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Appendix A

This appendix provides further details of the derivation of the analytical
solution for the diffusion equation in the inner domain €2y, that is given in
equation (16).
It is convenient to first introduce the nondimensionalization,
c h D A Ry

u=1-— P=r— §=S5— =h—. A-1

U ” F=rg S=s Iz g D (A-1)
Using the definitions in (A-1), the equation for radial diffusion (11), the
boundary condition on I'y (14), and the initial condition (13) can be written
as,

(00,10 (.0 . A .
95 52;§ <T8f> 7 €[0,5] and § >0,
ng =~ at #=p5, §>0, (A-2)
E
| a(7,0) =1, Pel0,8, §=0,

Using standard methods of separation of variables (see, for example, Carlslaw

and Jaeger [46]), we look for a factorized solution @ = T(3)R(#) for (A-2),
from which it follows, that 7'(5) and R(7) must satisfy

~ PN o 1A o
T +o?B*T =0, R'"+-R +a’R=0, (A-3)
T

for § > 0 and 7 € [0, B], where a? is a positive, real constant and we have used
the “” notation to denote differentiation with respect to the independent
variable. The well known solutions to (A-3) are

T=A4e " R=BJy(oF) (A-4)

where we have imposed the boundedness of the solution at 7 = 0. The
equation for R(7) in (A-3) is a (singular), Sturm-Liouville problem, where

LR = (PR’ (A-5)
with corresponding differential equation and boundary conditions,

LR = —a?#R 7 e [0,

]
PO A-6
R+R=0 at (4-6)

>

.Q> =

The Lagrange identity holds for this singular problem (A-6) (e.g. page 659
Boyce and DiPrima) [47], and we therefore have the completeness of the set

1
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of eigenfunctions f%(f) in the appropriate function space, so the solution
can be represented as the following series

o — —ap %3 2
- n o\&nl ).
U E Ane Jo(aunt) (A-7)
n=1

>
I
=
=
@

Applying the boundary condition given in (A-2) on surface I'y (
obtain,

3 A5y (@0 B) — i (0B)] = 0 (A-8)
n=1
and therefore, «,, are the the roots of
Jo(omB) — anJi(enB) =0 n=1,23-- (A-9)

Using the initial condition @ =1 at § = 0 in (A-7), it follows that,
> Ando(of) =1 (A-10)
n=1
and therefore,
© B B
Z/ ApJo(on ) Jo () PdF = / Jolom?)idr,  m=1,2,3, - (A-11)
n=1"0 0

Using well known orthogonality properties of the solution with (A-9),
0 m#n
17 Jo(an?) Jo(cum)Pdi = (A-12)

2 (1402 .
%;)Jg(amﬁ) m=n

and hence,

5 ;
A, = / Jo( i) di / / T2 )idi (A-13)
0 0

It follows from standard integral results for Bessels functions and (A-9) that

~

B . ~
/ Jo(am?)idi = = Jy (anf3) = gjo(anﬁ) (A-14)
0 n

Using this last result with (A-12) in (A-13), we obtain the solution for @ in

; (see, e.g. page 201 of Carslaw and Jaeger) [46],
= 2 Jo(a,? 324 -
= Z - o(@n?) — e 20,6 and >0 (A-15)
nm1 B (1 +af) Jo(anf)
Using the definitions in (A-1), the solution for the concentration given in
equation (16) is obtained.
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Appendix B

This appendix provides further details of the derivation of the analytical
solution given in equation (25) for radial diffusion in the outer domain 2.
It is useful to first write the equations in dimensionless form. Using the
following non-dimensionalization

Cc h D ~ RQ R2

A:]_—— A: o A: —_— h— —_ B‘16
U ” 7 TD S SR% b= D ~y T ( )

the system of equations for the outer domain can be written as,

(o0 1 el s .

oun . L5 .

o U at 7= [, 5> 0, (B-17)
ot .

((;;:0 at 7= [/, 5> 0,

a(,0) = 1, 70,4

\

As for the solution in the inner domain (Appendix A), the classical method
of separat‘iion of variables is used and we look for a solution of the form
u=T(5)R(r). It follows from (B-17) that

T(E) = A5 R(7) = AJy(oF) + BYy(ar) (B-18)

where « is once again a real, positive constant. Hence, the solution for @ in
the outer domain €5 is

i =Y [Ando(on?) + By Yo(ar)le n5* (B-19)
n=1

~

Applying the boundary condition at the outer boundary, I's (# = 3/7) given
n (B-17), it follows that,

~

AnanJl(anﬁ) + Ba,Yi (o, =) =0, n=1223,--- (B-20)
8

/‘\ 2 |Q>

It is useful to define the function, ¢y(a,7), as a linear combination of Jy(c,7)

and Yy(a,7)

oo(anT) = Jo(an?)Yi(an—) — Yo(au7)Ji (=) (B-21)

=2 |
=2 |
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Using (B-20) to eliminate B,, in (B-19) and using the notation in (B-21), we

have .
L = Z C, do(anT) e~onB% (B-22)
n=1
)

It follows from (B-22) and (B-17) that ¢o(a,7) are eigenfunctions that satisfy

() = —a*ign 7 €[5,/
0 — dn =0 at 7 = (B-23)
¢h =0 ati = /7.

Applying the boundary condition at Ty (7 = () given in (B-23), with (B-21),

we obtain an equation for the eigenvalues «,, as the roots of,

an Ty B)Yi(00n5) = an Vi) (005)

(B-24)
= Jo(anB)Y:(aum ) YolanB)Ji(ay, )
Applyting the initial condition & = 1 at t = 0 to the solution (B-22)
> Ch polant) = 1. (B-25)
n=1

Therefore from (B-25)

Z / Ch do(an?) o (o) 7 di = / bo(Qm?)Pdr. (B-26)

The eigenfunctions ¢y (a,7) are linear combinations of bessel functions Jy (o, )
and Yy(a,7) and are orthogonal, so that from (B-26),

B B
C, = /ﬁ " (ot )idr / /5 " B2 (o) 7 d (B-27)

Making use of (B-23), the following simplifications follow for the integral in
(B-27)

5 8 5 3 R A
I3 dolaniyidi =~ [ (Féh)di = 2 | 2h(@n2) = Bofh(an )
= 2 ¢0(anB)

(B-28)
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and, after multiplying (B-23); by the quantity (2r¢’), rearranging terms
and integrating over the domain, we obtain,
B
L/" oy = [55;-<<¢0un1>> + a2 630 >)] (B-29)
B

Bj(m L) = b )

n

(B-30)

Using these last two results with (B-27), it follows that the solution for @ in
the outer domain €25 is

i emenf (B-31)

with A
2¢0<O‘n6)

Blazéd(an)/v2 — (1+ a2)¢h(anb)

C, = (B-32)

where it should be recalled that a,, can be determined through (B-24) and
On(ant) is defined in (B-21).



