Supplementary Materials

Title: Retinoic acid-induced upregulation of miR-219 promotes the differentiation of embryonic stem cells into neural cells

Authors: Haibo Wu^{1, 2, *}, Jiamin Zhao^{1, 2}, Beibei Fu^{1, 2}, Songna Yin², Chao Song^{1, 2},

Jingcheng Zhang^{1, 2}, Shanting Zhao¹ and Yong Zhang^{1, 2, *}

¹College of Veterinary Medicine, Northwest A&F University, Yangling 712100,

Shaanxi, China

²Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F

University, Yangling 712100, Shaanxi, China

*Corresponding author

Contact: hbwu029@nwsuaf.edu.cn (H.W) or zhangy1956@sina.com (Y.Z)

Running title: MiR-219 promotes neural differentiation

Keywords: Differentiation; Embryonic stem cells; MicroRNA; Co-expression network

Contain: Supplementary Figures S1-S8; Supplementary Tables S1-S7

Fig. S1 MiR-219-mediated neural differentiation is conserved in D3 and B6 mESCs. (A): Relative expression levels of miR-219 at different time points after RA treatment in D3 and B6 mESCs. (B–E): D3 ESCs (B, C) or B6 ESCs (D, E) were treated with RA and transfected with miR-219 mimics or miR-219 inhibitors for 48 h.

Relative levels of *Oct4*, *Nestin*, *Map2*, and *Tuj1* were detected through qRT-PCR (B, D) and Western blot (C, E). (F–K): J1 ESCs (F, G), D3 ESCs (H, I) or B6 ESCs (J, K) were pretreated with RA for 24 h and transfected with pCMV- Foxj3 or pCMV-Zbtb18. Relative level of *Nestin* was detected through qPCR (F, H, J) and Western blot (G, I, K). Gapdh served as the loading control. **: P < 0.01.

Fig. S2 Representative neural like tissues derived from RA pretreated ESCs (a) and RA pretreated Foxj3/Zbtb18-ESCs (b). Scale bars: 100 μm.

Fig. S4 Representative images of serially sectioned abnormal embryos. (A):
Normal E7.5 embryos injected with control mRNA transcribed from empty vectors.
(B, C): Representative abnormal E7.5 embryos injected with *Foxj3/Zbtb18* mRNAs.
(B) shows the quick degeneration and displays an abnormal phenotype of the embryonic zone. (C) shows apparent resorption and a trace of residual pyknotic tissue.

Fig. S5 Top-ranking GO terms and involved genes. (A, B): Top-ranking GO terms are listed according to *P* values. Five GO terms, involved in nervous system development, embryonic axis specification, neural tube closure, glial cell differentiation, and positive regulation of neuroblast proliferation, were significantly enriched (P < 0.05) in Foxj3-ESCs (A). Similarly, four GO terms, involved in neuron fate commitment, nervous system development, neuron projection development, and regulation of Rho protein signal transduction, were significantly enriched (P < 0.05) in Zbtb18-ESCs (B). (C): Heat map representation of the selected genes involved in neuron fate commitment, neuron fate and regulation of the selected genes involved in nervous system development. Gene expression is shown with pseudocolor scale (-1 to 1).

Fig. S6 Expression patterns of *Foxj3*, *Zbtb18*, *Olig1*, *Zic5*, *Erbb2*, and *Olig2* **during RA-induced neural differentiation.** mESCs were normally cultured and induced by 1 μM RA for 10 d. Culture medium and RA were changed daily. Relative expressions of *Foxj3* (A), *Zbtb18* (B), *Olig1* (C), *Zic5* (D), *Erbb2* (E), and *Olig2* (F) during RA-induced neural differentiation were examined through qRT-PCR.

Fig. S7 Representative result of the efficiency of plasmid transfection.

Transfection efficiency was monitored by a backbone vector with an extra eGFP element and calculated through flow cytometry. Fluorescent photograph and flow cytometry analysis of ESCs transfected with eGFP vectors.

Fig. S8 Validation of siRNAs and vectors. (A-H): ESCs were transfected with *Foxj3*, *Zbtb18*, *Olig1*, or *Olig2* siRNAs for 48 h. Cell lysates were harvested, and qPCR and Western blot were performed to verify the efficiency of *Foxj3* (A, B), *Zbtb18* (C, D), *Olig1* (E, F), or *Olig2* (G, H) knockdowns. (I, J): Validation of pCMV-Foxj3 and pCMV-Zbtb18 plasmids by qPCR (I) and Western blot (J).

miR-name	fold-change	miR-name	fold-change
mmu-miR-100-5p	5.19	mmu-miR-465a-3p	2.89
mmu-miR-10a-3p	49.99	mmu-miR-465a-5p	2.19
mmu-miR-10a-5p	38.94	mmu-miR-465b-3p	2.89
mmu-miR-10b-5p	3.83	mmu-miR-465c-3p	2.88
mmu-miR-1194	6.82	mmu-miR-470-5p	2.62
mmu-miR-135a-2-3p	14.12	mmu-miR-471-5p	6.17
mmu-miR-138-5p	3.54	mmu-miR-483-5p	5.58
mmu-miR-149-5p	2.82	mmu-miR-500-3p	2.57
mmu-miR-181a-5p	3.31	mmu-miR-615-3p	118.72
mmu-miR-181b-5p	2.79	mmu-miR-615-5p	314.87
mmu-miR-188-5p	2.92	mmu-miR-669f-3p	2.23
mmu-miR-216b-5p	154.85	mmu-miR-741-3p	3.09
mmu-miR-217-5p	1285.28	mmu-miR-741-5p	4.29
mmu-miR-219-2-3p	15.88	mmu-miR-743a-3p	5.11
mmu-miR-219-5p	6.89	mmu-miR-743b-3p	3.57
mmu-miR-224-5p	5.36	mmu-miR-871-3p	7.99
mmu-miR-335-3p	2.06	mmu-miR-878-5p	2.39
mmu-miR-335-5p	2.41	mmu-miR-881-3p	3.28
mmu-miR-344-3p	2.09	mmu-miR-883a-3p	2.57
mmu-miR-344d-3p	10.23	mmu-miR-883b-5p	4.51
mmu-miR-375-3p	2.26	mmu-miR-99a-5p	27.03
mmu-miR-452-5p	2.09		

Table S1 Microarray data of 43 upregulated miRNAs

Germ layer	mESC	RA pretreated for 48 h		
		mESC	Foxj3-Zbtb18 mESC	
Neuronal like tissue positive	11(12.2%)	35(38.9%)	5(5.56%)	
Ectoderm	29(32.2%)	47(52.2%)	19(21.1%)	
Mesoderm	23(25.6%)	12(13.3%)	22(24.4%)	
Endoderm	25(27.8%)	14(15.6%)	26(28.9%)	

Table S2 Potential of three germ layer differentiation

	Gene ID Foxj3 Z -ES		ge	_
Gene ID			q-PCR of miR-219 treated ES	- Sequence of primers used in q-PCR
Aridla	0.20	0.26	2 42	F:CTTCCCCAACCACCAGTACAA
Andra	0.39	0.30	2.42	R:CTGTGCGAAGGACGAAGAC
Comb	0.25	0.44	1 74	F:CGTTTCACCGACGAGTACCAG
Callik20	0.55	0.44	1./4	R:GCGTACAATGTTGGAATGCTTC
Chd7	0.44	0.42	2.07	F:GTGAAGCTGTGTTGAAAGGCA
Cliu/	0.44	0.42	3.07	R:CTCGGCAAAGCTCCTCTTCTG
Erbb?	0.46	0.48	2.14	F:ACCGACATGAAGTTGCGACTC
EIUUZ	0.40	0.40	2.14	R:AGGTAAGCTCCAAATTGCCCT
Clie?	0.20	0.21	1 76	F:GACGAGCCCCTCGACCTAA
01182	0.30	0.31	4.20	R:AGCTCTCGATGCAAAGCATGA
Gnaol	0.26	0.15	7 20	F:TGCACGAGTCTCTCATGCTCT
Gliaot	0.20	0.15	7.20	R:AGATGGTCAAGGGTGACTTCT
142	216	2.07	0.34	F:ATGAAAGCCTTCAGTCCGGTG
102	2.10	2.91	0.34	R:AGCAGACTCATCGGGTCGT
Ino	0.49	0.37	3.51	F:GCGCAGTATGAGTCCCTGG
ma	0.49			R:CGGTACTCGTGGATCTCCTCT
Monla	0.27 0	0.22	0.22 2.67	F:GAGTTGGAACGAGGTGTTCG
Mapis	0.57	0.55	2.07	R:TCACAATGCTGGAGAAGGTG
Ndn	0.45	0.20	1.43	F:GAGGTCCCCGACTGTGAGAT
INUII	0.45	0.39		R:TGCAGGATTTTAGGGTCAACATC
Numhl	Namelal 0.46	0.42	1.04	F:GCAGGCACCATGAACAAGTTA
INUIIIDI	0.40	0.42	1.94	R:TCTTCACAAACGTGCATTCCC
Oligi	0.28	0.20	2 97	F:TCTTCCACCGCATCCCTTCT
Olig1	0.38	0.50	3.87	R:CCGAGTAGGGTAGGATAACTTC
	0.44	0.02	5 61	F:TCCCCAGAACCCGATGATCTT
Olig2	0.44	0.23	5.01	R:CGTGGACGAGGACACAGTC
Shank 1	0.20	0.26	2 27	F:TGCATCAGACGAAATGCCTAC
SHAIKT	Snanki 0.39	0.26	3.37	R:AACAGTCCATAGTTCAGCACG
Smorad2	Smarcd3 0.39	0.23	2 16	F:CCCGAGTCCCAGGCTTACA
Sillarcus		0.23	5.10	R:GCTTTCGCTTTTGCTTCATGG
7:02	0.22	0.33 0.42	2.16	F:CAAGGTCCGGGTGCTTACC
	0.55			R:ATTAAAGGGAGGCCCCGAATA
Zic5	0.42	0.33	2.54	F:GCAGCCACGTCTGCTTTTG
LIUJ	0.42 0.55	0.55		R:TATGAGTGCGCTTGTGGATCT

Table S3 Verification of gene expression changes by qRT-PCR

Primer name	Primer sequence(5'–3')	Accession Number	
Foxj3 -F-NheI	ATTCT <u>GCTAGCGCCACCATGGGTTTGTATGGACAAG</u>	NM_172699.3	
Foxj3 -R-BamHI	CGCA <u>GGATCC</u> CACTATTGAATCCCAATCAAAGTC		
Zbtb18-F-BamHI	TTAA <u>GGATCC</u> GCCACCATGTGTCCTAAAGGTTATGAA		
Zbtb18-R-BamHI	GCTA <u>GGATCC</u> TTTCCAAAGTTCTTGAGAGCTATCT	NM_001012330.1	

Table S4 Sequences of primers for Foxj3 and Zbtb18

Restriction sites were underlined. Kozak sequence (bold fonts) were included for optimal translation according to manufacturer's instructions.

Primer name		Primer sequence(5'-3')
	WT [#] -F	CCAGGATGACTTTGATTGGGA
	WT-R	AGCCTCTGTATCTTGCTGCCTA
Foxj3	Site1 mut [§] R1	GAATCTCT <u>TGGCTCA</u> TTCGAAAGGAATT
3'UTR	Site1 mut F1	CTAAATTCCTTTCGAA <u>TGAGCCA</u> AGAG
	Site2 mut R2	GGACCAATGCTTCT <u>TGGCTCA</u> TTTGTCTGT
	Site2 mut F2	CAGACAAATGAGCCAAAGCATTGGTCC
	WT-F	GCCAGCTCAGAGTTTAGGT
	WT-R	TTATTGCAGTTAGCACACAGT
Zbtb18	Site1 mut R1	CCACAGACATT <u>TGGCTCA</u> TCCTCTAG
3'UTR	Site1 mut F1	AGGA <u>TGAGCCA</u> AATGTCTGTGGAAG
	Site2 mut R2	CATACTAT <u>TGGCTCA</u> AAAGCTAGATG
	Site2 mut F2	CTGACATCTAGCTTT TGAGCCA ATAGT

Table S5 Sequences of primers for 3'UTR* of Foxj3 and Zbtb18

Mutations were underlined and showed in bold fonts.

* untranslated region

wild type

[§] mutation

Gene	Primer name	Sequence (5'—3')	Product length
E :2	F	AGCCTAACATCTATGGACTGGT	118 bp
Foxj3	R	GGTCAAGGAGTGCATTCTTCTTA	
71 (1 10	F	GTTCGGATAAAGTCGAGAGCC	1141
ZDtD18	R	CCCTTTTGCTGGGTAGAATGT	114 bp
O-t4	F	CGGAAGAGAAAGCGAACTAGC	100 h
Oct4	R	ATTGGCGATGTGAGTGATCTG	108 bp
N _z _z tin	F	CCCTGAAGTCGAGGAGCTG	166 hr
Nestin	R	CTGCTGCACCTCTAAGCGA	166 bp
M O	F	GCCAGCCTCGGAACAAACA	101.1
Map2	R	GCTCAGCGAATGAGGAAGGA	101 bp
01:-1	F	TCTTCCACCGCATCCCTTCT	226 h
Oligi	R	CCGAGTAGGGTAGGATAACTTC	226 bp
7: .5	F	GCAGCCACGTCTGCTTTTG	190 h -
ZICS	R	TATGAGTGCGCTTGTGGATCT	180 bp
E-11-2	F	ACCGACATGAAGTTGCGACTC	106 h-
Erbb2	R	AGGTAAGCTCCAAATTGCCCT	106 bp
01:-2	F	TCCCCAGAACCCGATGATCTT	00 h
Olig2	R	CGTGGACGAGGACACAGTC	90 op
A = (*	F GGCTGT	GGCTGTATTCCCCTCCATCG	1541
Actin	R	CCAGTTGGTAACAATGCCATGT	154 бр

Table S6 Sequences of primers for mRNA quantitation

microRNA	Sequence (5'—3')
217-5P	TACTGCATCAGGAACTGACTGGA
615-5P	GTCCCCGGTGCTCGGAT
216b-5p	GAAATCTCTGCAGGCAAATGTG
615-3p	GAGCCTGGGTCTCCCTCTT
10a-3p	GCAAATTCGTATCTAGGGGAATA
10a-5p	TACCCTGTAGATCCGAATTTGTG
135a-2-3p	TGTAGGGATGGAAGCCATGAA
219-2-3p	AGAATTGTGGCTGGACATCTGT
344d-3p	GGATATAACCACTGCCAGACTGA
99a-5p	AACCCGTAGATCCGATCTTGTG
100-5p	AACCCGTAGATCCGAACTTGTG
1194	GGGAATGAGTAACTGCTAGATCCT
219-5p	TGATTGTCCAAACGCAATTCT
224-5p	GGTAAGTCACTAGTGGTTCCGTT
471-5p	GGGTACGTAGTATAGTGCTTTTCAC
483-5p	AAGACGGGAGAAGAGAAGGGAG
743a-3p	GGAAAGACACCAAGCTGAGTAGA
871-3p	TGACTGGCACCATTCTGGATAAT
470-5p	TTCTTGGACTGGCACTGGTGA
145b	GGTCCAGTTTTCCCAGGAGACT
145a-5p	TCCAGTTTTCCCAGGAATCCCT
134-3p	CTGTGGGCCACCTAGTCACC
296-3p	GAGGGTTGGGTGGAGGCTC

Table S7 Sequences of primers for microRNA quantitation*

*The reverse primer was 10×miScript Universal Primer provided in miScript II RT Kit (Qiagen)