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S0.1 Mechanical LV Model

Study population and in vivo imaging We performed a prospective, ob-
servational CMR cohort study involving serial CMR scans obtained in a single
regional cardiac centre between 14 July 2011 and 22 November 2012. Three
hundred and forty three STEMI patients provided written informed consent to
undergo CMR 2.2 ± 1.9 days and 6 months post-MI. Patients were eligible if
they had an indication for primary PCI or thrombolysis for acute STEMI due to
a history of symptoms consistent with the acute myocardial ischemia and with
supporting changes on the electrocardiogram (ECG) (i.e. ST-segment elevation
or new left bundle-branch block). Exclusion criteria represented standard contra-
indications to contrast CMR, including a pacemaker and estimated glomerular
filtration rate ≤ 30 ml/min/1.73 m2. The study was approved by the National
Research Ethics Service, and all participants provided written informed consent.
Acute STEMI management followed contemporary guidelines. The ClinicalTri-
als.gov identifier is NCT02072850.

Eleven STEMI patients with no reflow were chosen (the MI group), and
twenty seven volunteers without the history of cardiac diseases were also enrolled
as the healthy control group. CMR was performed on a Siemens MAGNETOM
Avanto (Erlangen, Germany) 1.5-Tesla scanner with a 12-element phased ar-
ray cardiac surface coil. Patients and healthy volunteers underwent the same
imaging protocol except that the healthy volunteers < 45 years did not receive
gadolinium.

The CMR imaging protocol involved steady-state free precession cine imag-
ing, which was used for LV structure and functional assessment, short-axis cine
stack of the left ventricle from the base to apex was acquired and consisted of
7 mm thick slices with a 3 mm inter slice gap. Typical imaging parameters were:
matrix 180×256, flip angle 80o, TR 3.3 ms, TE 1.2 ms, bandwidth 930Hz/pixel,
and voxel size 1.3×1.3×7 mm3. Cine images were acquired in the three-chamber,
horizontal long-axis, and vertical long-axis planes. In the STEMI group, late
gadolinium enhancement images covering the entire LV were acquired 10-15
minutes after IV injection of 0.15 mmol/kg of gadoterate meglumine (Gd2+-
DOTA, Dotarem, Guebert S.A.) using segmented phase-sensitive inversion recov-
ery (PSIR) turbo fast low-angle shot sequence. Typical imaging parameters were:
matrix = 192×256, flip angle = 25o, TE = 3.36 ms, bandwidth = 130 Hz/pixel,
echo spacing = 8.7ms and trigger pulse = 2. The voxel size was 1.8×1.3×8 mm3.
Inversion times were individually adjusted to optimize nulling of the apparently
normal myocardium (typical values, 200 to 300 ms). The CMR methods and
analyses have been previously described in detail [1]. Blood pressure was mea-
sured according to standard guidelines using a standard size cuff, and a larger or
smaller bladder was used for large or thin arms. We observed that some of these
healthy volunteers had an elevated systolic blood pressure (SBP) at the time
of the CMR scan. The increased SBP at the time of the CMR scan may have
reflected psychological stress or possibly undiagnosed arterial hypertension.
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CMR imaging motion correction To correct motion artefacts from CMR
scans, segmented endocardial and epicardial boundaries from short-axis images
are realigned manually according to long-axis views (one-chamber, left ventric-
ular outflow tract (LVOT), and four-chamber views), so that the ventricular
boundaries from short-axis images are in the same position as in long-axis views.
Detailed steps are:

– Step 1: Endocardial and Epicardial boundaries are segmented manually in
short-axis images, represented by the red curves in Fig. S1(a).

– Step 2: Intersection lines in which long-axis views meet short-axis images are
defined according to CMR scan protocols using the CMR scanner coordinate
system, which can be obtained from the header information of DICOM files,
represented by the blue lines in Fig. S1(a). The short-axis images will be
translated along those intersection lines.

– Step 3: Original boundaries are plotted with long-axis views in the CMR
scanner coordinate system for manually translation, as shown in Fig. S1(b).
Only endocardial boundary is plotted.

– Step 4: Ventricular boundaries from short-axis views are translated manu-
ally to the boundaries revealed from the long-axis view images (Fig.S1(c)).

– Step 5: Boundaries from each short-axis image are corrected in a similar
way (Fig. S1(d)).

The motion artefacts as shown in Fig. S1(b) are corrected after the realignment
to long-axis view images, as shown in Fig. S1(c). Fig. S1(d) shows the final LV
boundaries after motion correction, which are used for LV geometry reconstruc-
tion.

IB/FE formulation The immersed boundary (IB) method [2] is employed
to model the fluid-structure interaction (FSI) of the ventricular dynamics at
end-diastole and end-systole, in which an incompressible ventricle is immersed
in a viscous incompressible fluid. The immersed solid are described in a La-
grangian formulation, including the deformation and stresses. The momentum,
viscosity, and incompressibility of the fluid is described in an Eulerian formu-
lation. Let Ω denote the physical domain occupied by the FSI system, and let
U denote the reference coordinate system attached to the immersed solid, and
X = (X1, X2, X3) ∈ U is material (Lagrangian) coordinates attached to the
immersed solid. Let x = (x1, x2, x3) ∈ Ω denote the fixed Eulerian coordinates.
The current physical region of the immersed solid at time t is Ωs(t) = χ(U, t),
and the fluid region at time t is Ωf (t) = Ω\Ωs(t). In brief, the IB/FE description
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of the fluid-structure coupled system is given by the following equations [3].

ρ

(
∂u

∂t
(x, t) + u(x, t) · ∇u(x, t)

)
= −∇p(x, t) + µ∇2u(x, t) + f s(x, t), (S1)

∇ · u(x, t) = 0, (S2)

f s(x, t) =

∫
U

∇X · Ps(X, t) δ(x− χ(X, t)) dX

−
∫
∂U

Ps(X, t) N(X) δ(x− χ(X, t)) dA, (S3)

∂χ

∂t
(X, t) =

∫
Ω

u(x, t) δ(x− χ(X, t)) dx, (S4)

in which ρ is the fluid density, µ is the fluid viscosity, u represents the Eule-
rian velocity, and p is the Eulerian pressure field. δ(x) = δ(x1) δ(x2) δ(x3) is
a smoothed three-dimensional Dirac delta function, f s represents the Eulerian
force density derived from the first Piola-Kirchoff stress tensor Ps of the im-
mersed structure. These equations express the conservation of the momentum
and mass in the Eulerian form while using a Lagrangian description for the
structural deformation and stress tensor of the immersed solid.

The total Cauchy stress for the fluid-structure coupled system is

σ(x, t) = −p I + µ
[
∇u + (∇u)

T
]

+

{
σs(x, t) for x ∈ immersed solid,

0 for x ∈ otherwise,
(S5)

in which σs describes the passive elastic and active stress of the myocardium,
and it relates to the first Piola-Kirchhoff stress via

σs = J−1 Ps FT , (S6)

where F = ∂χ/∂X is the deformation gradient, and J = det(F). To use standard
C0 finite element methods for non-linear elasticity, a weak formulation for the
structure domain is employed as in Ref [3] by introducing an equivalent weak
formulation of f s, namely

f s(x, t) =

∫
U

Fs(X, t)δ(x− χ(X, t))dX (S7)∫
U

Fs(X, t) ·V(X)dX = −
∫
U

Ps(X, t) : ∇xV(X)dX (S8)

where Fs is the Lagrangian structural force density and V(X) is an arbitrary La-
grangian test functionals. Eqs. S7-S8 enable us to numerically obtain f s through
Fs using a standard Lagrangian finite element scheme. Further details can be
found in Ref [3].

Boundary conditions and implementation The axial and circumferential
displacements in the basal plane is set to be zero to keep the left ventricle in
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place, radial placements in the basal plane is not constrained to allow basal radial
expansion. The reminder of the LV wall, including the apex, is left free. Along
Ω, a combination of zero normal traction and zero tangential velocity boundary
conditions are imposed along ∂Ω. A spatially uniform pressure load is applied
to the endocardial surface of the LV model, and linearly ramped to an assumed
end-diastolic value and allow the LV wall to expand until achieve its measured
end-diastolic volume. Then the pressure is rapidly increased to the end-systolic
value, which is approximated by the cuff-measured peak pressure. The intracel-
lular Ca2+ is gradually increased to its peak value to induce myocardial active
contraction. Computations end when a steady state is reached. A population-
based end-diastolic pressure is assumed for the healthy group, which is 8 mmHg,
and the end-systolic pressure is approximated by the cuff-measured peak pres-
sure. In the MI group, 16 mmHg is assumed for the end-diastolic pressure, which
is higher than the healthy controls, and the end-systolic pressure is approximated
from the cuff-measured pressure.

LV models are immersed in a 15 cm×15 cm×20 cm fluid box which is dis-
cretized with a 96×96×128 regular Cartesian grid, corresponding to a grid spac-
ing ∆x = 0.156 cm. Our previous study of LV dynamics showed that a Cartesian
grid spacing of ∆x = 0.156 cm yielded grid-converged results, thus in this study
we do not perform a new grid convergence study. A standard four-point regu-
larized version of the delta function is used to approximate the singular delta
function kernel in the Lagrangian-Eulerian interaction functions (S3) and (S4).
Dynamically generated Gaussian quadrature rules are used to ensure a density
of at least two quadrature points per Cartesian grid width. A time step size
of 1.22e-4 s is used in diastole and a much smaller step size (3.0e-5s) is used
in systole due to the explicit time stepping scheme employed in our numerical
implementation. Further details of the numerical scheme can be found in Ref [3].

All simulations are implemented within the open-source IBAMR software,
which is an adaptive and distributed-memory parallel realization of the IB meth-
ods, it uses other open-source libraries, including SAMRAI, PETSc and libMesh.
All simulations are run on a local Linux workstation with eight Intel(R) Xeon(R)
CPU cores (2.65 GHz) and 32 GB RAM, the simulation time for one LV model
with one set of passive and active parameters is around 24 hours.

S0.2 Optimization results

Results on optimization and strain comparisons between measurements and
model predictions using optimized parameters are summarized in Table S1, in-
cluding end-diastolic (ED) volume, end-systolic (ES) volume and systolic strain.
The relative difference in volume is defined as

∆% =

∑N
i (|Vi − V measured

i |/V measured
i )

N
× 100, (S9)

in which i is the subject number, N is the total number of subjects either in
healthy volunteers (HV) or in the MI group, Vi is ED volume or ES volume.
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Similarly for systolic strain difference

∆% =

∑N
i (|εi − εmeasured

i |/|εmeasured
i |)

N
× 100, (S10)

in which εi is the average circumferential strain in systole related to end-diastole

in ith subject, εi is defined as
∑L

l ε
l
i

L , and L is the total number of segments for
measuring strain.

Table S1: Summary of optimization result

ED volume (mL) ES volume (mL) systolic strain (%)
simulated measured ∆% simulated measured ∆% simulated measured ∆%

HV 126±21 127±21 2±2% 56±14 55±14 2.3±2% -0.19±0.02 -0.18±0.02 8±5%
MI 144±27 145±26 1.4±1% -0.16±0.01 -0.16±0.01 1.1±1%

HV: healthy volunteers, MI: myocardial infarction patients. ES volume is not compared

in MI patients because of entirely non-contractile assumption in the MI region.

S0.3 Biomechanical features and correlation analysis

Our feature selection has two phases: a PRE-SELECTION, based on physiolog-
ical criteria and linear correlation analysis, and a POST-SELECTION, based
on multivariate statistics and machine learning. In specific, the pre-selection is
performed based on linear correlation analysis among biomechanical factors (Ta,
Treq, T norm

a , Cs and σf), and their associations to CMR measurements (EDV:
end-diastolic volume, LVEF: left ventricular ejection fraction, CS: systolic cir-
cumferential strain, ESV: end-systolic volume, and SBP: systolic blood pressure),
as shown in Table S2. If two features have very strong correlation both in the MI
group and the healthy group, and both correlate to other features in a similar
way, then only one feature will be selected. The correlation analysis shows that
σf and Ta are highly correlated. Ta is selected in this study because σf is less re-
liable due to the assumption of end-diastolic pressure. Although Cs is correlated
to Ta in both groups, they relate to CMR measurements in different ways, there-
fore, Cs is included. Similarly, for Treq and T norm

a . For the post-selection based
on multivariate analysis, the fact that some features are not independent is not
a problem, as this can be dealt with by the automatic relevance determination
(ARD) method of the Gaussian process, refer to Section 6.4 of C.M. Bishop’s
book [4] for details.
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Table S2: Linear correlation analysis among biomechanical features and their
correlations to CMR measurements
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(a)

(b)

(c)

(d)

Fig. S1: Realignment of ventricular boundaries from short-axis veiws. (a) Seg-
mentation of ventricular boundaries in short-axis views, from left to right: one-
chamber view, LVOT view and four-chamber view. The blue lines represents
the intersction line between the short-axis views and the correponding long-
axis views. (b) Superimposing ventricular boundaries from short-axis views into
long-axis views, only endocardial boundary is showed; (c) motion correction by
translating short-axis boundaries along the intersection line according to the
three long-axis views; (d) LV boundaries after motion correction superimposed
in long-axis views.
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S0.4 Full Feature Selection Results

Here, we present the full feature selection results, per data set and per method,
from which Figure 8 in the main paper was obtained. The importance measure
of Lasso is expressed as the absolute value of the average regression coefficients
shown in the top panel of Fig. S2. Dataset D1 in the left column of Fig. S2
indicates that the factors Cs, T norm

a , and Ta have the importance corresponding
to high average coefficients, whereas EDV and SBP have the lowest relevance.
The plot for dataset D2 (middle column) shows Ta and SBP with the highest
importance. The two ratios Cs and T norm

a are missing from this dataset. For
D3 only the factor T norm

a exhibits a clear relevance. The previously relevant Cs

(in dataset D1) has little importance, suggesting an interaction effect with Treq,
which is missing from dataset D3.

For GP-ARD, the importance measures are expressed as the inverted and
normalised length scales, shown in the second row of Fig. S2. For dataset D1,
the most relevant factors are Treq, Cs, and T norm

a . This finding is coherent with
Lasso, except that Treq is more relevant and not Ta. Treq has the highest rele-
vance for dataset D2 and SBP and Ta are second. In the third dataset D3, the
ratios Cs and T norm

a have the highest importance together with Ta. In contrast
to Lasso, the importance of Cs does not decrease, although Treq is missing from
this dataset. To illustrate the relationship of the three most important factors
to their outcome, we plotted posterior probabilities as a contour plot with cor-
responding class labels for dataset D1. Fig. 11 shows the most relevant factor
Cs plotted against Treq and against T norm

a . The first plot shows a high non-
linearity in the relation between the two factors and their respective outcomes.
The decision boundary at 0.5 separates the two classes in a narrow band. There
is a high risk of misclassification for factor values that are in the close vicin-
ity of this boundary. Nonetheless, GP-ARD captures the non-linearity of these
class distributions sufficiently good. One exception is shown in the right panel of
Fig. 11 with the circle located in the middle of the cloud of crosses, which might
represent a high error measurement.

The Decision Tree provides the usage metric to quantify factor importance as
shown in the third row of Fig. S2. For both datasets, D1 and D3, only EDV with
20% and T norm

a with 100% are used for tree construction. It is surprising that
EDV is relevant in these cases because EDV is not indicated as an important
factor by the other methods, except for the Random Forest in dataset D3. In
addition, Cs is not used at all in the tree, which is also surprising given that it
is relevant for Lasso and GP-ARD, and to some extent for the Random Forest
(see below). For dataset D2 all factors have equal importance.

The Random Forest provides the mean decrease of accuracy as importance
measure, shown in the bottom row of Fig. S2. The variable T norm

a has the high-
est importance in the datasets in which it is present (D1 and D3). Cs is less
important compared to Lasso and GP-ARD, but the relevance of SBP is more
expressed compared to the remaining methods.
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S0.5 Description of Classification Methods

The following section describes each of the machine learning and statistical meth-
ods that we use for the prediction of myocardial contractile function and for the
identification of relevant features. See Section 2.3 for details on method applica-
tion and evaluation.

Notation We will use n for the number of observations in the data set, and
m as the number of features that we use as predictor variables. The response
vector with the class labels is denoted with y = (y1, y2, . . . , yn)ᵀ. A response is
coded with the binary 0/1, such that a variable Y = 0 defines a healthy vol-
unteer, and Y = 1 defines a MI patient. The symbol X is an n × m matrix
that contains the predictor variables xij with the samples in the rows and the
features in the columns. The vector xi = (xi1, xi2, . . . , xim) refers to the vari-
able measurements of sample i ∈ {1, . . . , n} and contains m features. The vec-
tor xj = (x1j , x2j , . . . , xnj)

ᵀ holds all samples of the feature j ∈ {1, . . . ,m}.
Whenever a method uses logistic regression we denote the coefficients with
β = (β0, β1, β1, . . . , βm)ᵀ. In this case, we expand the design matrix X with
an initial column x0 = (1, . . . , 1) that corresponds to the intercept. Note that
all vectors are in bold face except the feature vector xi.

Logistic Regression with GLMs Generalized Linear Models (GLM) extend
ordinary linear regression with support for arbitrary distributions for the re-
sponse, rather than assuming a simple normal distribution. In addition, the
linear predictor Xβ is used to determine the mean µ of the distribution through
a (vector) link function µ = g−1(Xβ), where the coefficient β is unknown. The
link function provides a non-linear mapping of the predictors to the expected
value of the dependent variables. GLMs support logistic regression by specifying
a binomial distribution and a logit link function defined as ln(µ/1−µ). The mean
vector µ is defined as µ = (1 + exp(−Xβ))−1. The unknown coefficients, β, are
typically estimated with maximum likelihood. We use the R function glm() with
the family binomial that implies a logit link function. For the univariate logis-
tic regression, we apply each feature j as a single predictor variable to establish
a benchmark for the remaining methods that use multiple predictors. Also, we
evaluate multivariate logistic regression that includes all features as predictor
variables.

Linear Discriminant Analysis The method of linear discriminant analysis
(LDA) attempts to seperate two or more classes by the linear combination of
features that best characterize each class. For two classes yi = 0 and yi = 1, and
a set of features denoted by xi, LDA assumes that the conditional probabilities
p(xi|yi = 0) and p(xi|yi = 1) are both normally distributed with mean and
covariance parameters (µy=0, Σ) and (µy=1, Σ) [5]. The covariance matrix is
assumed to be identical for both classes with full rank. To determine if a feature
vector xi is a good predictor for response yi = 0 or yi = 1, xi is projected onto
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a vector ω = Σ(µy=1 − µy=0). This vector determines the direction on the
hyperplane c that separates the two classes y = 0 and y = 1. The hyperplane c
is defined by a certain threshold T and the mean and covariance of the classes
with

c = 1/2(T − µᵀ
y=0Σ

−1µy=0 + µᵀ
y=1Σ

−1µy=1) (S11)

The class assignment for xi is thus a decision criteria with xi · ω < c. We
use the R package MASS with the function lda() to assess the performance of
LDA.

Sparse Logistic Regression with Lasso The Lasso (least absolute shrinkage
and selection operator) is a sparse regression method that was initially applied
to ordinary least squares (OLS) regression [6]. The method shrinks the regression
coefficients β of the m features towards zero using a regularization term that
penalizes high coefficient values. Lasso can be applied to class prediction by
transformation into ordinary logistic regression in conjunction with a L1-norm
penalty [7]. This can be expressed as a penalized log-likelihood L(β) that has
an additional regularization term dependent on the penalty parameter λ:

L(β) = −
n∑
i=1

(1− yi)βᵀxi + ln(1 + exp(−βᵀxi))− λ
m∑
j=1

|βj | (S12)

The last term sums the absolute coefficient values weighted by λ, which can
be selected with cross-validation or an information criterion. By maximizing
L(β), the vector of coefficients β is simultaneously shrunk and pruned, which
has an effect similar to feature selection. We use the R package glmnet with
function glmnet() in the binomial family, and LOOCV to assess the methods
performance. In each LOOCV iteration, we apply 5-fold cross-validation with the
function cv.glmnet() to determine an appropriate λ before making a predic-
tion using the optimized coefficients β. The data is standardized in the internal
procedure of glmnet(). We found that subsequent applications of LOOCV tend
to produce different predictions, which is caused by significant deviations in the
optimised λ penalty values, as can be seen in Fig. S3. To overcome this problem
we apply bootstrapping with 20 repetitions for the prediction, and 100 repeti-
tions for the coefficient estimates that are used as an importance measure. We
also applied the Elastic Net method, which combines the L1 penalty term from
Lasso with the L2 penalty term from ridge regression, but found little difference
in prediction accuracy compared to Lasso [8].

K-Nearest Neighbours The K-Nearest Neighbour (KNN) method is a non-
parametric classifier that does not rely on prior assumptions about the underly-
ing variable distribution [9]. Instead, it uses a metric such as the Euclidian dis-
tance to determine the predominant class label of training observations located
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in the neighbourhood of a test observation. The class that has the majority is
assigned to the test observation. The size of the neighbourhood is defined by the
k nearest neighbours of the training set, where k ∈ {1, .., n − 1}, and n is the
number of observations in the training set. The R package class with the func-
tion knn() was used to run the method. The data is z-score transformed since
some of the variables are on different scales and KNN uses a distance measure
to compare pairs of observations.

The setting of k can significantly influence prediction accuracy. To determine
a k ∈ {1, . . . , n− 1} with the highest prediction accuracy, we apply LOOCV to
each setting of k and calculate the corresponding misclassification error rate,
sensitivity, and specificity. Fig. S5 shows an overview of these measures given
different k for the three datasets D1, D2, and D3. The vertical lines highlight
the k that minimises the error rate, which is k = 1 for all datasets. This small
value of k can indicate a very narrow boundary between the two classes or a
highly non-linear relationship between predictors and class labels.

Decision Trees A decision tree is a graph with a tree structure that represents
a flow of subsequent tests on the input data with a final assignment of class
labels [10]. The head node and each of the internal nodes of the tree is associ-
ated with rules on the feature j ∈ {1, . . . ,m} that divide the data into smaller
fragments. The leaf nodes of the tree represent the class labels yi. Given a test
observation, the tree is traversed from the head node down to the leaf nodes. A
child node is determined by testing the feature value of the input against the
rule of the parent node. Decision trees have the advantage that only essential
features are considered, and they provide an intuitive understanding of how the
data is structured if the tree is simple enough.

A well-established implementation of constructing a decision tree is the C5.0
algorithm [11]. C5.0 uses a gain of information criterion defined as [E(S1) −
E(S2)], which measures the entropy difference after splitting a node S1 into the
child nodes S2.

E(S) = −
m∑
j=1

pj log(pj) (S13)

where pj is the probability of assignment of a case to leaf node j.

The split at a value of feature i is more likely if the difference of entropy E in
the partition S1 before the split is large compared to the entropy of the partitions
S2 after the split. Since S2 has multiple partitions P{1,...,p}, the entropies of
each partition of S2 are weighted with a parameter ω: E(S2) =

∑p
l=1 ωlE(Pl).

The risk of overfitting is reduced with back pruning the fully constructed tree in
dependence of a cost penalty parameter. We use the R package C50 with varying
penalty and boosting setups to assess the method. For the final evaluation we
apply nested LOOCV that estimates the best parameter setup for each single
prediction, such that a prediction sample is never part of a training set. Note
that the decision tree implementation with the C50 R package provides two
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metrics that quantify the importance of the factors with the function C5imp().
The default ‘usage’ metric of a factor determines the percentage of observations
that are assigned to a class label based on a split of the specific factor. We
use this metric as the indicator of factor importance in predicting the outcome.
Two importance measures were determined with the same parameter setup used
for classification. Note that the usage metrics from the individual trees of the
boosting trials are merged into the final usage statistic.

The Decision Tree C5.0 algorithm uses back pruning of the fully constructed
tree to decrease the chance of overfitting that can be caused by very detailed
and local decision rules. The cost penalty parameter controls the amount of
pruning. Also, the C5.0 algorithm supports boosting, which uses several trees
for prediction. First, we evaluate the misclassification error rate given different
settings for the penalty cost and the amount of boosting. Fig. S7 shows the error
rate for increasing penalty cost with four different boosting setups: no boosting
(1), 10, 20, and 30 trials as indicated in the legend. The vertical line highlights
the cost penalty with the lowest error. The plots in Fig.9 show the corresponding
decision trees. Note that only the first tree from the boosting set is displayed
for each dataset. The first and third tree are equivalent because the same subset
of features is selected for construction of the first tree. Furthermore, Fig. S6 in
the Appendix shows the ROC plots for each of the C5.0 trees that differ in the
penalty and boosting setup. The distribution of ROC points indicates that there
is a substantial difference between a lack of boosting (upper panels) and the
remaining setups. Although the difference in AUROC is marginal for the data
set D2, there is a steep increase of classification performance for D1 using 30
boosting trials instead of a lower number.

However, these observations are overoptimistic because each test sample was
also used for training in the LOOCV. For the final performance measure we
instead apply a nested LOOCV approach: In each prediction of a class label i,
we estimate the best boosting and penalty parameter given the (n−1) remaining
training samples with an inner LOOCV, such that we have n−2 training samples.
Thus the C5.0 parameters can change for every prediction, and the prediction
samples are never part of a training set.

Random Forests A Random Forest classifier consists of an ensemble of decision
trees that is constructed with bagging in combination with random feature sub-
selection, i.e. feature bagging. The original method used only ordinary bagging
to build trees based on random samples from the training set [12], and averaging
the class predictions from the set. However, the single application of bagging
will tend to produce highly correlated trees whenever there is a dominance of
a few essential features. The addition of feature sub-selection to the algorithm
can reduce correlation and is applied to every split of the node: At each split a
subset of the available features is selected. One of these features and a specific
value is chosen to generate the child nodes [13]. Multiple trees constructed in
such a way are more heterogenous and uncorrelated compared to trees using the
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full feature set. The average or majority vote of all trees is used as the final class
prediction. We use the R package randomForest with 100 bagging trees.

For the importance measure of each factor, we use the mean decrease of accu-
racy that is provided with the package randomForest. This metric calculates the
difference in error rate between the standard forest and a forest with randomly
permuted factor observations. The error rate increases when permuting a feature
that is relevant, and thus the accuracy of prediction decreases. In contrast, if the
error rate drops for a particular permuted factor, there is an indication of an
adverse effect on class prediction.

The Random Forest package randomForest provides a choice for the number
of trees in the forest and the number of features that are sub-selected in each
split. However, there is no point in attempting to estimate the best parameters
based on the error rate because the features are selected randomly. Since the
prediction depends on this selection, the accuracy will also vary under the same
parameters. To illustrate this, Fig. S8 shows the error rates for varying forest
sizes and feature sub-selections. The error lines are considerably flat and the best
parameter setting highlighted with a vertical line will change in every execution.
For the classification assessment, we use the default setting of randomForest,
which is

√
p for the number of features in each split, and a size of 500 trees. The

output is either an aggregated class probability or an individual prediction of
each tree. We applied a majority vote over the particular tree predictions and
found no difference in the aggregated probabilities under a decision boundary of
0.5.

Gaussian Process with Automatic Relevance Determination A de-
tailed treatment of Gaussian processes (GPs) can be found in [14], and we
only summarize the essential ideas. A GP defines a prior distribution over func-
tions, which is converted into a posterior distribution once data have been
observed. Formally, a GP is a stochastic process such that the join distribu-
tion of any finite subset is multivariate Gaussian. The joint Gaussian prior
p(f |y,x) = p(f(x1), . . . , f(xm)|y,x) is fully defined by a mean, which is of-
ten assumed to be zero, and a covariance matrix K, which is calculated with a
kernel function k(xp, xq) such that f ∼ N (0,K). The elements p, q ∈ {1, . . . ,m}
of the covariance matrix K are typically chosen in such a way that the outputs
(yp, yq) are stronger correlated for similar input points xp and xq. The squared
exponential (SE) kernel is a popular choice for the covariance. The function has a
variance parameter σ and a length-scale parameter l that controls the similarity
of data points. By including individual length-scale parameters (l1, . . . , lm) for
each of the input variables (x1, . . . , xm), the SE kernel can be used for automatic
relevance determination:

k(xp, xq) = σ2 exp

(
−

m∑
j=1

(xpj − xqj)2

2lj

)
(S14)

Thus, a low length scale will result in a large influence of the associated vari-
able, and a high length scale means a low relevance for predicting the outcome.
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A GP can be used for classification with the logistic link function λ(xᵀβ) =
1/(1 + exp(−xᵀβ)). The un-normalized GP posterior composed of logistic like-
lihood and GP prior is analytically intractable, but the log posterior is concave.
Hence, approximated inference is feasible with a standard procedure such as the
expectation propagation algorithm (EP). Another option is the probit function
for the likelihood, which is very similar to the logit distribution, but with minor
difference in the tail. We evaluated both likelihoods together with EP, Laplace
approximation and a Variational Bayesian method for the inference of the hyper-
parameters. Based on the error rates shown in Fig. S4 we selected logit with EP
for all further studies. We use the Matlab package gpml [15] to train a GP and
make predictions using the likelihood likLogistic(), covariance covSEard(),
and the inference function infEP(). Note that we also use the length scales lj as
indicators for the importance of each factor j = (1, . . . ,m). They were normal-
ized with the variable range and inverted with (1− (lj/(max(xj)−min(xj)))).
This transformation renders the length parameter coherent to the importance
measures of the other methods such that high values indicate high importance
or relevance.
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Fig. S2: Importance of features for individual methods: GP-ARD, Lasso, Deci-
sion Tree and Random Forest. Each column corresponds to the three different
datasets D1 (left), D2 (centre), and D3 (right). Taller bars indicate more im-
portant features. A summary plot that shows the ranked contributions of each
method is displayed in Fig. 8.
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Propagation), Laplace, and VB (Variational Bayesian). The error rates are de-
rived from LOOCV for each of the three datasets D1, D2, and D3.
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Fig. S5: K-nearest neighbours (KNN) with varying parameter k ∈ (1, . . . , n− 1)
and corresponding change in error rate, sensitivity, and specificity. The scores
for each k were determined with out of sample cross-validation using LOOCV.
The left, middle and right columns correspond to the datasets D1, D2 and D3,
respectively.
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Fig. S6: C5.0 Decision Tree configurations: Different settings for boosting
trials and the cost penalty for three different datasetups displayed in each col-
umn. The upper row shows ROC plots that lack boosting, and the lower row
uses boosting with 10 trials. Each symbol in the ROC plots corresponds to a
specific cost penalty. The left top most point is marked with a cross. LOOCV
was used for each setting of boosting and penalty to estimate the sensitivity and
specificity measures.
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Fig. S7: Misclassification error rate for the C5.0 Decision Trees for three different
datasets (columns), each with varying error penalty (x-axis) and boosting trials
(line style). These plots correspond to the ROC plots in Fig. S6 but with an error
rate as the indicator of prediction accuracy. The vertical lines indicate the lowest
error. The corresponding cost penalty and number of boost trials is selected for
the final evaluation.
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Fig. S8: Error rates of Random Forest given varying forest and feature sub-
selection sizes. Each panel corresponds to one of the three datasets. The vertical
lines indicate the setup with the lowest error rate. However, in each execution,
these plots and the best setup will change due to the randomness of the fea-
ture selection. Thus we use the default settings provided with the R package
randomForest.
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