SUPPLEMENTAL MATERIAL

Nussbaum et al., https://doi.org/10.1084/jem.20162031

JEM S19

Figure S1. $Rorc^{fm+}$ ILCs from various organs possess different expression pattern. (A) Frequencies of $Rorc^{fm+}$ ILCs within the CD45 compartment of various organs of $Rorc^{fm-}$ Rag 1^{-/-} mice. Graphs represent pooled data from two independent experiments, $n \ge 4$ each (means \pm SEM). (B) Frequencies of $Rorc^{fm-}$ ILCs of within the CD45 compartment of various organs of $Rorc^{fm-}$ (WT) mice. Graphs represent pooled data from two independent experiments, $n \ge 4$ each (means \pm SEM). (C) Histograms of lymphoid (dark) splenic (spl), LN, thymic, and nonlymphoid (light) siLP, liver, or lung $Rorc^{fm+}$ ILCs. Representative histograms of two independent experiments, $n \ge 5$ each. (D) Dimensionality reduction using t-SNE. Data from $Rorc^{fm+}$ ILCs of spleen and siLP (of $Rorc^{fm-}$ [WT]) mice; gated on live, single lin-CD45⁺ $Rorc^{fm+}$ ILCs, which were transformed and plotted in two t-SNE dimensions using R software. Clustering was performed using the flowSOM algorithm (k = 5). Depicted are the combined spleen and siLP data sets (left), the siLP dataset only (middle), and spleen dataset only (right). (E) ILC3- and NK cell-associated markers plotted in a heat map across flowSOM clusters from D. (F) Expression pattern of ILC3- and NK cell-associated markers depicted in the two t-SNE dimensions.

Figure S2. Lymphoid $Rorc^{fm+}$ ILCs suppress tumor growth, whereas nonlymphoid $Rorc^{fm+}$ ILCs fail to do so. $II12rb2^{-f-}$ mice were s.c. challenged with B16–IL-12 coinjected with splenic (spl)-, LN-, siLP-, or liver-derived $Rorc^{fm+}$ ILCs or no ILCs. (A) Tumor growth of B16–IL-12 tumor cells coinjected with splenic (spl) $Rorc^{fm+}$ ILCs (open circles), siLP-derived $Rorc^{fm+}$ ILCs (dark gray squares), LN-derived $Rorc^{fm+}$ ILCs (gray open squares), hepatic (liver) $Rorc^{fm+}$ ILCs (light gray squares), or the absence of ILCs (closed circles) over time. For comparison of the tumor growth curve two-way ANOVA with Tukey's multiple comparisons test was used. ****, P < 0.001. (B) Quantification of tumor burden 24 d after tumor inoculation. Graph represents pooled data from three independent experiments, $n \ge 5$ each (means \pm SEM). One-way ANOVA with Tukey's multiple comparisons test was performed. *, P < 0.05; ***, P < 0.01; ****, P < 0.001.

Figure S3. Rorc-fate map crossed to Eomes-reporter mice allow identification of type 1 and type 3 ILC subsets. (A) Schematic representation of the $Rorc^{cre}$ mice crossed to the $Eomes^{GFP}$ -Rosa26Re^{YFP/+} mice, labeling all cells expressing RORyt with YFP and all cells expressing Eomes with GFP. (B) Gating strategy to identify ILC3s derived from the Rorc lineage ($Rorc^{fm+}$ ILCs), Eomes-expressing NK cells, and Eomes-ILC1s in the spleen (spl). For exclusion of the adaptive immune cells and myeloid cells lin $^-$ (CD3 $^-$ CD5 $^-$ CD11c $^-$ CD19 $^-$ GR-1 $^-$), live, single CD45 $^+$ cells were gated. ILC1s, NK cells, and NCR $^+$ ILC3s were identified within the NCR $^+$ (NK1.1 $^+$ NKp46 $^+$) cell population, whereas NCR $^-$ ILC3s were identified in the NCR $^-$ population. NCR $^+$ and NCR $^-$ ILC3 are summarized as Eometa-ILC3.

JEM S21

Figure S4. **NGS reveals differentially expressed genes by splenic** *Rorc*^{fm+} **ILCs compared with other ILC subsets.** (A and B) Pairwise comparison of the four experimental groups depicted in a Venn diagram. 78 genes are significantly down-regulated, and 208 are up-regulated when comparing all conditions (*Eomes*⁺ NK cells, *Eomes*⁻ ILC1s, and siLP *Rorc*^{fm+} ILCs) to splenic (spl) *Rorc*^{fm+} ILCs (altered to a minimum significance threshold of P < 0.01 and fold change >1 or -1). (C) Top 30 list of genes down-regulated by splenic (spl) *Rorc*^{fm+} ILCs compared with *Eomes*⁺ NK cells, *Eomes*⁻ ILC1s, and siLP *Rorc*^{fm+} ILCs. (D) Top 30 list of genes up-regulated by splenic (spl) *Rorc*^{fm+} ILCs compared with *Eomes*⁺ NK cells, *Eomes*⁻ ILC1s, and siLP *Rorc*^{fm+} ILCs. (E) Heat maps of differentially expressed genes clustered to the indicated category. Heat maps show representative data of one sample per group.

Figure S5. **Splenic** *Rorc*^{fm+} **ILCs** only express low amounts of cytotoxic molecules and an activated phenotype. (A) Expression pattern of cytotoxic molecules by the different splenic and siLP $Rorc^{fm+}$ ILC data from NGS (means \pm SD; Fig. 6). (B) Expression pattern of activation markers by the different splenic and siLP $Rorc^{fm+}$ ILCs; data from NGS (means \pm SD; Fig. 6).

JEM S23