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ABSTRACT

This document provides supplementary information for “High-resolution transport-of-intensity quantitative phase microscopy
with annular illumination”.
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A. Derivation of Image Formation in a Partially Coherent Microscope
In the 6f optical configuration described in Figure 1, a thin complex object t (x) is illuminated by the light emerging from an
incoherent source with intensity distribution S (u). Based on the van Cittert-Zernike theorem1, 2, the mutual intensity of the
illumination just before the object is given by the Fourier transform of the source intensity distribution:

JS (x1,x2) = JS (|x1−x2|) =
∫∫

S (u)ei2πu(x1−x2)du (S1)

Then, the mutual intensity just behind the object is given by:

JO (x1,x2) = JS (x1,x2) t (x1) t* (x2) (S2)

The mutual intensity now depends on the object transmission [t (x1) and t* (x2)] and the mutual intensity of the illumination.
After Fourier transform, the mutual intensity in the objective pupil (J̃O (u1,u2)) is multiplied twice by the coherent transfer
function P(u), and then followed by an inverse transform to finally obtain for the mutual intensity in the image plane

JI (x1,x2) =
∫∫

J̃O (u1,u2)P(u1)P* (u2)ei2π(u1x1 + u2x2)du1du2 (S3)

Equation S3 suggests that for partially coherent imaging, the mutual intensity J̃O (u1,u2) is transferred linearly with the mutual
coherent transfer function, defined as P(u1)P* (u2). It can also be written as a two-fold convolution of the object mutual
intensity JO (x1,x2) with the mutual point spread function, defined as h(x1)h∗ (x2)

3:

JI (x1,x2) =
∫∫

JO
(
x′1,x′2

)
h
(
x1−x′1

)
h∗
(
x2−x′2

)
dx′1dx′2 (S4)

This suggests that the mutual intensity in object space JO (x1,x2) is blurred by the amplitude point spread function in both
coordinates (x1 and x2). The image intensity I (x) is given by the values “on the diagonal” of the mutual intensity with

I (x) = JI (x,x) =
∫∫

JS (x1,x2) t (x1) t* (x2)h(x−x1)h* (x−x2)dx1dx2 (S5)

Substituting Equation S1 into Equation S5, the expression for the intensity can be simplified consequently, and Equation 1 is
then derived

I (x) =
∫

S (u)
∣∣∣∣∫ t

(
x′
)

h
(
x−x′

)
ei2πux′dx′

∣∣∣∣2du≡
∫

S (u)Iu (x)du (S6)
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B. In-Focus WOTF of a Partially Coherent Microscope
This section describes the in-focus WOTF of a partially coherent microscope, which is significantly dependent on the form and
size of the light source (coherent parameter). When coherence parameter s > 1, the system behaves the same as an incoherent
microscope with the WOTF given by the autocorrelation of the pupil function (Equation 16). For a prefect in-focus system (no
pupil aberrations), the WOTF becomes a convolution of two circles of equal size4, which can be represented as:

WOT Fincoh (ū) =
2
π

arccos
(

ū
2

)
− ū

2

√
1−
(

ū
2

)2
 |ū|< 2 (S7)

where ū is the normalized spatial frequency with respect to the coherent resolution limit (NAob j/λ ). Figure S1(a) gives the
in-focus WOT Fincoh, which is purely real-valued and can only image the absorption part. It can be seen that the absorption
contrast gradually reduces as the increase in spatial frequency, with a 61% relative contrast loss at the coherent resolution limit
(NAob j/λ ), and finally diminishes to zero in the incoherent resolution limit at (2NAob j/λ ). The contrast loss is even severer
when the system is defocused5, as demonstrated by the defocused WOT Fincoh shown in Figure S1(b).

For a perfectly in-focus partially coherent system (coherence parameter 0 < s < 1), the value of WOT Fs is just the
overlapping area of two circles with different radii and can also be represented analytically6:

WOT Fs (ū) =



πs2 0 6 |ū|6 1− s

s2 arccos

(
|ū|2 + s2−1

2 |ū|s

)
−

(
|ū|2 + s2−1

2 |ū|

)√√√√s2−

(
|ū|2 + s2−1

2 |ū|

)2

+s2 arccos

(
|ū|2− s2 +1

2 |ū|s

)
−

(
|ū|2− s2 +1

2 |ū|

)√√√√1−

(
|ū|2− s2 +1

2 |ū|

)2

1− s 6 |ū|6 1+ s

(S8)

Figure S1(c) gives the corresponding in-focus WOT Fs for different coherent parameters (which is also purely real-valued and
can only image the absorption part). It can be seen that the spatial frequency cutoff of the WOT Fs appears at 1+s. Therefore,
for normal brightfield imaging (for absorptive sample), it has transpired to be a good compromise when the light source image
fills approximately half area of the pupil (coherent parameter s = 0.7−0.8) for achieving both high imaging resolution and
high image contrast (especially for low spatial frequencies).

For the case of annular illumination aperture, the corresponding in-focus WOTF can be represented analytically as well.
When the source is a narrow annulus with a radius of s, the WOTF is just the arc length of the ring enclosed in the objective
pupil:

WOT Fannular
s (ū) =


2πs 0 6 |ū|6 1− s

2s arccos

(
|ū|2 + s2−1

2 |ū|s

)
1− s 6 |ū|6 1+ s

(S9)

When the thickness of the annulus is ∆s = s and the outer circles of the annulus is 1, the corresponding in-focus WOTF can
be calculated as the difference of WOT Fincoh (Equation S7) and WOT Fs (Equation S8):
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WOT Fannular
∆s (ū) = WOT Fincoh (ū)−WOT Fs (ū) =

2
π

arccos
(
|ū|
2

)
− |ū|

2

√
1−
(
|ū|
2

)2
 −πs2 0 6 |ū|6 1− s

2
π

arccos
(
|ū|
2

)
− |ū|

2

√
1−
(
|ū|
2

)2
 − s2 arccos

(
|ū|2 + s2−1

2 |ū|s

)
−

(
|ū|2 + s2−1

2 |ū|

)√√√√s2−

(
|ū|2 + s2−1

2 |ū|

)2

+s2 arccos

(
|ū|2− s2 +1

2 |ū|s

)
−

(
|ū|2− s2 +1

2 |ū|

)√√√√1−

(
|ū|2− s2 +1

2 |ū|

)2

1− s 6 |ū|6 1+ s

2
π

arccos
(
|ū|
2

)
− |ū|

2

√
1−
(
|ū|
2

)2
 1+ s 6 |ū|6 2

(S10)

It should be noted that when the imaging system is defocused (non-paraxial), no such analytical formulas exist for those
illumination settings. The corresponding WOT Fs can only be evaluated numerically.
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Figure S1. (a) In-focus WOT Fincoh when the coherence parameter s > 1. (b) Defocused WOT Fincoh when the coherence
parameter s > 1. (c) In-focus WOT Fs for different coherent parameters s = 0.1, 0.4, 0.75 and 1.0.
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Figure S2. The real part of WOT Fs (amplitude WOTF) for various coherent parameters and defocus distances (NAob j = 0.8,
λ = 550nm, the spatial frequency coordinate is normalized against the coherent resolution limit NAob j/λ ). (a) s = 0.1; (b) s =
0.4; (c) s = 0.75; (d) s = 0.99.
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C. Comparison between Annular illumination TIE with Circular Illumination TIE in the
Presence of Systematic Errors
In Figure S3, we compare the defocus images and the phase retrieval results of different illumination settings in the presence
of systematic error for a small defocus distance (∆z = 0.5µm). The test image, imaging parameters, and the noise level are
the same as in the simulation shown in Figure 8. The additional systematic error considered in this simulation includes (see
top row of Figure S3): (1) Pupil aberration, which is generated from the MATLAB built-in function “peaks” with a dynamic
range of [−0.1,0.3] rad; (2) Inaccurate estimation of the coherence parameter or annulus thickness (± 0.01). As can be seen
from Figure S3, the model mismatch and mis-estimation about the system parameters induce obvious phase errors for the case
of circular apertures. This is because that the aberration generally changes the positions of deep dips and zero-crossings in
the WOTF, inducing larger phase errors due to the model mismatch during deconvolution. Furthermore, the introduction of
additional measurements at large defocus distances (3µm) can no longer improve the phase reconstruction quality significantly,
which is further demonstrated in Figure S4. In contrast, due to the flatness of WOTF, the systematic error has minimum impact
on AI-TIE, with only a slight increase (from 0.0373 to 0.0526 for the case of ∆s = 0.1) in the phase RMSE.
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Figure S3. Comparison between annular illumination TIE with circular illumination TIE in the presence of systematic errors.
The over-defocus images under different illumination settings are shown in the first row (∆z = 0.5µm). The reconstructed
phases and the corresponding close-ups are shown in the second and third rows, respectively.
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Figure S4. Comparison of over-defocus images (a) and reconstruction results of different illumination settings (b) in the
presence of systematic errors when the defocus distance is large (∆z = 3µm). The recovered phases with both small
(∆z = 0.5µm) and large defocus distances (∆z = 3µm) are shown in (c).
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D. Simulation of Phase Reconstruction for Non-weak Phase object
To test the valid phase measurement range of the proposed approach, we simulate a cell sample, vary its phase from 0-1 rad to
0-10 rad, for which case the weak object approximation is violated. The system parameters are assumed to be the same as in
the simulation shown in Figure 8. Figure S5 shows ideal phase maps, reconstructed phase maps with the proposed AI-TIE
approach, and the comparison of the two phase profiles along the red and blue lines for the cell sample with different phase
ranges. Excellent agreement between the reconstructions and ideal phase profiles can be observed when the maximum phase
value is less than 5 rad. The RMSE values can be negligible compared to the true signals. When the maximum phase value
increases to 10 rad, the reconstruction error becomes significant (but still acceptable, RMSE = 0.2539 rad). The simulation
results suggest a valid measurement range up to 10 rad for the proposed AI-TIE, which is more than enough for imaging most
of biology specimens, such as live cells and tissues.
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Figure S5. Simulation of the phase reconstruction for non-weak phase object. (a1)-(d1) show the ideal phase maps with
different dynamic ranges (from [0,1] to [0,10]). (a2)-(d2) show the reconstructed phase maps with the proposed AI-TIE.
(a3)-(d3) show the comparisons of the two phase profiles along the red and blue lines for the cell samples with different phase
ranges.
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E. Supplementary Videos

Supplementary Video 1. Time-lapse QPI video of HeLa cell dividing in culture over a 60h period at a rate of one phase
image per 30 second. Two regions of interests (ROI 1 and ROI 2) are enlarged and shown on the right (see also Figure 14).

Supplementary Video 2. 60-hour time-lapse 3D movie of HeLa cell dividing in culture. The pseudo-color 3D rendering
represents phase (optical path length) profiles of cells.
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Supplementary Video 3. Multi-modal (quantitative phase, phase contrast, and DIC) computational imaging of apoptotic
HeLa cells induced by paclitaxel (see also Figure 15). The phase is reconstructed every second over one hour period (1
frame/s).
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