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Figure S1.  In vitro studies of HSPCs following miR-99 KD or overexpression. (A) Lentiviral overexpression of miR-99 does not affect colony formation
efficiency of LT-HSC in methylcellulose colony assays. Data represent mean count + SEM (Student's t test; n = 3) and are representative of two independent
experiments. (B) Schematic of the lentiviral miR-Zip vector used for miR-99 KD experiments (Systems Biosciences [SBI]). (C and D) Luciferase assay shows
anti-miR-99 (Zip-99) can release miR-99-mediated suppression of its targets in a dose-dependent manner. 293T cells were transfected with different
doses of the Zip-99 vector along with luciferase vectors harboring 3’ UTRs of the known miR-99 targets SMARCA5 (B) and HS3ST2 (C) downstream of a
luciferase gene. All samples were simultaneously transfected with 50 ng of the miR-99a-overexpressing vector to ensure suppression of targets. 48 h after
transfection, relative luciferase activity was measured. Data represent mean + SEM (Student's t test; n = 3) and are representative of three independent
experiments. (E) Colony-forming capacity of HSCs is reduced after miR-99 KD following second plating. 15,000 GFP* cells were replated 7 d after the first
plating. Colony types were scored after 7 to 10 d. Data represent mean percentage + SEM (Student's t test; n = 3) and are representative data of three
independent experiments. (F) Colony-forming activity of LT-HSCs is reduced upon transduction with anti-miR-99 vector 2. Double-sorted LT-HSC cells were
cultured in methylcellulose medium and replated every 7 to 10 d. Data represent mean count + SEM (Student's t test; n = 3) and are representative of two
independent experiments. (G) HSCs transduced with anti-miR-99 virus display increased apoptosis 7 d post-plating. 48 h after transduction, 150 GFP* cells
were sorted into complete methylcellulose. 7 d later, the resulting GFP+ cells were analyzed for Annexin V staining. Data represent mean percentage + SEM
(Student's t test; n = 2) and are representative of two independent experiments. **, P < 0.01; *** P < 0.001.
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Figure S2.  In vivo characterization of miR-99 KD HSCs and functional validation of miR-99 KD vectors. (A) Homing of LT-HSCs into the BM after

transplantation. 5,000 GFP* LT-HSCs were transplanted into lethally irradiated animals. 24 h later, all long bones, hips, and spine were analyzed for the
presence of donor cells. Data represent mean absolute counts + SEM (n = 3 for Scr and n = 4 for miR-99 KD mice). (B-E) GFP* chimerism within total gran-
ulocytes (B), monocytes (C), B cells (D), and T cells (E) in the peripheral blood at 4 to 16 wk post-transplantation of miR-99 KD LT-HSCs. Data represent mean
percentage + SD (Student's t test; n = 11 for Scr and n = 14 for miR-99 KD) and are representative of two independent experiments. (F) GFP* engraftment
in the BM 16 wk after transplantation of LT-HSCs following miR-99 KD. Data represent mean count + SEM (Student's t test; n = 4) and are representative of
two independent experiments. (G and H) Annexin V staining of GFP* LSK (G) and progenitor (H) cells in the BM 6 mo post-transplant. Data represent mean
percentage + SEM (Student's t test; n = 7 for Scr and n = 8 for miR-99 KD) and are representative of two independent experiments. (1) Quantimir quantita-
tive RT-PCR analysis of miR-99b expression 48 h post-transduction of MonoMac6 AML cells with the two anti-miR-99 vectors. Expression was normalized
to miR-16. Data represent mean ratio + SD (Student's t test; n = 3) and are representative of three independent experiments. (J) Schematic diagram of the
miR-30-based LMN retroviral vector used for miR-99 KD experiments in MLL-AF9 mice. (K and L) Expression of miR-99b and miR-99a after transduction of
MLL-AF9+-overexpressing LSK cells with the retroviral miR-99 KD vector. Data represent mean ratio + SD (Student's ¢ test; n = 3) and are representative of
three independent experiments. *, P < 0.05; **, P < 0.01.
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Figure S3. In vivo characterization of miR-99 KD MLL-AF9 AML transplated mice and identification of miR-99 targets. (A) Flow cytometry
analysis of c-Kit expression in Gr1"Mac1* monocytes within the spleen of MLL-AF9* AML primary transplant recipients. Expression was measured at the
time of death. Mean percentage + SEM (Student's t test; n = 4 for Scr and n = 3 for miR-99 KD). Representative data from three independent experiments
are shown. (B) Flow cytometry analysis of L-GMPs within the spleen of primary transplantation recipients of MLL-AF9* AML. Absolute number of GFP*
tdTom* L-GMPs was measured at the time of death. Data represent mean absolute count + SEM (Student's t test; n = 4) and are representative of three
independent experiments. (C) Kaplan-Meier survival curve for the primary MLL-AF9 transplantation experiment. 30,000 GFP+ tdTom+ LSKs cotransduced
with MLL-AF9 and miR-99 KD vectors were transplanted into sublethally irradiated C57BL/6 recipients (Mantel-Cox test; n = 10). (D) Limiting dilution assay
on the MLL-AF3+ miR-99 KD/Scr cells from the BM of primary transplantation recipients. Table shows the number of AML cells transplanted and percent-
ages and numbers of mice succumbing to the disease. (E) Flow cytometry analysis of caspase-3 activation in MonoMac6 cells transduced with anti-miR-99
8 d post-transduction. Mean percentage + SEM (Student's t test; n = 4). Representative data from three independent experiments are shown. (F) GSEA of
LSK cells transduced with miR-99 KD 48 h post-transduction reveals induction of the NF-kB pathway and chemokine signaling gene signatures. FDR, false
discovery rate; NES, normalized enrichment score. (G) Venn diagram shows the 81 genes up-regulated in the LSK cell miR-99 KD RNA-seq data (log, fold
change >0.2; Fig. 6 A and Table S2 B) and also predicted to be miR-99 targets according to TargetScan (Agarwal et al., 2015), PITA (Kertesz et al., 2007), and
cBio prediction algorithms (Betel et al., 2010; Table S2 A). (H) Schematic diagram of the miR-E-based retroviral vector, LENC, used to generate the shRNA
library. (I) miRNA-sequencing data for HOXAT expression from 153 AML patients derived from the AML TCGA database. Expression is graphed as a function
of the French-American-British classification of AML. (J) Binding site of miR-99a to 3’ UTRs of Hoxa 1 and HOXA1, along with their binding energy predicted
by TargetScan (Agarwal et al., 2015). (K) TagMan quantitative RT-PCR for HOXAT expression with transduction of MonoMacé cells with the HOXAT overex-
pression vector, confirming up-regulation of HOXAT. Expression was normalized to ACTB. Data represent mean ratio + SD (Student's t test; n = 3) and are
representative data of two independent experiments. **, P < 0.01; **, P < 0.001.
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Tables S1 and S2 are provided as Excel files. Table S1 lists genes up-regulated comparing LGMPs with normal GMPs. Table S2
shows RNA-Seq and DNA deep sequencing data related to the shRNA library screen.
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