)ACUAAGp	м	5	2,3,4,5,8	1,2,4,5,	1,2,3,4,5,6,	Bsae loss of N^6 - g threonylcarbamoyladenine was detected in the MS/MS spectrum.

Supplementary Table 1. Identification of RNase T1 fragments of mt tRNAs in the TDP-43 ribonucleoprotein complex.

_														
1375.5237	3	4129.5945	4129.6049	-2.5	39.53	mt tRNA ^{Asn}	32-43	CUQUU(t ⁶ A)ACUAAGp	mz					
639.5582	2	1281.1320	1281.1339	-1.5	32.15	mt tRNA ^{Asn}	46-49	UUUGp	Α	2,4	1,2,3	1,2,3	1,2,3	
975.6185	2	1953.2526	1953.2546	-1.0	36.66	mt tRNA ^{Asn}	54-59	(mU)UUAAGp	Α	2,5,6	2,3,4,5	1,2,4	1,2,3,4,5	
1261.6458	2	2525.3072	2525.3103	-1.2	33.65	mt tRNA ^{Asn}	60-67	UCCCAUUGp	Α	2,3,8	2,3,4,5,6,	7 4,5,6	2,3,4,5,6,7	
1261.6480	2	2525.3116	2525.3103	0.5	34.28	mt tRNA ^{Asn}	60-67	UCCCAUUGp	Α	2,3,8	2,3,4,5,6,7	7 3,4,5,6,7	2,3,4,5,6,7	
803.5928	2	1609.2012	1609.2024	-0.8	36.17	mt tRNA ^{Asn}	69-73	UCUAGp	Α	2,4,5	1,2,3,4	1,3	1,2,3,4	
810.6010	2	1623.2176	1623.2181	-0.3	40.61	mt tRNA ^{Asn}	69-73	UCU(mA)Gp	Α	2,3,4,5	1,2,3,4	1,2,3	1,2,3,4	Bsae loss of monomethylated adenine was detected in the MS/MS spectrum.
876.1701	1	877.1779	877.1793	-1.6	32.39	mt tRNA ^{Asn}	74-76	CCA-OH	М	2	1,2	1,2	2	
1077.0924	1	1078.1002	1078.1022	-1.8	26.06	mt tRNA ^{GIn}	1-3	pUAGp	М	2	1,2	1,2	2,3	
997.1281	1	998.1359	998.1358	0.1	34.44	mt tRNA ^{Gin}	5-7,48-50	AUGp	М	3	1,2	1,2	1,2	
721.1120	1	722.1198	722.1211	-1.7	33.14	mt tRNA ^{GIn}	9-10	(mG)Gp	Μ	2	1		1	Bsae loss of monomethylated guanine was detected in the MS/MS spectrum.
668.0740	1	669.0819	669.0833	-2.1	25.11	mt tRNA ^{Gin}	11-12,13- 14,20-21	UGp	м	2	1		1	
662.5858	2	1327.1872	1327.1883	-0.9	36.17	mt tRNA ^{GIn}	15-18	AUAGp	Α	2,3,4	1,2,3	1,2	1,2,3	
663.5932	2	1329.2021	1329.2040	-1.5	34.04	mt tRNA ^{GIn}	15-18	ADAGp	Α	2,3,4	1,2,3	1,2,3	1,2,3	
670.0901	1	671.0979	671.0990	-1.6	12.56		20-21	DGp	mz					
650 0889	2	1302 1934	1302 1931	02	34 28		23-26	CACGn	Δ	234	123	123	123	
691 1022	-	692 1100	692 1105	-0.8	34 75		28-29	AGn	м	_,.,.	1	1	1	
4404 6006	, 2	032.1100	032.1103	-0.0	37.75		20-23		141	2		•	•	
1121.6226	2	2245.2608	2245.2643	-1.0	37.79	mt tRNA ^{em}	30-30	ААООООБр	mz					
1129.6123	2	2261.2403	2261.2414	-0.5	38.95	mt tRNA ^{GIn}	30-36	AAUU(s²U)UGp	М	4,5,7	2,3,4,5,6	1,2	1,2,3,4,5,6	
1198.1191	2	2398.2539	2398.2561	-0.9	39.13	mt tRNA ^{GIn}	30-36	AAUU(tm⁵s²U)UGp	М	6,7	2,3,4,5,6	1,2,6	1,2,3,4,5,6	
1453.1847	2	2908.3850	2908.3846	0.1	37.36	mt tRNA ^{GIn}	37-45	(mG)AUUCUCAGp	Α	5,9	2,3,4,5,6, 7,8	2,3,4,7,8	2,3,4,5,7,8	Bsae loss of monomethylated guanine was detected in the MS/MS spectrum.
1273.6522	2	2549.3201	2549.3215	-0.6	35.63	mt tRNA ^{GIn}	38-45	AUUCUCAGp	Α	4,5,6,8	2,3,4,5,6, 7	2,4,7	2,3,4,5,6,7	
639.0659	2	1280.1474	1280.1499	-2.0	29.45	mt tRNA ^{Gin}	53-56	UUCGp	Α	2,3,4	1,2,3	1,2	1,2,3	
646.0748	2	1294.1653	1294.1655	-0.2	32.86	mt tRNA ^{GIn}	53-56	(mU)UCGp	Α	2,4	1,2,3	1,2	1,2,3	
1591.1893	2	3184.3943	3184.3994	-1.6	37.88	mt tRNA ^{GIn}	57-66	AUUCUCAUAGp	Α	3,4,6,10	2,3,5,6,7, 8,9	1,3,4,6	1,2,3,4,5,6, 7,8,9	
1065.1306	3	3198.4153	3198.4150	0.1	35.95	mt tRNA ^{GIn}	57-66	(mA)UUCUCAUAGp	Α	6,10	3,4,5,6,7, 9	1,9	1,2,3,4,5,6, 7,8,9	Bsae loss of monomethylated adenine was detected in the MS/MS spectrum.
956.1144	2	1914.2445	1914.2437	0.4	35.54	mt tRNA ^{GIn}	67-72	UCCUAGp	м	2,3,4,6	2,3,4,5	1,3,4	1,2,3,4,5	
876.1701	1	877.1779	877.1793	-1.6	32.39	mt tRNA ^{GIn}	73-75	CCA-OH	м	2	1,2	1,2	2	

Supplementary Table 2

stealth siRNA

Primer Name
scRNA-for
scRNA-rev
siRNA1-for
siRNA1-rev
siRNA3-for
siRNA3-rev
scRNA-for
scRNA-rev
scRNA-For
scRNA-Rev

Probes for Northen blot analysis

Primer Name COXI COX II ND1 ND2 CYB mirror N mirror A mirror Q Ν Q mt-tRNAPro mt-tRNA^{Cys} mt-tRNA^{Ala} mt-tRNA^{Ser(UCN)} mt-tRNA^{Tyr} mt-tRNA^{Glu} L mt-tRNA^{Trp} mt-tRNA^{His} mt-tRNA^{Lys} mt-tRNA^{Gly} mt-tRNA^{Phe} mt-tRNA^{Val} 16S rRNA U1 snRNA 5.8S rRNA tRNA^{Mei}

Primers for qPCR Primer Name

COX I-for COX I-rev COX II-for COX II-rev COX III-for COX III-rev CYB-for CYB-rev ND1-for ND1-rev ND2-for ND2-rev ND3-for ND3-rev ND4-for ND4-rev ND4L-for ND4L-rev ND5-for ND5-rev ND6-for ND6-rev ATP6-for ATP6-rev ATP8-for

Sequence (5'-/-3')

UGACGGCUAAAGAAAGCUUGUUAA UUAACAAGCUUUCUUUAGCCGUCCA UUAAGAUCUUUCUUGACCUGCACCA UGGUGCAGGUCAAGAAAGAUCUUAA GACAGAUGCUUCAUCAGCAGUGAAA UUUCACUGCUGAUGAAGCAUCUGUC CAUGGUUUGAGAGUGUUCCUGGAAA UUUCCAGGAACACUCUCAAACCAUG UAGCUUUCAUCUGUAAGCUUCACUU AAGUGAAGCUUACAGAUGAAAGCUA

Sequence (5'-/-3')

ATTAGGGGAACTAGTCAGTTGCCAAAGCCT TTGACCTCGTCTGTTATGTAAAGGATGCGT TTCATAGTAGAAGAGCGATGGTGAGAGCTA TCCGGAGAGTATATTGTTGAAGAGGATAGC GTTGTGAAGTATAGTACGGATGCTACTTGT GTGGGTTTAAGTCCCATTGGTCTAG GCTTAATTAAAGTGGCTGATTTGCGTTCAG GGATTCTCAGGGATGGGTTCGATTCTCATA CTAGACCAATGGGACTTAAACCCACAAACACTTA TATGAGAATCGAACCCATCCCTGAGAATCC GTCTTTAACTCCACCATTAGCACCCAAAGC AAGCCCCGGCAGGTTTGAAGCTGCTTCTTC CTGAACGCAAATCAGCCACTTTAATTAAGC CATGAGTTAGCAGTTCTTGTGAGCTTTCTC CAGTCCAATGCTTCACTCAGCCATTTTACC GCACGGACTACAACCACGACCAATGATATG TATGCGATTACCGGGCTCTGCCATCTTAAC CAGAAATTAAGTATTGCAACTTACTGAGGGC AATCTGATGTTTTGGTTAAACTATATTTAC TTTAACTTAAAAGGTTAATGCTAAGTTAGC AAGTTAACGGTACTATTTATACTAAAAGAG CAGTGTATTGCTTTGAGGAGGTAAGCTACA GTTGGGTGCTTTGTGTTAAGCTACACTCTG GGGTAAATGGTTTGGCTAAGGTTGTCTGGT ATACTTACCTGGCAGGGGGAGATAC AGACAGGCGTAGCCCCGGGAGGAA TAGCAGAGGATGGTTTCGATCCATCGA

Sequence (5'-/-3') CTGCTATAGTGGAGGCCGGA GGGTGGGAGTAGTTCCCTGC TGCCCGCCATCATCCTA TCTGTTATGTAAAGGATGCGT CCAATGATGGCGCGATG CTTTTTGGACAGGTGGTGTGTG ACATCGGCATTATCCTCCTG GTGTGAGGGTGGGACTGTCT CATATGACGCACTCTCCCCT GGGGAATGCTGGAGATTGTA AAGCAACCGCATCCATAATC TCAGAAGTGAAAGGGGGGCTA ACCACAACTCAACGGCTACA TTGTAGGGCTCATGGTAGGG CCATTCTCCTCCTATCCCTCAAC CACAATCTGATGTTTTGGTTAAACTATATTT TCGCTCACACCTCATATCCTC GGCCATATGTGTTGGAGATTG AGTTACAATCGGCATCAACCAA CCCGGAGCACATAAATAGTATGG ATCCTACCTCCATCGCTAAC AGCCTTCTCCTATTTATGGG GCGGGCACAGTGATTATAGG AGGTGGCCTGCAGTAATGTT

TACTACCGTATGGCCCACCA

target gene TDP-43 TDP-43 TDP-43 TDP-43 TDP-43 TDP-43 MRPP3 ELAC2 ELAC2

target gene

COX I COX II ND1 ND2 CYB mirror mt-tRNA^{Asn} mirror mt-tRNA^{Ala} mirror mt-tRNA^{GIn} mt-tRNA^{Asn} mt-tRNA^{GIn} mt-tRNA^{Pro} mt-tRNA^{Cys} mt-tRNA^{Ala} mt-tRNA^{Ser(UCN)} mt-tRNA^{Tyr} mt-tRNA^{Glu} mt-tRNA^{Leu(UUR)} mt-tRNA^{Trp} mt-tRNA^{His} mt-tRNA^{Lys} mt-tRNA^{Gly} mt-tRNA^{Phe} mt-tRNA^{Val} 16S rRNA U1 snRNA 5.8S rRNA tRNA^{Me} target gene COX I COX I COX II COX II COX III COX III CYB CYB ND1 ND1 ND2 ND2 ND3 ND3 ND4 ND4 ND4L ND4L ND5 ND5 ND6 ND6 ATP6 ATP6

ATP8

ATP8-rev	TTTGGTGAGGGAGGTAGGTG	ATP8
16S rRNA-for	TTTACGACCTCGATGTTGGATCA	16S rRNA
16S rRNA-rev	CGGTCTGAACTCAGATCACGTA	16S rRNA
ACTB-for	CATGTACGTTGCTATCCAGGC	ACTB
ACTB-rev	CTCCTTAATGTCACGCACGAT	ACTB
TDP-43 3'UTR-for	GCATGTTCAAAACGGAAACCATTG	TDP-43 coding region
TDP-43 3'UTR-rev	AACACTGTGACACCATGATCTCC	TDP-43 coding region
TDP-43 code-for	GTGTGGGCTTCGCTACAGG	TDP-43 3'UTR
TDP-43 code-rev	CAACATACACCAGATTTCCCCAG	TDP-43 3'UTR
GAPDH-for	CATGAGAAGTATGACAACAGCCT	GAPDH
GAPDH-rev	AGTCCTTCCACGATACCAAAGT	GAPDH
ND6-RT	CCTATTCCCCCGAGCAATCTCAATTACAAT	ND6
Primers for sqRT-PCR		
Primer Name	Sequence (5'-/-3')	target gene
Alaf	CTGAACGCAAATCAGCCACTTTAATTAAGC	Ala-Tyr
Tyrr	GGTAAAATGGCTGAGTGAAGCATTGGACTG	Ala-Tyr
GInf	TATGAGAATCGAACCCATCCCTGAGAATCC	GIn-ND2
mND2r	TCAGAAGTGAAAGGGGGCTA	GIn-ND2
Tyrf	CAGTCCAATGCTTCACTCAGCCATTTTACC	Tyr-COXI
mCOXIr	TAGGGGAACTAGTCAGTTGCCAAAG	Tyr-COXI
Gluf	GCACGGACTACAACCACGACCAATGATATG	Glu-CYB
mCYBr	AGAATATTGAGGCGCCATTG	Glu-CYB
Ala-RT	CTGAACGCAAATCAGCCACTTTAATTAAGC	
GIn-RT	TATGAGAATCGAACCCATCCCTGAGAATCC	
Tvr-RT	CAGTCCAATGCTTCACTCAGCCATTTTACC	
Clu-RT		
CAPDH for	CATGAGAAGTATGACAACAGCCT	САРОН
GARDH rox		
GAPDH-rev		GAPDH
ND2-for		ND2-mirrorN
mirrorN-rev		ND2-mirrorN
ND1-for		ND1-mirrorN
ND1-rev	GTGGGTTTAAGTCCCATTGGTCTAG	ND1-mirrorN
mirrorAla-for	CTGAACGCAAATCAGCCACTTTAATTAAGC	mirrorA-COX I
COX I-rev3	AGGGTAGACTGTTCAACCTG	mirrorA-COX I
5S-for	TACGGCCATACCACCCTGAA	5S rRNA
5S-rev	GCGGTCTCCCATCCAAGTAC	5S rRNA
ACTB-for	CATGTACGTTGCTATCCAGGC	ACTB
ACTB-rev	CTCCTTAATGTCACGCACGAT	ACTB
Construct		
Primer Name	Sequence (5'-/-3')	target gene
Konl-FL-TDP43-1-For	TATATAGGTACCGCCACCATGGACTACAAGGACGACGACGACAAGGG	FLAG-TDP-43
	ATCCATGTCTGAATATATTCGGGTA	
TDP43(-414)-Xhol-Rev	TATATACTCG AGCTACATTC CCCAGCCAGA AGA	FLAG-TDP-43
HindIII-6xHis-BT-For	TATATAAGCTTGCCACCATGCACCACCACCACCAC	6xHis-BT
6xHis-BT-Kpnl-Rev	TATAGGTACCCGCCAGGGTCATCAGGGTGTC	6xHis-BT
Clal-TDP43(170-)-For	CCCATCGATG GACGATGGTG TGACTGCAAA	∆RRM1
TDP43(-104)-Clal-Rev	CCCATCGATG GATGTTTTCT GGACTGCTCT	∆RRM1
Clal-TDP43(258-)-For	CCCATCGATT CCAATGCCGA ACCTAAGCAC	∆RRM2
TDP43(-192)-Clal-Rev	CCCATCGATT TTTCTGCTTC TCAAAGGCTC	ARRM2
$C[a]_TDP/3(315_)_For$		AGR
TDD42(272) Clal Dov		
BamHI-TDP43-1-For	TATATAGGAT CCATGTCTGAATATATTCGG GTA	Δ315
TDP43(-314)-Xhol-Rev	ATACTCGAGC TAACCAAAGT TCATCCCACC ACC	∆315
K136A-For	TCTTATGGTG CAGGTCGCGA AAGATCTTAA GACTG	K136A
K136A-Rev	CAGTCTTAAGATCTTTCGCGACCTGCACCATAAGA	K136A
K140A-For	GGTCAAGAAA GATCTTGCGA CTGGTCATTC AAAGG	K140A
K140A-Rev	CCTTTGAATGACCAGTCGCAAGATCTTTCTTGACC	K140A
K145A-For	TTAAGACTGG TCATTCAGCG GGGTTTGGCT TTGTT	K145A
K145A-Rev	AACAAAGCCAAACCCCGCTGAATGACCAGTCTTAA	K145A
F147/149L-For	GTCATTCAAA GGGGTTAGGC TTAGTTCGTT TTACGGAATA	F147/149L
F147/149L-Rev	TATTCCGTAA AACGAACTAA GCCTAACCCC TTTGAATGAC	F147/149L
	GAAGAAAAGCTTGGTGCCGATTACAAGGATGACGACGATAAGTAATCT	· · · · · · · · · · · · · · · · · · ·
pCold-FLAG-For	AGAGAAGAA	pCold-TF-FLAG
	TTCTTCTCTAGATTACTTATCGTCGTCATCCTTGTAATCGGCACCAAGC	
pCold-FLAG-Rev	TITICTIC	pCold-TF-FLAG
BamHI-TDP43-HindIII-For	GCGCGGGATCCATGTCTGAATATATTCGGGTAA	pCold-TF-TDP43-FLAG
BamHI-TDP43-HindIII-Rev	CGCGCAAGCTTCATTCCCCAGCCAGAAGACTTAGA	pCold-TF-TDP43-FI AG
In vitro transcription		

T7-for	CTAATACGAC TCACTATAGG GAGA	T7-mt-tRNA(Asn)
	CTAATACGAC TCACTATAGG GAGATAGATT GAAGCCAGTT	
T7-mt-tRNA(Asn)-rev	GATTAGGGTG CTTAGCTGTTAACTAAGTGT TTGTGGGTTT	T7-mt-tRNA(Asn)
	AAGTCCCATT GGTCTA	
T7-for	CTAATACGAC TCACTATAGG GAGA	T7-AC-stem(Leu)
	CTAATACGAC TCACTATAGG GAGAGTTAAG AAAGCCAGTT	
T7-mt-tRNA(Asn) AC-stem(Leu)-rev	GATTAGGGTG CTTAGCTGTTAACTAAGTGT TTGTGGGTTT	T7-AC-stem(Leu)
	AAGTCCCATT CTTAACA	
T7-for	CTAATACGAC TCACTATAGG GAGA	T7-D-loop(Leu)
	CTAATACGAC TCACTATAGG GAGATAGATT GAAGCAGAGC	
T7-mt-tRNA(Asn) D-loop(Leu)-rev	CCGGTAATCG TGCTTAGCTGTTAACTAAGT GTTTGTGGGT	T7-D-loop(Leu)
	TTAAGTCCCA TTGGTCTAG	
T7-for	CTAATACGAC TCACTATAGG GAGA	T7-pAntiCdn(Leu)
	CTAATACGAC TCACTATAGG GAGATAGATT GAAGCCAGTT	
T7-mt-tRNA(Asn) pAntiCdn(Leu)-rev	GATTAGGGTG CTTAGCTTAAAACTAAGTGT TTGTGGGTTT	T7-pAntiCdn(Leu)
	AAGTCCCATT GGTCTAG	
T7-for	CTAATACGAC TCACTATAGG GAGA	T7-Var-R(Leu)
	CTAATACGAC TCACTATAGG GAGATAGATT GAAGCCAGTT	
T7-mt-tRNA(Asn) Var-R(Leu)-rev	GATTAGGGTG CTTAGCTGTT AACTAAGCAG TCGTGGGTTT	T7-Var-R(Leu)
	AAGTCCCATT GGTCTAG	
T7-for	CTAATACGAC TCACTATAGG GAGA	T7-T-loop(Leu)
	CTAATACGAC TCACTATAGG GAGATAGATT GAAGCCAGTT	
T7-mt-tRNA(Asn) T-loop(Leu)-rev	GATTAGGGTG CTTAGCTGTT AACTAAGTGT TTGGAGGTTC	T7-T-loop(Leu)
	AATTCCTCTT GGTCTAG	
T7-for	CTAATACGAC TCACTATAGG GAGA	T7-Leu(UUR)
	CTAATACGAC TCACTATAGG GAGAGTTAAG ATGGCAGAGC	
T7-mt-tRNA(Leu-UUR)-rev	CCGGTAATCG CATAAAACTTAAAACTTTAC AGTCAGAGGT	T7-Leu(UUR)
	TCAATTCCTC TTCTTAACA	
mirrorANCY-COXI-for	CGCGGATCCTAAGGACTGCAAAACCCCACTCTGC	mirrorANCY-COXI pSPT19
mirrorANCY-COXI-rev	TCTAGATTTTATGTATACGGG	mirrorANCY-COXI pSPT19

Supplementary Figure 2

 $mt\text{-}tRNA^{\text{Leu}(\text{UUR})}$

tRNA^{Met}

Supplementary Figure 3

Uncropped images-1

Figure 1a

Figure 1c

Figure 1d

Figure 1e

Figure 1f

20-15-

> .500 .400 .300

-200

-100

-50

TOM22

COX II

Figure 1g

Figure 3a

500 <u>-</u> 400 - 300 -

200 -

100 -

50 **-**

Figure 3b

mt-tRNA ^{Asn}	mt-tRNA ^{GIn}			

Uncropped images-2

Figure 4b

5S rRNA		
		- 300
	 	 - 100
		 - 50

mt-tRNA^{Leu(UUR)} mt-tRNA^{Ser(UCN)}

Figure 5b

mirrorQ

11.1 3

mirrorN

ND1

Figure 4d

Figure 6d

Figure 6e

Figure 4e

Figure 7a TDP-43

28S rRNA ND1 -8000

28S rRNA ND2

GAPDH

	mirrorN		28S rRNA				
8000 - 4000 -		8000 - 4000 -	-				
2000 -		1000 -	69 69 69	100 m			
500 -		500 -	a	-			
200 -		200 -					

Uncropped images-3

Sup. Figure 3a

Sup. Figure 3d

500 -200 -

Sup. Figure 3c

