## ER/K linked GPCR-G protein fusions systematically modulate second messenger response in cells

## Rabia U. Malik, Matthew Dysthe, Michael Ritt, Roger K. Sunahara, and Sivaraj Sivaramakrishnan

**Supplementary Figure 1.** *GPCR-Gx fusion localize to the plasma membrane*. Representative image of live HEK293 cells expressing  $\alpha$ 2-AR-Gs fusion (see Methods for live cell microscopy). In this image 90% membrane localization was detected. Analysis was performed in ImageJ (NIH) using the threshold tool to select membrane (C; cyan outline) and internal expression (Y; yellow outline). Percent membrane expression was calculated by (C/(C+Y))\*100%.



**Supplementary Figure 2.** Competition by isoproterenol of  $[{}^{3}H]$ dihydroalprenolol binding in HEK293 membranes expressing  $\beta$ 2-AR-Gs ER/K linked fusion. Affinity for agonist (isoproterenol) was measured for  $\beta$ 2-AR-Gs sensors by competitive inhibition of  $[{}^{3}H]$ DHA binding. Results are expressed as percent of radioligand bound in the absence of competitor.



Supplementary Table 1. Statistical analysis for  $\beta 2$ -AR-Gx fusions. Mean difference is the difference between the means of the indicated  $\beta 2$ -AR-Gx (x: s or q) fusions or control sensors (–). Student's t-test (S. t-test) was performed for changes in FRET measurements for the same sensor in the presence or absence of ligand. One-way ANOVA test with a Tukey's post-test (ANOVA) was performed when comparing differences in  $\Delta$ FRET across multiple sensors. A significant difference between the tested fusions are represented with the following legend: \*,  $p \le 0.05$ ; \*\*,  $p \le 0.01$ ; \*\*\*\*,  $p \le 0.001$ ; \*\*\*\*,  $p \le 0.0001$ , n.s. not significant.

| Gx protein comparison                       | Mean Difference | Significance | Test      | Figure             |  |
|---------------------------------------------|-----------------|--------------|-----------|--------------------|--|
| s (minus) vs. s (ISO)                       | 0.006217        | ****         | S. t-test |                    |  |
| q (minus) vs. q (ISO)                       | 0.0003354       | n.s.         | S. t-test | <b>F</b> : 21      |  |
| (-) (minus) vs. (-) (ISO)                   | 0.001251        | n.s.         | S. t-test | Fig. 3b<br>(AFRFT) |  |
| s ( $\Delta$ FRET) vs. q ( $\Delta$ FRET))  | 0.009624        | *            | ANOVA     |                    |  |
| s ( $\Delta$ FRET) vs. (–) ( $\Delta$ FRET) | 0.007446        | *            | ANOVA     |                    |  |

Supplementary Table 2. Statistical analysis for  $\alpha 2$ -AR-Gx fusions. Mean difference is the difference between the means of the indicated  $\alpha 2$ -AR-Gx (x: s or q) fusions or control sensors (–). Student's t-test (S. t-test) was performed for changes in FRET measurements for the same sensor in the presence or absence of ligand. One-way ANOVA test with a Tukey's post-test (ANOVA) was performed when comparing differences in  $\Delta$ FRET across multiple sensors. A significant difference between the tested fusions are represented with the following legend: \*,  $p \le 0.05$ ; \*\*,  $p \le 0.01$ ; \*\*\*\*,  $p \le 0.001$ ; \*\*\*\*,  $p \le 0.0001$ , n.s. not significant.

| Gx protein comparison                      | Mean Difference | Significance | Significance | Figure            |
|--------------------------------------------|-----------------|--------------|--------------|-------------------|
| s (minus) vs s (Epi)                       | 0.0004172       | n.s.         | S. t-test    |                   |
| i (minus) vs i (Epi)                       | 0.008794        | **           | S. t-test    |                   |
| q (minus) vs q (Epi)                       | 0.002067        | n.s.         | S. t-test    |                   |
| (–) (minus) vs (–) (Epi)                   | 0.004545        | n.s.         | S. t-test    | Fig.3c<br>(AFRET) |
| i ( $\Delta$ FRET) vs s ( $\Delta$ FRET)   | 0.009633        | *            | ANOVA        |                   |
| i ( $\Delta$ FRET) vs q ( $\Delta$ FRET)   | 0.01212         | *            | ANOVA        |                   |
| i ( $\Delta$ FRET) vs (–) ( $\Delta$ FRET) | 0.01459         | **           | ANOVA        |                   |

**Supplementary Table 3.** One-way ANOVA with a Tukey's post-test statistical analysis for  $\beta$ 2-AR and  $\alpha$ 1-AR Gx fusions. FRET Ratio and downstream response were measured for  $\beta$ 2-AR or  $\alpha$ 1-AR fused to Gs or Gq using three different lengths ER/K linkers (10 nm, 20 nm, or 30 nm) in live cells. Mean difference is the difference between the means of the tested GPCR-Gx fusion FRET ratio or downstream response for Figure 5. A significant difference between the tested conditions are represented with the following legend: \*,  $p \le 0.05$ ; \*\*,  $p \le 0.001$ ; \*\*\*\*,  $p \le 0.0001$ ; \*\*\*\*,  $p \le 0.0001$ , n.s. not significant.

| Fusion     | Assay           | Comparison  | Mean Difference ± S.E.M. | Significance | Figure                   |
|------------|-----------------|-------------|--------------------------|--------------|--------------------------|
| β2-AR-Gs   |                 | 10 vs 20 nm | 13027                    | ****         |                          |
|            | cAMP            | 10 vs 30 nm | 18408                    | ****         |                          |
|            |                 | 20 vs 30 nm | 5380                     | *            | Eia 5h                   |
|            | FRET            | 10 vs 20 nm | 0.2184                   | ****         | F1g. <i>30</i>           |
|            |                 | 10 vs 30 nm | 0.2698                   | ****         |                          |
|            |                 | 20 vs 30 nm | 0.05144                  | *            |                          |
|            |                 | 10 vs 20 nm | 354.3                    | n.s.         | Fig. 5e                  |
|            | cAMP            | 10 vs 30 nm | 2269                     | n.s.         |                          |
| or 1 AP Co |                 | 20 vs 30 nm | 1915                     | n.s.         |                          |
| ul-AK-Us   |                 | 10 vs 20 nm | 0.2514                   | ****         |                          |
|            | FRET            | 10 vs 30 nm | 0.3374                   | ****         |                          |
|            |                 | 20 vs 30 nm | 0.086                    | ****         |                          |
|            |                 | 10 vs 20 nm | 0.0191                   | n.s.         |                          |
|            | $IP_1$          | 10 vs 30 nm | 0.03149                  | n.s.         |                          |
|            |                 | 20 vs 30 nm | 0.01239                  | n.s.         | Eiz 5a                   |
| р2-АК-ӨЧ   | FRET            | 10 vs 20 nm | 0.2688                   | ****         | F1g. 5C                  |
|            |                 | 10 vs 30 nm | 0.2904                   | ****         |                          |
|            |                 | 20 vs 30 nm | 0.02158                  | **           |                          |
| α1-AR-Gq   | IP <sub>1</sub> | 10 vs 20 nm | 0.05501                  | ***          |                          |
|            |                 | 10 vs 30 nm | 0.09868                  | ****         |                          |
|            |                 | 20 vs 30 nm | 0.04366                  | *            | Eig 5d                   |
|            | FRET            | 10 vs 20 nm | 0.2777                   | ****         | гі <u>д</u> . <i>3</i> а |
|            |                 | 10 vs 30 nm | 0.3016                   | ****         |                          |
|            |                 | 20 vs 30 nm | 0.02389                  | *            |                          |

**Supplementary Table 4.** One-way ANOVA with a Tukey's post-test statistical analysis for  $A_1R$  or  $\alpha 2$ -AR Gx fusion. FRET Ratio and downstream response were measured for  $A_1R$  or  $\alpha 2$ -AR fused to Gs or Gi using three different lengths ER/K linkers (10 nm, 20 nm, or 30 nm) in live cells. Mean difference is the difference between the means of the tested GPCR-Gx fusion FRET ratio or downstream response for Figure 6. A significant difference between the tested conditions are represented with the following legend: \*,  $p \le 0.05$ ; \*\*,  $p \le 0.001$ ; \*\*\*\*,  $p \le 0.0001$ ; \*\*\*\*,  $p \le 0.0001$ , n.s. not significant.

| Fusion              | Assay              | Comparison  | Mean Difference ± S.E.M. | Significance | Figure            |  |
|---------------------|--------------------|-------------|--------------------------|--------------|-------------------|--|
| A <sub>1</sub> R-Gi | FRET               | 10 vs 20 nm | 0.1375                   | ****         | -                 |  |
|                     |                    | 10 vs 30 nm | 0.1628                   | ****         |                   |  |
|                     |                    | 20 vs 30 nm | 0.02529                  | **           | Fig. 6 <i>b</i>   |  |
|                     | cAMP               | 10 vs 20 nm | 19.25                    | ***          |                   |  |
|                     |                    | 10 vs 30 nm | 32.75                    | ****         |                   |  |
|                     | minontion          | 20 vs 30 nm | 13.5                     | **           |                   |  |
|                     |                    | 10 vs 20 nm | 0.1534                   | ****         | - Fig. 6 <i>c</i> |  |
|                     | FRET               | 10 vs 30 nm | 0.1975                   | ****         |                   |  |
| A <sub>1</sub> R-Gs |                    | 20 vs 30 nm | 0.04407                  | ****         |                   |  |
|                     | cAMP               | 10 vs 20 nm | 710.9                    | n.s.         |                   |  |
|                     |                    | 10 vs 30 nm | 482.4                    | n.s.         |                   |  |
|                     |                    | 20 vs 30 nm | -228.4                   | n.s.         |                   |  |
|                     | FRET               | 10 vs 20 nm | 0.09878                  | ****         | - Fig. 6 <i>d</i> |  |
|                     |                    | 10 vs 30 nm | 0.1128                   | ****         |                   |  |
| and AD C:           |                    | 20 vs 30 nm | 0.01398                  | *            |                   |  |
| 0.2-AR-01           | cAMP<br>inhibition | 10 vs 20 nm | 25.83                    | *            |                   |  |
|                     |                    | 10 vs 30 nm | 47.5                     | **           |                   |  |
|                     |                    | 20 vs 30 nm | 21.67                    | *            |                   |  |
| α2-AR-Gs            | FRET               | 10 vs 20 nm | 0.09769                  | ****         |                   |  |
|                     |                    | 10 vs 30 nm | 0.1184                   | ****         | – Fig. 6 <i>e</i> |  |
|                     |                    | 20 vs 30 nm | 0.02075                  | **           |                   |  |
|                     | cAMP               | 10 vs 20 nm | 11873                    | ***          |                   |  |
|                     |                    | 10 vs 30 nm | 18096                    | ****         |                   |  |
|                     |                    | 20 vs 30 nm | 6223                     | **           |                   |  |

**Supplementary Table 5.** Calculating isoproterenol efficacy ( $\tau$ ) for the  $\beta$ 2-AR-Gs fusion. Ligand efficacy ( $\tau$ ) was evaluated using the operational model of agonism as described previously. Briefly, dose response curves were fitted to the operational model of agonism using the following equation:

$$E = \frac{E_{max} \times [A]^{n} \times \tau^{n}}{[A]^{n} \times \tau^{n} + ([A]^{n} \times K_{A})^{n}}$$

where  $E_{max}$  is the maximal cAMP response of the system assessed by treating the cells with 100  $\mu$ M forskolin (Fsk) and 100  $\mu$ M isoproterenol (ISO), *E* is the cAMP response to varying concentration of isoproterenol ([*A*]),  $E_{sat}$  is the cAMP response to saturating concentration of isoproterenol (100  $\mu$ M), and *n* is the slope of the transducer function that links ligand occupancy to response.  $K_A$  value was constrained to the respective  $K_i$  values derived from competitive radio-ligand binding assay (Supplementary Fig. 2).  $1/\tau$  values were calculated to assess the fraction of isoproterenol-bound  $\beta$ 2-AR-Gs fusion, which generates the half maximal cAMP response.

| Variable       | Value   | Source                                            |
|----------------|---------|---------------------------------------------------|
| $E_{max}$      | 100%    | 100 μM Fsk + 100 μM ISO                           |
| $E_{sat}$      | 61.1%   | 100 µM ISO (Fig. 2b)                              |
| K <sub>A</sub> | 97.7 nM | Radio-ligand binding assay (Supplementary Fig. 2) |
| n              | 0.232   |                                                   |
| τ              | 25.7    | Calculated from the operational model of agonism  |
| 1/τ            | 3.9%    |                                                   |