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Figure S1.  In vitro studies of HSPCs following miR-99 KD or overexpression. (A) Lentiviral overexpression of miR-99 does not affect colony formation 
efficiency of LT-HSC in methylcellulose colony assays. Data represent mean count ± SEM (Student’s t test; n = 3) and are representative of two independent 
experiments. (B) Schematic of the lentiviral miR-Zip vector used for miR-99 KD experiments (Systems Biosciences [SBI]). (C and D) Luciferase assay shows 
anti–miR-99 (Zip-99) can release miR-99–mediated suppression of its targets in a dose-dependent manner. 293T cells were transfected with different 
doses of the Zip-99 vector along with luciferase vectors harboring 3′ UTRs of the known miR-99 targets SMA​RCA5 (B) and HS3ST2 (C) downstream of a 
luciferase gene. All samples were simultaneously transfected with 50 ng of the miR-99a–overexpressing vector to ensure suppression of targets. 48 h after 
transfection, relative luciferase activity was measured. Data represent mean ± SEM (Student’s t test; n = 3) and are representative of three independent 
experiments. (E) Colony-forming capacity of HSCs is reduced after miR-99 KD following second plating. 15,000 GFP+ cells were replated 7 d after the first 
plating. Colony types were scored after 7 to 10 d. Data represent mean percentage ± SEM (Student’s t test; n = 3) and are representative data of three 
independent experiments. (F) Colony-forming activity of LT-HSCs is reduced upon transduction with anti–miR-99 vector 2. Double-sorted LT-HSC cells were 
cultured in methylcellulose medium and replated every 7 to 10 d. Data represent mean count ± SEM (Student’s t test; n = 3) and are representative of two 
independent experiments. (G) HSCs transduced with anti–miR-99 virus display increased apoptosis 7 d post-plating. 48 h after transduction, 150 GFP+ cells 
were sorted into complete methylcellulose. 7 d later, the resulting GFP+ cells were analyzed for Annexin V staining. Data represent mean percentage ± SEM 
(Student’s t test; n = 2) and are representative of two independent experiments. **, P < 0.01; ***, P < 0.001.



S21JEM﻿﻿

Figure S2.  In vivo characterization of miR-99 KD HSCs and functional validation of miR-99 KD vectors. (A) Homing of LT-HSCs into the BM after 
transplantation. 5,000 GFP+ LT-HSCs were transplanted into lethally irradiated animals. 24 h later, all long bones, hips, and spine were analyzed for the 
presence of donor cells. Data represent mean absolute counts ± SEM (n = 3 for Scr and n = 4 for miR-99 KD mice). (B–E) GFP+ chimerism within total gran-
ulocytes (B), monocytes (C), B cells (D), and T cells (E) in the peripheral blood at 4 to 16 wk post-transplantation of miR-99 KD LT-HSCs. Data represent mean 
percentage ± SD (Student’s t test; n = 11 for Scr and n = 14 for miR-99 KD) and are representative of two independent experiments. (F) GFP+ engraftment 
in the BM 16 wk after transplantation of LT-HSCs following miR-99 KD. Data represent mean count ± SEM (Student’s t test; n = 4) and are representative of 
two independent experiments. (G and H) Annexin V staining of GFP+ LSK (G) and progenitor (H) cells in the BM 6 mo post-transplant. Data represent mean 
percentage ± SEM (Student’s t test; n = 7 for Scr and n = 8 for miR-99 KD) and are representative of two independent experiments. (I) Quantimir quantita-
tive RT-PCR analysis of miR-99b expression 48 h post-transduction of MonoMac6 AML cells with the two anti–miR-99 vectors. Expression was normalized 
to miR-16. Data represent mean ratio ± SD (Student’s t test; n = 3) and are representative of three independent experiments. (J) Schematic diagram of the 
miR-30–based LMN retroviral vector used for miR-99 KD experiments in MLL-AF9 mice. (K and L) Expression of miR-99b and miR-99a after transduction of 
MLL-AF9+–overexpressing LSK cells with the retroviral miR-99 KD vector. Data represent mean ratio ± SD (Student’s t test; n = 3) and are representative of 
three independent experiments. *, P < 0.05; **, P < 0.01.
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Figure S3.  In vivo characterization of miR-99 KD MLL-AF9 AML transplated mice and identification of miR-99 targets. (A) Flow cytometry 
analysis of c-Kit expression in Gr1negMac1+ monocytes within the spleen of MLL-AF9+ AML primary transplant recipients. Expression was measured at the 
time of death. Mean percentage ± SEM (Student’s t test; n = 4 for Scr and n = 3 for miR-99 KD). Representative data from three independent experiments 
are shown. (B) Flow cytometry analysis of L-GMPs within the spleen of primary transplantation recipients of MLL-AF9+ AML. Absolute number of GFP+ 
tdTom+ L-GMPs was measured at the time of death. Data represent mean absolute count ± SEM (Student’s t test; n = 4) and are representative of three 
independent experiments. (C) Kaplan–Meier survival curve for the primary MLL-AF9 transplantation experiment. 30,000 GFP+ tdTom+ LSKs cotransduced 
with MLL-AF9 and miR-99 KD vectors were transplanted into sublethally irradiated C57BL/6 recipients (Mantel–Cox test; n = 10). (D) Limiting dilution assay 
on the MLL-AF9+ miR-99 KD/Scr cells from the BM of primary transplantation recipients. Table shows the number of AML cells transplanted and percent-
ages and numbers of mice succumbing to the disease. (E) Flow cytometry analysis of caspase-3 activation in MonoMac6 cells transduced with anti–miR-99 
8 d post-transduction. Mean percentage ± SEM (Student’s t test; n = 4). Representative data from three independent experiments are shown. (F) GSEA of 
LSK cells transduced with miR-99 KD 48 h post-transduction reveals induction of the NF-κB pathway and chemokine signaling gene signatures. FDR, false 
discovery rate; NES, normalized enrichment score. (G) Venn diagram shows the 81 genes up-regulated in the LSK cell miR-99 KD RNA-seq data (log2 fold 
change >0.2; Fig. 6 A and Table S2 B) and also predicted to be miR-99 targets according to TargetScan (Agarwal et al., 2015), PITA (Kertesz et al., 2007), and 
cBio prediction algorithms (Betel et al., 2010; Table S2 A). (H) Schematic diagram of the miR-E–based retroviral vector, LENC, used to generate the shRNA 
library. (I) miRNA-sequencing data for HOXA1 expression from 153 AML patients derived from the AML TCGA database. Expression is graphed as a function 
of the French–American–British classification of AML. (J) Binding site of miR-99a to 3′ UTRs of Hoxa1 and HOXA1, along with their binding energy predicted 
by TargetScan (Agarwal et al., 2015). (K) TaqMan quantitative RT-PCR for HOXA1 expression with transduction of MonoMac6 cells with the HOXA1 overex-
pression vector, confirming up-regulation of HOXA1. Expression was normalized to ACTB. Data represent mean ratio ± SD (Student’s t test; n = 3) and are 
representative data of two independent experiments. **, P < 0.01; ***, P < 0.001.
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Tables S1 and S2 are provided as Excel files. Table S1 lists genes up-regulated comparing LGMPs with normal GMPs. Table S2 
shows RNA-Seq and DNA deep sequencing data related to the shRNA library screen.
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