Supplementary Material: "Characterization of natural variation in North American Atlantic Salmon populations (Salmonidae: *Salmo salar*) at a locus with a major effect on sea age"

river	year	<i>n</i> 1SW	n MSW			
Malbaie	2003	50	77			
Malbaie	2004	50	100			
Malbaie	2005	50	68			
		Σ 150	Σ 245			
Escoumins	2009	50	100			
Escoumins	2010	0	96			
Escoumins	2011	30	100			
		Σ 80	Σ 296			
Trinité	2010	50	30			
Trinité	2011	50	42			
Trinité	2012	50	61			
Trinité	2013	32	36			
Trinité	2014	29	16			
Trinité	2015	50	43			
		Σ 261	Σ 228			
Vieux-Fort	2011	43	16			
Vieux-Fort	2012	35	3			
Vieux-Fort	2013	23	11			
Vieux-Fort	2014	40	10			
Vieux-Fort	2015	21	43			
		Σ 162	Σ83			

Supplementary Table 1. Sample sizes for resequencing assay.

 $\Sigma_{1SW} = 653$ $\Sigma_{MSW} = 852$

 $\Sigma_{\text{Total}} = 1505$

Supplementary Table 2. PCR primer sequences to target the non-synonymous SNPs in *vgll3* and *akap11*, as well as for SNPs $SIX6_{TOP}$ (Barson *et al.* 2015) and $SIX6_{EXT}$.

name target		product size	forward primer	reverse primer			
VGLL3_323	Asn323Lysvgll3	406 bp	CTCCAACCTCTCTCCCTGAC	CTCCAGGTCAGAGGCTTACC			
VGLL3_54	Met54Thr _{vgll3}	444 bp	TGGCTGAATCTGTGGCATAC	GTGTGCTCCTACCTTTCCAC			
AKAP11	Val214Met _{akap11}	433 bp	AGTCTCGGTTACCACTGCTC	CAGAGTCAGAGTCCTCCACC			
SIX6	SIX6 _{TOP} , SIX6 _{EXT}	433 bp	ATATCAAAGGGAACGAACGGT	ACGGGGTAAGTAATCGCTGT			

Supplementary Table 3. Model selection based on AIC comparisons. Model 1 with the three-way interaction of SNP genotypes, sex and river was identified as the best model for all four candidate SNPs. For all four SNP candidates, the model 1 fitted the data better than the null model (sea age ~ sex:river-1 + (1|year); df = 9, AIC = 1130.218).

		Asn323Lys _{vgll3}				Met54Thr _{vgll3}			SIX6 _{TOP}			SIX6	EXT
model	model description	df	AIC	ΔΑΙC	df	AIC	ΔΑΙC	df	AIC	ΔΑΙC	df	AIC	ΔΑΙC
1	sea age ~ SNP:sex:river-1 + (1 year)	23	1111.2	0.0	23	1111.5	0.0	23	1029.4	0.0	25	1030.4	0.0
2	sea age ~ SNP-1 + sex + SNP:sex + $(1 river) + (1 year)$	8	1156.1	44.9	8	1154.9	43.3	8	1057.8	28.4	8	1049.1	18.7
3	sea age ~ SNP:sex-1 + $(1 river) + (1 year)$	8	1156.1	44.9	8	1154.9	43.3	8	1057.8	28.4	8	1049.1	18.7
4	sea age ~ SNP-1 + (sex) + (1 river) + (1 year)	6	1154.7	43.5	6	1153.6	42.1	6	1054.2	24.8	6	1049.0	18.6
5	sea age ~ SNP-1 + $(1 sex) + (1 river) + (1 year)$	6	1163.2	52.0	6	1162.1	50.6	6	1062.6	33.2	6	1057.3	27.0
6	sea age ~ SNP-1 + $(1 sex)$ + $(1 river)$	5	1175.2	64.0	5	1172.6	61.0	5	1072.9	43.5	5	1067.6	37.2
7	sea age ~ SNP-1 + (1 sex)	4	1470.6	359.5	4	1462.7	351.2	4	1279.6	250.2	4	1338.2	307.8

Supplementary Table 4. Percentage probability of being MSW and not 1SW for candidate SNP genotypes across sexes and populations (mean and 95 % Bayesian credible interval in parentheses, null hypothesis = 50 %). Results refer to the best model investigating the three-way interaction of SNP genotypes, sex and river (model 1 in Supplementary Table 3). Non-significant comparisons are marked "ns" and "NA" indicates lacking data.

		Asn323Lys _{vgll3}			Met54Thr _{vgll3}				SIX6 _{TOP}		SIX6 _{EXT}			
		EE	EL	$\mathbf{L}\mathbf{L}$	EE	EL	LL	AA	AG	GG	CC	ТС	TT	
Escoumins	4	ns	95 (87-98)	99 (96-100)	ns	95 (87-98)	99 (95-100)	ns	98 (93-99)	97 (89-99)	97 (89-99)	98 (93-99)	ns	
Escoumins	3	ns	ns	64 (50-76)	ns	ns	ns	70 (52-84)	ns	ns	ns	ns	72 (53-86)	
Malbaie	Ŷ	ns	95 (85-98)	98 (93-100)	ns	95 (85-98)	98 (93-100)	98 (85-100)	97 (89-99)	ns	ns	97 (89-99)	98 (84-100)	
	3	ns	21 (10-39)	29 (18-43)	ns	22 (11-39)	29 (18-42)	ns	23 (13-37)	21 (10-38)	22 (11-40)	23 (13-38)	ns	
Trinité	4	ns	ns	91 (85-95)	ns	31 (18-50)	90 (84-95)	82 (56-95)	88 (77-94)	86 (75-92)	86 (74-92)	88 (78-94)	82 (55-94)	
	8	ns	ns	6 (3-10)	ns	ns	6 (3-11)	8 (2-28)	6 (2-13)	5 (2-11)	5 (2-11)	5 (2-11)	7 (2-25)	
Vieux-Fort	4	NA	ns	ns	NA	ns	ns	NA	ns	ns	ns	ns	ns	
	3	NA	ns	11 (5-23)	NA	ns	11 (6-23)	NA	ns	11 (5-22)	5 (1-29)	11 (4-27)	14 (3-45)	

Supplementary Figure 1. Definition of sea age categories based on fork length. Specimen illustration by Knepp, Timothy - U.S. Fish & Wildlife Service. Licensed under public domain via Wikimedia Commons – http://commons.wikimedia.org.

Supplementary Figure 2A-D. Genotype distributions of candidate SNPs for sea age in four salmon rivers from Québec, Canada. Data are displayed in two ways, the observed data (Table 1) and adjusted for unequal sample sizes of 1SW and MSW fish to anticipate a distribution what the genotype distribution could be if equal amounts of 1SW and MSW fish were sampled within each sex. Specimen illustrations by Knepp, Timothy - U.S. Fish & Wildlife Service. Licensed under public domain via Wikimedia Commons – http://commons.wikimedia.org.

