Appendix A

- ¹ This appendix provides further details of the derivation of the analytical
- solution for the diffusion equation in the inner domain Ω_1 , that is given in
- 3 equation (16).
- It is convenient to first introduce the nondimensionalization,

$$\hat{u} = 1 - \frac{c}{c_s}$$
 $\hat{r} = r\frac{h}{D}$ $\hat{s} = s\frac{D}{R_1^2}$ $\hat{\beta} = h\frac{R_1}{D}$. (A-1)

- ⁵ Using the definitions in (A-1), the equation for radial diffusion (11), the
- boundary condition on Γ_1 (14), and the initial condition (13) can be written
- 7 as,

$$\begin{cases} \frac{\partial \hat{u}}{\partial \hat{s}} = \hat{\beta}^2 \frac{1}{\hat{r}} \frac{\partial}{\partial \hat{r}} \left(\hat{r} \frac{\partial \hat{u}}{\partial \hat{r}} \right) & \hat{r} \in [0, \hat{\beta}] \text{ and } \hat{s} > 0, \\ \frac{\partial \hat{u}}{\partial \hat{r}} = -\hat{u} & \text{at } \hat{r} = \hat{\beta}, & \hat{s} > 0, \\ \hat{u}(\hat{r}, 0) = 1, & \hat{r} \in [0, \hat{\beta}], & \hat{s} = 0, \end{cases}$$
(A-2)

- 8 Using standard methods of separation of variables (see, for example, Carlslaw
- and Jaeger [46]), we look for a factorized solution $\hat{u} = T(\hat{s})R(\hat{r})$ for (A-2),
- from which it follows, that $T(\hat{s})$ and $R(\hat{r})$ must satisfy

$$\hat{T}' + \alpha^2 \,\hat{\beta}^2 \,\hat{T} = 0, \qquad \hat{R}'' + \frac{1}{\hat{r}} \hat{R}' + \alpha^2 \hat{R} = 0,$$
 (A-3)

for $\hat{s} > 0$ and $\hat{r} \in [0, \hat{\beta}]$, where α^2 is a positive, real constant and we have used

the "" notation to denote differentiation with respect to the independent

 13 variable. The well known solutions to (A-3) are

$$\hat{T} = Ae^{-\alpha^2 \hat{\beta}^2 \hat{s}}, \qquad \hat{R} = BJ_0(\alpha \hat{r})$$
(A-4)

where we have imposed the boundedness of the solution at $\hat{r}=0$. The

equation for $R(\hat{r})$ in (A-3) is a (singular), Sturm-Liouville problem, where

$$L[\hat{R}] \equiv (\hat{r}\hat{R}')' \tag{A-5}$$

with corresponding differential equation and boundary conditions,

$$L[\hat{R}] = -\alpha^2 \, \hat{r} \hat{R} \qquad \hat{r} \in [0, \hat{\beta}]$$

$$\hat{R}' + \hat{R} = 0 \qquad \text{at } \hat{r} = \hat{\beta}.$$
 (A-6)

The Lagrange identity holds for this singular problem (A-6) (e.g. page 659

Boyce and DiPrima) [47], and we therefore have the completeness of the set

of eigenfunctions $\hat{R}(\hat{r})$ in the appropriate function space, so the solution \hat{u} can be represented as the following series

$$\hat{u} = \sum_{n=1}^{\infty} A_n e^{-\alpha_n^2 \hat{\beta}^2 \hat{s}} J_0(\alpha_n \hat{r}). \tag{A-7}$$

Applying the boundary condition given in (A-2) on surface Γ_1 ($\hat{r} = \hat{\beta}$), we obtain,

$$\sum_{n=1}^{\infty} A_n e^{-\alpha_n^2 \hat{\beta}^2 \hat{s}} [J_0(\alpha_n \hat{\beta}) - \alpha_n J_1(\alpha_n \hat{\beta})] = 0$$
 (A-8)

23 and therefore, α_n are the the roots of

$$J_0(\alpha_n \hat{\beta}) - \alpha_n J_1(\alpha_n \hat{\beta}) = 0 \qquad n = 1, 2, 3 \cdot \dots$$
 (A-9)

Using the initial condition $\hat{u} = 1$ at $\hat{s} = 0$ in (A-7), it follows that,

$$\sum_{n=1}^{\infty} A_n J_0(\alpha_n \hat{r}) = 1 \tag{A-10}$$

25 and therefore,

$$\sum_{n=1}^{\infty} \int_{0}^{\hat{\beta}} A_{n} J_{0}(\alpha_{n} \hat{r}) J_{0}(\alpha_{m} \hat{r}) \hat{r} d\hat{r} = \int_{0}^{\hat{\beta}} J_{0}(\alpha_{m} \hat{r}) \hat{r} d\hat{r}, \qquad m = 1, 2, 3, \dots \text{ (A-11)}$$

Using well known orthogonality properties of the solution with (A-9),

$$\int_{0}^{\hat{\beta}} J_{0}(\alpha_{n}\hat{r}) J_{0}(\alpha_{m}\hat{r}) \hat{r} d\hat{r} = \begin{cases}
0 & m \neq n \\
\frac{\hat{\beta}^{2}(1+\alpha_{n}^{2})}{2\alpha_{n}^{2}} J_{0}^{2}(\alpha_{m}\hat{\beta}) & m = n
\end{cases}$$
(A-12)

27 and hence,

$$A_n = \int_0^{\hat{\beta}} J_0(\alpha_n \hat{r}) \hat{r} d\hat{r} / \int_0^{\hat{\beta}} J_0^2(\alpha_n \hat{r}) \hat{r} d\hat{r}$$
 (A-13)

28 It follows from standard integral results for Bessels functions and (A-9) that

$$\int_0^\beta J_0(\alpha_n \hat{r}) \hat{r} d\hat{r} = \frac{\hat{\beta}}{\alpha_n} J_1(\alpha_n \hat{\beta}) = \frac{\hat{\beta}}{\alpha_n^2} J_0(\alpha_n \hat{\beta})$$
 (A-14)

Using this last result with (A-12) in (A-13), we obtain the solution for \hat{u} in Ω_1 (see, e.g. page 201 of Carslaw and Jaeger) [46],

$$\hat{u} = \sum_{n=1}^{\infty} \frac{2J_0(\alpha_n \hat{r})}{\hat{\beta} (1 + \alpha_n^2) J_0(\alpha_n \hat{\beta})} e^{-\alpha_n^2 \hat{\beta}^2 \hat{s}} \qquad \hat{r} \in [0, \hat{\beta}] \text{ and } \hat{s} > 0$$
 (A-15)

Using the definitions in (A-1), the solution for the concentration given in equation (16) is obtained.

Appendix B

- This appendix provides further details of the derivation of the analytical solution given in equation (25) for radial diffusion in the outer domain Ω_2 .
- 36 It is useful to first write the equations in dimensionless form. Using the
- 37 following non-dimensionalization

$$\hat{u} = 1 - \frac{c}{c_s}$$
 $\hat{r} = r\frac{h}{D}$ $\hat{s} = s\frac{D}{R_2^2}$ $\hat{\beta} = h\frac{R_2}{D}$ $\gamma = \frac{R_2}{R_3}$ (B-16)

the system of equations for the outer domain can be written as,

$$\begin{cases} \frac{\partial \hat{u}}{\partial \hat{s}} = \hat{\beta}^2 \frac{1}{\hat{r}} \frac{\partial}{\partial \hat{r}} \left(\hat{r} \frac{\partial \hat{u}}{\partial \hat{r}} \right) & \hat{r} \in [\hat{\beta}, \hat{\beta}/\gamma] & \hat{s} > 0, \\ \frac{\partial \hat{u}}{\partial \hat{r}} = \hat{u} & \text{at } \hat{r} = \hat{\beta}, & \hat{s} > 0, \\ \frac{\partial \hat{u}}{\partial \hat{r}} = 0 & \text{at } \hat{r} = \hat{\beta}/\gamma, & \hat{s} > 0, \\ \hat{u}(\hat{r}, 0) = 1, & \hat{r} \in [0, \hat{\beta}]. \end{cases}$$
(B-17)

As for the solution in the inner domain (Appendix A), the classical method of separation of variables is used and we look for a solution of the form $\hat{u} = \hat{T}(\hat{s})\hat{R}(\hat{r})$. It follows from (B-17) that

$$\hat{T}(\hat{t}) = Ae^{-\alpha^2 \hat{\beta}^2 \hat{s}}, \qquad \hat{R}(\hat{r}) = AJ_0(\alpha \hat{r}) + BY_0(\alpha \hat{r})$$
 (B-18)

where α is once again a real, positive constant. Hence, the solution for \hat{u} in the outer domain Ω_2 is

$$\hat{u} = \sum_{n=1}^{\infty} [A_n J_0(\alpha_n \hat{r}) + B_n Y_0(\alpha \hat{r})] e^{-\alpha_n^2 \hat{\beta}^2 \hat{s}}$$
 (B-19)

Applying the boundary condition at the outer boundary, Γ_3 ($\hat{r} = \hat{\beta}/\gamma$) given in (B-17), it follows that,

$$A_n \alpha_n J_1(\alpha_n \frac{\hat{\beta}}{\gamma}) + B_n \alpha_n Y_1(\alpha_n \frac{\hat{\beta}}{\gamma}) = 0, \qquad n = 1, 2, 3, \dots$$
 (B-20)

It is useful to define the function, $\phi_0(\alpha_n \hat{r})$, as a linear combination of $J_0(\alpha_n \hat{r})$ and $Y_0(\alpha_n \hat{r})$

$$\phi_0(\alpha_n \hat{r}) \doteq J_0(\alpha_n \hat{r}) Y_1(\alpha_n \frac{\hat{\beta}}{\gamma}) - Y_0(\alpha_n \hat{r}) J_1(\alpha_n \frac{\hat{\beta}}{\gamma})$$
 (B-21)

Using (B-20) to eliminate B_n in (B-19) and using the notation in (B-21), we

$$\hat{u} = \sum_{n=1}^{\infty} C_n \,\phi_0(\alpha_n \hat{r}) \,e^{-\alpha_n^2 \hat{\beta}^2 \hat{s}} \tag{B-22}$$

It follows from (B-22) and (B-17) that $\phi_0(\alpha_n \hat{r})$ are eigenfunctions that satisfy

$$(\hat{r}\phi_0')' = -\alpha^2 \hat{r}\phi_0 \qquad \hat{r} \in [\hat{\beta}, \hat{\beta}/\gamma]$$

$$\phi_0' - \phi_0 = 0 \qquad \text{at } \hat{r} = \hat{\beta}$$

$$\phi_0' = 0 \qquad \text{at } \hat{r} = \hat{\beta}/\gamma.$$
(B-23)

Applying the boundary condition at Γ_2 ($\hat{r} = \hat{\beta}$) given in (B-23)₂ with (B-21), we obtain an equation for the eigenvalues α_n as the roots of,

$$\alpha_n J_1(\alpha_n \hat{\beta}) Y_1(\alpha_n \frac{\hat{\beta}}{\gamma}) - \alpha_n Y_1(\alpha_n \hat{\beta}) J_1(\alpha_n \frac{\hat{\beta}}{\gamma})$$

$$= J_0(\alpha_n \hat{\beta}) Y_1(\alpha_n \frac{\hat{\beta}}{\gamma}) - Y_0(\alpha_n \hat{\beta}) J_1(\alpha_n \frac{\hat{\beta}}{\gamma}).$$
(B-24)

Applying the initial condition $\hat{u} = 1$ at t = 0 to the solution (B-22)

$$\sum_{n=1}^{\infty} C_n \ \phi_0(\alpha_n \hat{r}) = 1. \tag{B-25}$$

Therefore from (B-25)

$$\sum_{n=1}^{\infty} \int_{\hat{\beta}}^{\frac{\hat{\beta}}{\gamma}} C_n \, \phi_0(\alpha_n \hat{r}) \phi_0(\alpha_m \hat{r}) \, \hat{r} \, d\hat{r} = \int_{\hat{\beta}}^{\frac{\hat{\beta}}{\gamma}} \phi_0(\alpha_m \hat{r}) \hat{r} d\hat{r}. \tag{B-26}$$

The eigenfunctions $\phi_0(\alpha_n \hat{r})$ are linear combinations of bessel functions $J_0(\alpha_n \hat{r})$ and $Y_0(\alpha_n \hat{r})$ and are orthogonal, so that from (B-26),

$$C_n = \int_{\hat{\beta}}^{\frac{\hat{\beta}}{\gamma}} \phi_0(\alpha_n \hat{r}) \hat{r} d\hat{r} / \int_{\hat{\beta}}^{\frac{\hat{\beta}}{\gamma}} \phi_0^2(\alpha_n \hat{r}) \hat{r} d\hat{r}.$$
 (B-27)

Making use of (B-23), the following simplifications follow for the integral in (B-27)

$$\int_{\hat{\beta}}^{\frac{\hat{\beta}}{\gamma}} \phi_0(\alpha_n \hat{r}) \hat{r} d\hat{r} = -\frac{1}{\alpha_n^2} \int_{\hat{\beta}}^{\frac{\hat{\beta}}{\gamma}} (\hat{r} \phi_0')' d\hat{r} = -\frac{1}{\alpha_n^2} \left[\frac{\hat{\beta}}{\gamma} \phi_0'(\alpha_n \frac{\hat{\beta}}{\gamma}) - \hat{\beta} \phi_0'(\alpha_n \hat{\beta}) \right]
= \frac{\hat{\beta}}{\alpha_n^2} \phi_0(\alpha_n \hat{\beta})$$
(B-28)

and, after multiplying $(B-23)_1$ by the quantity $(2r\phi')$, rearranging terms and integrating over the domain, we obtain,

$$\int_{\hat{\beta}}^{\frac{\hat{\beta}}{\gamma}} \phi_0^2(\alpha_n \hat{r}) \hat{r} d\hat{r} = \left[\frac{\hat{r}^2}{2\alpha_n^2} \left((\phi_0'(\alpha_n \hat{r}))^2 + \alpha_n^2 \phi_0^2(\alpha_n \hat{r}) \right) \right]_{\hat{\beta}}^{\frac{\beta}{\gamma}}$$
(B-29)

$$= \frac{\hat{\beta}^2}{2} \left[\frac{1}{\gamma^2} \phi_0^2(\alpha_n \frac{\hat{\beta}}{\gamma}) - \phi_0^2(\alpha_n \hat{\beta}) (1 + \frac{1}{\alpha_n^2}) \right]$$
 (B-30)

Using these last two results with (B-27), it follows that the solution for \hat{u} in the outer domain Ω_2 is

$$\hat{u} = \sum_{n=1}^{\infty} C_n \,\phi_0(\alpha_n \hat{r}) e^{-\alpha_n^2 \hat{\beta}^2 \hat{s}}$$
(B-31)

64 with

61

$$C_n = \frac{2\phi_0(\alpha_n\hat{\beta})}{\hat{\beta} \left[\alpha_n^2 \phi_0^2(\alpha_n \frac{\hat{\beta}}{\gamma})/\gamma^2 - (1 + \alpha_n^2)\phi_0^2(\alpha_n \hat{\beta})\right]}$$
(B-32)

where it should be recalled that α_n can be determined through (B-24) and $\phi_n(\alpha_n \hat{r})$ is defined in (B-21).