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Figure S-1: Profile likelihood for a spatiotemporal measles transmission model with twenty
metapopulations. The profile parameter describes the contact rate within each metapopulation.
For this figure, the data were simulated from a fitted model, and so the true parameter can be
shown (dashed black vertical line). The smoothed profile likelihood and corresponding MCAP 95%
confidence interval are shown as solid red lines. The quadratic approximation in a neighborhood
of the maximum is shown as a dotted blue line.

S1 Inference for nonlinear partially observed spatiotemporal sys-
tems

We consider statistical inference for a mechanistic spatiotemporal model, meaning a collection of
nonlinear partially observed spatially coupled Markov process. Appropriately designed sequential
Monte Carlo (SMC) schemes can successfully carry out Monte Carlo likelihood evaluation for
general partially observed spatiotemporal processes of modest dimension. Park and Ionides (2017)
developed such an SMC scheme and then employed iterated filtering methodology (Ionides et al.,
2015) to maximize the likelihood. Here, we are not immediately concerned with the details of the
model and the SMC algorithm but rather with indicating how MCAP methodology may play a
role in this computationally demanding inference problem by enabling statistical conclusions to be
drawn from a noisy Monte Carlo profile.

Figure S-1 shows an estimated likelihood profile for a parameter ¢ corresponding to the contact
rate between individuals (denoted as 8 by Park and Ionides, 2017) when fitting a ten parameter
model to pre-vaccination measles incidence in 20 cities in the United Kingdom. This profile cor-
responds to a simulation test of the methodology of Park and Ionides (2017) in which the true
parameter is known. For this computation, only five distinct parameter values were used when
computing the profile. The default smoothing parameter A = 0.75 was too small in this case, since
the local quadratic fit by the smoother at the maximum placed almost all its weights on only three
distinct parameter values. The resulting numerical instability was avoided by taking A = 1. For
this analysis, the profile cutoff adjusted for Monte Carlo uncertainty is 6 = 61.6, and we see that
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the Monte Carlo variability SE . = 1.00 in the parameter estimate greatly exceeds the statistical
variability SE .t = 0.18. Evidently, the simulated spatiotemporal data have a considerable amount
of information about the parameter ¢, but extracting that information in a statistically efficient
way is complicated by the computational challenge of working with the likelihood of a nonlinear
partially observed spatiotemporal process.

S2 Comparing MCAP with Fisher information and a bootstrap

Two alternative approaches to generating confidence intervals based on a maximum likelihood
estimator are observed Fisher information and the bootstrap method. We discuss each of these in
turn.

Observed Fisher information requires computation of a second derivative which is not directly
available in the context of plug-and-play methodology. Numerical estimation of this derivative
is equivalent to estimation of a quadratic approximation to the log likelihood at the maximum.
Further, rather than estimating all p(p + 1)/2 terms in the full observed Fisher information, it
is sufficient for the construction of marginal confidence intervals to estimate the p terms of the
marginal observed Fisher information for each parameter. In this context, implementation of ob-
served Fisher information becomes equivalent to using the cutoff § of Section 3 on the local quadratic
approximation EQ(¢; y*). We therefore refer to the Monte Carlo observed Fisher information con-
fidence interval estimator as the quadratic estimator. We expect that, so far as the log likelihood
deviates from being quadratic, the profile estimator MCAP may have a statistical advantage over
the quadratic estimator. Table S-1 shows that, on our toy example, the quadratic estimator leads
to less precise (wider) confidence intervals with similar coverage to the MCAP estimator.

Bootstrap confidence intervals can be computed via the following steps.
1. Evaluate the Monte Carlo estimator, 6(y*).
2. Simulate B datasets y1.p from the model with 6 = é(y*)
3. Evaluate the Monte Carlo estimator on y; to obtain 0, = é(yb) forbel1:B.

4. For each component of the vector 6, use the corresponding a/2 and 1 — /2 quantiles of 51; B
as an approximate confidence interval.

The bootstrap adjusts appropriately for Monte Carlo error in the estimator, since the Monte Carlo
error is simply included as part of the total error in re-evaluating the estimator on simulated
data. From the point of view of asymptotic statistical efficiency, observed Fisher information (and

Exact profile MCAP profile Bootstrap Quadratic
Coverage % 94.3 93.4 93.3 93.3
Mean width 0.78 0.88 0.94 0.92

Table S-1: Comparison of methodologies to construct an approximate 95% confidence interval for
the toy example of Section 5. The exact profile relies on an exact likelihood estimator. The other
three methods build on the same Monte Carlo estimator and optimizer. Results are based on 10*
replications, each involving 30 Monte Carlo maximizations for simulated datasets of length 50.
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therefore its close cousin, profile likelihood estimation) have higher order accuracy properties not
shared by the bootstrap method (Lindsay and Li, 1997). However, in our context, computational
efficiency is at least as important. We suppose that computational effort is dominated by the cost of
evaluating the Monte Carlo estimator. The bootstrap method spends B/(B+1) of its computational
effort maximizing likelihoods for simulated data, rather than the actual data, and therefore gives less
opportunity for the Monte Carlo exploration to discover difficult-to-find features of the likelihood
surface for the actual data. Further, each of the B bootstrap replications cannot help to reduce the
Monte Carlo error in the original point estimate so, unlike for profile methodology, the Monte Carlo
error does not vanish as B becomes large. Table S-1 reports a bootstrap confidence interval for ¢
using the same computational effort as used for the MCAP and quadratic approximation methods,
i.e., setting B = K — 1 = 29. We see that the bootstrap method is inferior to MCAP on our toy
example. However, this particular example does not give the bootstrap method opportunity to
benefit from its computational advantage of constructing confidence intervals for all components
of 6 simultaneously. If one is equally interested in all p parameters, the bootstrap method can
employ B = pK — 1 to compare with the K maximizations used for each profile. Alternatively,
the bootstrap method can allocate additional Monte Carlo effort on each maximization. Thus, the
comparison in Table S-1 is only appropriate when there are relatively few parameters of primary
scientific interest.

S3 Implementation of the MCAP algorithm in R
The following R code carries out the MCAP algorithm described in the main text.

mcap <- function(lp,parameter,confidence=0.95,lambda=0.75,Ngrid=1000){
smooth_fit <- loess(lp ~ parameter,span=lambda)
parameter_grid <- seq(min(parameter), max(parameter), length.out = Ngrid)
smoothed_loglik <- predict(smooth_fit,newdata=parameter_grid)
smooth_arg_max <- parameter_grid[which.max(smoothed_loglik)]
dist <- abs(parameter-smooth_arg_max)
included <- dist < sort(dist) [trunc(lambda*length(dist))]
maxdist <- max(dist[included])
weight <- rep(0,length(parameter))
weight [included] <- (1-(dist[included]/maxdist)”~3)"3
quadratic_fit <- 1m(lp ~ a + b, weight=weight,
data = data.frame(lp=lp,b=parameter,a=-parameter”2)
)
b <- unname(coef (quadratic_fit) ["b"] )
a <- unname(coef (quadratic_fit) ["a"] )
m <- vcov(quadratic_fit)
var_b <- m["b","b"]
var_a <- m["a","a"]
cov_ab <- m["a","b"]
se_mc_squared <- (1 / (4 * a”2)) * (var_b - (2 * b/a) * cov_ab + (b"2 / a”2) * var_a)
se_stat_squared <- 1/(2x*a)
se_total_squared <- se_mc_squared + se_stat_squared
delta <- qgchisq(confidence,df=1) * ( a * se_mc_squared + 0.5)
loglik_diff <- max(smoothed_loglik) - smoothed_loglik
ci <- range(parameter_grid[loglik_diff < deltal)
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list (1p=1lp,parameter=parameter,confidence=confidence,
quadratic_fit=quadratic_fit, quadratic_max=b/(2*a),
smooth_fit=smooth_fit,
fit=data.frame(
parameter=parameter_grid,
smoothed=smoothed_loglik,
quadratic=predict(quadratic_fit, list(b = parameter_grid, a = -parameter_grid~2))
)’
mle=smooth_arg_max, ci=ci, delta=delta,
se_stat=sqrt(se_stat_squared), se_mc=sqrt(se_mc_squared), se=sqrt(se_total_squared)
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