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Abbreviations and acronyms used in ESM

Alpha-hydroxybutyrate α-HB

Area under the receiver operating characterstic curve AU-ROC

Fasting glucose levels at the baseline bGlu

Fasting insulin levels at the baseline bIns

95% confidence interval CI

Cardiovascular diseases at any visit during follow-up period CVD

Discrimination slope DS

Family history of T2D FH

Greedy feature selection algorithm for RLS GreedyRLS

Hypertension medication (Diuretics, Beta blockers, Calcium blockers,
ACE  inhibitors,  AT2  receptor  inhibitors,  or  other  blood  pressure
medication)

HT Med

Bradykinin hydroxyproline [Hyp3]-BK

Integrated discrimination improvement IDI

Logarithm of the odds ratio log odds

Physical activity PhyAct

Regularized least squares approach RLS

Type 2 diabetes T2D



ESM Methods

Metabolomics

The biochemical profiling protocols and experimental procedures applied for sample preparation,

untargeted  and targeted  metabolomics,  and data  preprocessing  applied  in  the  current  study are

similar to the protocols explained in detail previously [1, 2], and were performed by Metabolon Inc.

(Durham, NC, USA). Here we present the methods in brief, for completeness.

Prior to extraction, samples were stored at -80 °C. On the day of extraction, samples were thawed

on  ice  and  100  µl  was  extracted  using  an  automated  MicroLab  STARH  system  (Hamilton

Company, Salt Lake City, UT, USA). The samples were extracted using a single extraction with

400  ml  of  methanol,  containing  the  recovery  standards:  tridecanoic  acid,  fluorophenylglycine,

chlorophenylalanine and d6-cholesterol. The solvent extraction step was performed by shaking for

two minutes using a Geno/Grinder 2000 (Glen Mills Inc., Clifton, NJ, USA). After extraction, the

sample was centrifuged and supernatant removed using the MicroLab STARH robotics system. The

extract supernatant was split into four equal aliquots: two for UHPLC/MS, one for GC/MS and one

reserve aliquot. Aliquots were placed on a TurboVapH (Zymark/Biotage LLC, Charlotte, NC, USA)

to remove solvent, and dried under vacuum overnight. Samples were maintained at 4 °C throughout

the extraction process. For UHPLC/MS analysis, extract aliquots were reconstituted in either 0.1%

formic acid for positive ion UHPLC/MS, or 6.5 mmol/l ammonium bicarbonate pH 8.0 for negative

ion  UHPLC/MS.  For  GC/MS  analysis,  aliquots  were  derivatized  using  equal  parts  N,O-

bistrimethylsilyl-trifluoroacetamide  and  a  solvent  mixture  of  acetonitrile:dichlor-

omethane:cyclohexane  (5:4:1)  with  5%  triethylamine  at  60  °C  for  1  hour.  The  derivatization

mixture also contained a series of alkylbenzenes for use as retention time markers.

Global  metabolomic  profiling  was  performed  using  multiple  platforms,  ultra  high  performance

liquid chromotography (UHPLC) and gas chromatography (GC), coupled with mass spectrometry

(MS) technology. A broad array of molecules covering many metabolite classes, including amino



acids,  lipids,  carbohydrates,  was  measured  in  serum  samples  collected  after  subjects  fasted

overnight  (10–12  hours).  The  non-targeted  metabolite  profiling  was  done  using  single  sample

extraction followed by protein precipitation to recover a diverse range of molecules including polar

and hydrophobic molecules.

UHPLC/MS was carried out using a Waters Acquity UHPLC (Waters Corporation, Milford, MA,

USA) coupled to an LTQ mass spectrometer (Thermo Fisher Scientific Inc., Waltham, MA, USA)

equipped with an electrospray ionization source (ESI). Two separate UHPLC/MS injections were

performed on each sample: one optimized for positive ions (ESI+) and the other for negative ions

(ESI-). The ESI+ analyses were performed first, followed by ESI- analyses.

For  absolute  quantitation,  metabolites  were analyzed by isotope-dilution  ultra-high-performance

liquid  chromatographic  tandem  mass  spectroscopy  (UHPLC-MS/MS)  assay.  50  ml  of  EDTA

plasma samples were spiked with internal standard solution and subsequently subjected to protein

precipitation  by  mixing  with  250  ml  of  methanol.  Following  centrifugation,  aliquots  of  clear

supernatant were injected onto an UHPLC-MS-MS system, consisting of a Thermo TSQ Quantum

Ultra Mass Spectrometer and a Waters Acquity UHPLC system equipped with a column manager

module  and  three  different  columns.  Each  sample  was  analyzed  using  three  different

chromatographic systems to cover the various analytes. Quantitation was performed based on the

area ratios of analyte and internal standard peaks using a weighted linear least squares regression

analysis generated from fortified calibration standards in an artificial matrix, prepared immediately

prior to each run.

Metabolites were identified by automated comparison of spectra to a chemical standard library of

experimentally derived spectra. Identification of known molecules was based on comparison with

library entries of purified authentic chemical standards.  Missing values were imputed using the

minimum non-missing measurement for each metabolite (peak).



ESM Results

Additional blinded validation of metabolic marker panel within Botnia cohort

In addition to estimating  the predictive performance of the models using a  rigorous nested cross-

validation approach, we identified 226 out of 543 subjects with missing measurements in one or

more clinical covariates, and utilized them as a blind test cohort, in order to provide a more detailed

assessment of the selected biomarker panel within the BPS cohort.  Five-metabolite panels trained

with 317 subjects showed an AU-ROC of 0.67 in the repeated nested CV and an AU-ROC of 0.79

in the blinded test set, providing an additional independent validation of the selected markers.

Wang et al. [3]  reported the predictive performance of their amino acid marker panel in low (c-

statistic = 0.65) and high-risk populations (c-statistic = 0.8), containing 50% and 32% progressors,

respectively. Interestingly, our independent training and test groups represented similar high and

low-risk groups, with 47% and 8% progressors, respectively. Hence, with AU-ROC of 0.67 and

0.79 in high and low-risk groups, respectively, our markers show similar performance even in the

low-risk group that contains much lower percentage of progressors, almost identical to global T2D

prevalence of 8% in adults.



ESM Tables

ESM Table 1

Clinical characteristics of subjects from D.E.S.I.R. included in this  study. The D.E.S.I.R. study

samples were used for an independent validation of the predictive models trained based on the

Botnia study.

Factor
Total 
population

Non-
progressor

Progressor P-value

N 1,044 813 231 NA

Sex
Male 546 394 151

6.9 x 10-6

Female 499 419 80
Age (years)a 48.18 ± 0.31 47.29 ± 0.35 51.31 ± 0.61 7.2 x 10-8

BMI (kg/m2)a 25.08 ± 0.12 24.31 ± 0.12 27.79 ± 0.29 7.8 x 10-34

Fasting glucose (mmol/l)a 5.38 ± 0.01 5.23 ± 0.01 5.92 ± 0.04 7.6 x 10-70

Fasting insulin (pmol/l)a 49.3 ± 0.98 43.4 ± 0.81 70.1 ± 3.04 1.9 x 10-31

T2D family history (FH)
No 827 657 170

0.02
Yes 217 156 61

aData presented as mean ± standard error of mean. Differences tested using Student's t-test.

ESM Table 2

Correlation of the selected metabolic markers with fasting glucose based on the Botnia study.

Metabolite
Pearson
correlation
coefficient

p value

Mannose 0.66 4.4E-69

X - 12063 0.18 1.5E-05

Alpha-Hydroxybutyrate (Q) 0.09 0.04

X - 13435 0.02 0.64

Alpha-Tocopherol -0.01 0.77

Bradykinin hydroxyproline -0.23 3.1E-08



ESM figures
ESM Fig. 1

Flow chart  of  the  repeated  nested  cross-validation  procedure  applied  to  learning the  predictive
models  and to  evaluating their  predictive  performance.  The inner  cross-validation,  enclosed by
green continuous rectangle, selects the optimal regularization parameter. The outer cross-validation,
enclosed by red dashed rectangle, learns the coefficients in the regression model and evaluates the
model performance. We performed 10-fold outer and 10-fold inner cross-validation in the model
building, and repeated the procedure 100 times (the box enclosed by dotted blue rectangle) to get an
average estimate of the performance.



ESM Fig. 2

Metabolites positively and negatively associated with progression to T2D according to univariate
testing  in  sub-figures  (a) and  (b) respectively,  and  metabolic  markers  selected  using  machine
learning in (c). Logarithm of the odds ratio (log odds, first column of the heatmaps) for progression
versus non-progression is shown in a color gradient from blue (negative) to white (zero) to red
(positive). Figure shows only those metabolites associated with T2D progression at FDR Q < 0.05.
The remaining columns in the heatmaps show the conditional log odds after adjusting for the risk
factors  (Age,  Sex,  BMI,  FH,  bIns,  bGlu,  CVD,  PhyAct,  HT  Med).  Asterisks  indicate  the
significance of the log odds or the conditional log odds:  *, p < 0.05; **, p < 0.01; ***, p < 0.0001.
Metabolites detected with targeted quantitative platform are marked with the suffix '(Q)'. Glucose
was excluded from the statistical tests when adjusting for the fasting glucose, hence showing the
missing statistic (grey) in (a) and (c) panels.



ESM Fig. 3

Effect of adding fasting glucose into the clinical-only predictive model (dashed line; mean and CI
of AU-ROC, 0.70 and (0.50, 0.88)) in comparison with the predictive models based on (a) the entire
metabolome including the glucose metabolite (solid line, metabolites-only model, AU-ROC 0.77
(0.62, 0.90); dashed-dot line, combined model, AU-ROC 0.76 (0.59, 0.92); combined vs clinical-
only,  p =  0.023).  and  (b) metabolic  marker  panel  (i.e.  glucose,   mannose,  α-HB,  X-12063,  α-
tocopherol, [Hyp3]-BK,  and X-13435) (solid line, metabolites-only model, AU-ROC 0.75 (0.59,
0.89); dashed-dot line, combined model, AU-ROC 0.78 (0.61, 0.92); combined vs clinical-only, p =
0.0016). The clinical reference model was built  using age,  sex,  BMI, FH, bIns,  and bGlu.  The
combined metabolites + clinical models included the clinical covariates:  age, sex, BMI, FH, and
bIns (i.e. bGlu was not included). The discrimination slope plots of (c) clinical-only (DS = 0.14),
(d) clinical  + metabolome (DS = 0.19;  IDI =  0.05 showing 35.7% improvement  in  DS over
clinical-only) and (e) clinical + selected metabolic markers (DS = 0.20; IDI = 0.06 showing 42.9%
improvement in DS over clinical-only) models. Thus, the metabolites + clinical models performed
significantly better than clinical-only model.



ESM Fig. 4

The clinical  reference  model  containing  age,  sex,  BMI,  fasting  insulin,  fasting  glucose,  family
history of type 2 diabetes, waist size, systolic and diastolic blood pressures, total cholesterol, HDL
cholesterol, and triacylglycerols  (dashed line, AU-ROC 0.71 (0.49, 0.90))  and the assessment of
added value of the metabolic markers. ROC curves comparing the effect of  (a) adding the entire
metabolome (excluding glucose metabolite)  (solid line, metabolites-only model, 0.77 (0.62, 0.90);
dashed-dot line, combined model, 0.77 (0.57, 0.93); combined vs clinical-only,  p = 0.04)  and (b)
metabolic marker panel excluding glucose metabolite (i.e. mannose, α-HB, X-12063, α-tocopherol,
[Hyp3]-BK, and X-13435) (solid line, metabolites-only model, 0.75 (0.59, 0.89); dashed-dot line,
combined model, 0.79 (0.59, 0.94); combined vs clinical-only, p = 0.0025).



ESM Fig. 5

The optimal number of metabolic biomarkers was selected by varying the model size parameter in
GreedyRLS  between  1  and  20  features,  repeating  the  nested  cross-validation  20  times,  and
calculating the average AU-ROC for each model size. The maximum AU-ROC was obtained with
five metabolites.



ESM Fig. 6

Effect  of  removing  glucose  from  the  metabolite-based  predictive  models  in  comparison  with
clinical reference model that includes fasting glucose (dashed line, AU-ROC 0.70 (0.50, 0.88)). (a)
Models with the entire metabolome except the glucose metabolite (solid line, metabolites-only, AU-
ROC 0.75 (0.62, 0.87); dashed-dot line, combined model, AU-ROC 0.75 (0.57, 0.91); combined vs
clinical-only, p = 0.048) and (b) the models with the metabolic marker panel excluding the glucose
metabolite  (i.e.  mannose,  α-HB,  X-12063,  α-tocopherol,  [Hyp3]-BK,  and X-13435)  (solid  line,
metabolites-only,  AU-ROC 0.72 (0.53,  0.88);  dashed-dot  line,  combined model,  AU-ROC 0.77
(0.57, 0.92); combined vs clinical-only, p = 0.0066). The clinical reference model was built using
age,  sex,  BMI, FH, bIns,  and bGlu.  The combined  metabolites + clinical models  included the
clinical covariates:  age, sex, BMI, FH, and bIns (i.e. bGlu was not included).  The metabolites +
clinical models performed significantly better than clinical only model (p = 0.048, with the entire
metabolome; p = 0.0066 with marker panel).



ESM Fig. 7

Comparison of the metabolic markers found in the current study (new markers; solid line, AU-ROC
0.78 (0.61, 0.92)) with the previously established markers from Wang et al., [3] (dashed line, AU-
ROC 0.71 (0.54, 0.86)) and Ferrannini et al., [4] (dashed-dot line, 0.72 (0.51, 0.89)),referred to as
Wang markers and Ferrannini markers, respectively. The new markers model indcluded age, sex,
BMI, bIns, and FH as clinical covariates. In accordance with the original studies, the Wang markers
model included age, sex, BMI, and bGlu, and the  Ferrannini markers  model included age, sex,
BMI, bGlu,  and FH. The ROC curves  were constructed using repeated nested cross-validation.
Predictive  performance  of  the  new markers was  higher  than  Wang markers (p =  0.0038)  and
Ferrannini markers (p = 0.005).
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