

Supplemental Figure 1

the log phase. The enhancements of Shiga toxin production and RecA expression in the deleted norV-type EHEC are sufficient for exposure to NO at

18 h under anaerobic conditions as a control. After 6 h the cells were washed, and medium was changed to LB broth without an NO donor. EHEC were further incubated for 12 h at 37°C under anaerobic conditions. EHEC EDL933 grown overnight was diluted with LB broth containing DETA-NONOate (DETA/NO) and then grown statically at 37°C for

analyzed by immunoblot analysis using anti-Stx2 antiserum. internal control. Each volume, which corresponds to 0.2 µg of protein of the cell-associated fraction, of the supernatant fraction was protein of the cell-associated fraction was analyzed by immunoblot analysis using anti-RecA antibody and anti-RNA lpha antibody as an analyzed by immunoblot analysis using anti-Stx1 antiserum, anti-RecA antibody and anti-RNA lpha antibody as an internal control. (b) EHEC strains were fractionated into the cell-associated fractions and the culture supernatant fractions. A 0.2 µg sample of each (a) EHEC strains were fractionated into cell-associated fractions. A 0.2 µg sample of each protein of the cell-associated fraction was

Supplemental Figure 2 NO enhances the production of Shiga toxins in the deleted *norV*-type EHEC under anaerobic conditions.

associated fraction (a) and the amount of Stx2 in the supernatant fraction (b) were measured by Gb3-ELISA. The amounts of total proteins in the cell-EHEC EDL933 were cultured in LB medium containing various concentrations of DETA-NONOate (DETA/NO) at 37°C under anaerobic conditions. EHEC strains were fractionated into cell-associated fractions and supernatant fractions at the indicated times. The amount of Stx1 in the cellassociated fraction were determined by Bradford method.

Data are the means \pm standard deviations of values from three experiments. *p < 0.01.

Supplemental Figure 3 NO enhances transcriptions of *stx1*, *stx2* and *recA* in the deleted *norV*-type EHEC under anaerobic conditions.

EHEC reporter strains were cultured in LB medium containing various concentrations of DETA-NONOate (DETA/NO) for 18 h at

37°C under anaerobic conditions.

Relative light units (RLU) and the number of bacteria were measured by a luminometer and bacteria plate counts (cfu), respectively. (a) *stx1*-reporter E1-E2S (pluxCDAB3) treated with or without 400 μM DETA/NO. (b) *stx2*-reporter E(SR)2-E1S (pluxCDAB3) treated with or without 200 μM DETA/NO.

(c) recA-reporter ERSA (pluxCDAB3) treated with or without 400 μ M DETA/NO.

(d) recA-reporter ERSA (pluxCDAB3) treated with or without 200 μM DETA/NO.

Data are the means \pm standard deviations of values from three experiments. *p < 0.01.

Supplemental Figure 4

grown statically for 18 h at 37°C under aerobic conditions. EHEC strains grown overnight were diluted with LB medium containing various concentrations of DETA-NONOate (DETANO) and Role of intact NorV in NO-mediated aerobic growth inhibition and Shiga toxin production in EHEC under aerobic conditions.

experiments. *p < 0.01. (a) The optical density at 600 nm (OD₆₀₀) was determined. Data are the means \pm standard deviations of values from four

control. Each volume, which corresponds to 0.2 µg of protein of the cell-associated fraction, of the supernatant fraction was analyzed significant. by immunoblot analysis using anti-Stx2 antiserum. The relative amounts of Stx1 and Stx2 were quantified by densitometry and the cell-associated fraction was analyzed by immunoblot analysis using anti-Stx1 antiserum and anti-RNA lpha antibody as an internal normalized to internal control RNA α . Data are the means ± standard deviations of values from four experiments. *p < 0.01; N.S. , not (b) EHEC strains were fractionated into culture supernatant fractions and cell-associated fractions. A 0.2 µg sample of each protein of

expression level of *fur* mRNA in the deleted *norV*-type EHEC was analyzed by real-time RT-PCR. Data are the means \pm standard deviations of values from three experiments. Effect of NO on *fur* expression in the deleted *norV*-type EHEC under anaerobic conditions. N.S., not significant. NONOate (DETA/NO) and grown statically for 6 h at 37°C under aerobic conditions. The EHEC strains grown overnight were diluted with LB medium containing 400 μM DETA-

Supplemental Figure 6 Effect of Fur overexpre

Effect of Fur overexpression on NO-enhanced Stx1 production in EHEC under anaerobic conditions. EHEC EDL933 harboring the Fur expression plasmid (pTrcHis2A-fur) or a control plasmid (pTrcHis2A) were cultured in LB medium containing 800 μ M NO donor Spermine NONOate (Sper/NO) with or without 1 mM IPTG for 18 h at 37°C under anaerobic conditions. EHEC strains were fractionated into cell-associated fractions. The samples were analyzed by immunoblot analysis using anti-Stx1 antiserum, anti-His Tag antibody for detection of Fur-His and anti-RNA α antibody as an internal control. The relative amounts of Stx1 were quantified by densitometry and normalized to internal control RNA a. Data are the means \pm standard deviations of values from four experiments. *p < 0.01.

Primer	Sequence	Reference
P16	GTGGCTGGGAAGGTACTCG	Svensson <i>et al.</i> (2010)
P17	AGCCAGACGCCGAGATATTG	Svensson <i>et al</i> . (2010)
P600	GACCGAGGTAGCCAGAATACTGAACTGTAGTCGCAACACGGTCAGAAAATTAACCCTCACTAAAGGGCG	This study
P613	TCTACGAGTTTGCCAGCCTCCCCCAGTGGCTGGCTTTTTTATGTCCGTAATTAACCCTCACTAAAGGGCG	Shimizu <i>et al</i> . (2009)
P628	CCACCCCCTGAAGGACGGCGTTTTACGGCGCACCGGATAAACGTAACTAATACGACTCACTATAGGGCTC	Shimizu <i>et al</i> . (2009)
P715	GGCCATGGCCGCTTAGTAACAGGAC	This study
P724	ATTAACAATATTTGCCAGGGACTTGTGGTTTTCATTTAGGCGTGGCAATTAACCCTCACTAAAGGGCG	This study
P725	ACAAATAAGTGAGAGCTGTAACTCTCGCTTTTCTTATTTCCCTTGCATAATACGACTCACTATAGGGCTC	This study
P845	TACAACTTAAAAAGCAAAAGGGCCGCAGATGCGACCCTTGTGTATCAAATACGACTCACTATAGGGCTC	This study
P846	TCGCTGCGCCGTTTAAA	This study
P890	TGGTTGATGACGAAGAGCTG	Vareille <i>et al</i> . (2007)
P891	GCTCTGGTTCCGGAATGTAA	Vareille <i>et al</i> . (2007)
P1049	CCCAGCTGCCTGTGTATCAATAAATGTT	This study
P1050	GGCCATGGATTACACAATACTCCTTGAG	This study
P1064	GGGTTAAGCAGCGTGGCAATGTAACCACTCTTATCATGATATGCAGAAATACGACTCACTATAGGGCTC	This study
P1077	GGGCGGCCGCGATCAGGTCGCGGTAAT	This study
P1078	GGGCGGCCGCAAGACGATTAAAAATCTTCGTT	This study
P1079	CAATTTTATAAAGGCTCCATCATG	This study
P1080	GCCTTTATAAAATTGTTTCTCAAT	This study
P1081	GGTAAATACTCCATCATGCGCCTG	This study
P1082	GATGGAGTATTTACCAAATTGTTT	This study
P1085	ACCGGCGCGCAGGCACTGGAAATC	This study
P1086	TGCCTGCGCCGGTGTCCGGCTG	This study
P1089	ATGTTCAGTAACCCGGAAACCACT	This study
P1090	CGGGTTACTGAACATCACCAAT	This study
P1093	CGTCTCGCCATCCGTCGTATCGGC	This study
P1094	ACGGATGGCGAGACGAACAGAGGC	This study
P1095	AAAGCATACGCGTGGTACAGCTAC	This study
P1096	CCACGCGTATGCTTTCTCGATCAG	This study
P1100	GCGATCAGGTCGCGGTAAT	This study
P1215	TTTGAATGGAATTATCATTTCATTAC	This study
P1216	ATAATTCCATTCAAAGAGAGCTGCAA	This study
P1243	GTATCGTCACCCGCCACAA	Yang <i>et al.</i> (2015)
P1244	CGCAGTGACCGTAAAGATAGAGA	Yang <i>et al.</i> (2015)
P10011	GGGTCGACTTTGCCTTCGTGCGCGT	This study
P10002	AACAGAACATATTGACTATCCGGTATTACCCGGCATGACAGGAGTAAAATTAACCCTCACTAAAGGGCG	This study

References

Svensson, L., Poljakovic, M., Save, S., Gilberthorpe, N., Schon, T., Strid, S., … Persson, K. (2010). Role of flavohemoglobin in combating nitrosative stress in uropathogenic *Escherichia coli*—implications for urinary tract infection. Microb pathog 49: 59-66.

Yang, B., Feng, L., Wang, F. and Wang, L. (2015). Enterohemorrhagic *Escherichia coli* senses low biotin status in the large intestine for colonization and infection. Nat Commun 6: 6592.

Mutant plasmid	PCR primers	Template plasmid
precAG22Y1	P1079-P1080	pFRT-recA2
precAG24Y1	P1081-P1082	pFRT-recA2
precAE123A3	P1093-P1094	pFRT-recA2
precAG204S3	P1095-P1096	pFRT-recA2
precAD224A1	P1089-P1090	pFRT-recA2
precAG288Y1	P1085-P1086	pFRT-recA2

Supplemental Table S2 Construction of template *recA*-mutated plasmid

Supplemental Table S3 Construction of isogenic mutant strains

Mutant strain	PCR primers	Template plasmid	Parent strain	Target locus	Kan cassette
ERSA	P845-P846	pLCE19	EDL933	downstream of <i>recA</i>	Ι
E1Q1	P1064-P600	pFRT-kan	EDL933	Q of Stx1-phage	I
EDLf	P724-P725	pFRT-kan	EDL933	fur	I
ERA1-1	P10002-P845	pFRT-Kan	EDL933	recA	I
EP	P613-P628	pFRT-Kan	EDL933	<i>stx1</i> promotor	I
ERG22Y	P1100-P845	precAG22Y1	ERA1-1	recA	I
ERG24Y	P1100-P845	precAG24Y1	ERA1-1	recA	I
ERE123A	P1100-P845	precAG288Y1	ERA1-1	recA	I
ERG204S	P1100-P845	precAD224A1	ERA1-1	recA	I
ERD224A	P1100-P845	precAE123A3	ERA1-1	recA	I
ERG288Y	P1100-P845	precAG204S3	ERA1-1	recA	I

mutant <i>recA</i> EH	EC strains							
	UV	Recombination	Rec	A	LexA	UmuD	Stx2	NO
	sensitivity ^a	activity ^a	upre	gulation ^{a, b}	cleavage ^a	cleavage ^a	expression ^b	response ^b
			а	b				
Wild	I	++++	+	+	+	+	+	+
G22Y	++	+	+	I	I	+	+	I
G24Y	I	+	+	+	+	+	+	+
E123A	+++++++++++++++++++++++++++++++++++++++	I	I	I	I		I	I
G204S	+++	++++	I	I	I	I	I	I
D224A	++++	I	I	I	I		I	I
G288Y	I	+	+	+	+		+	+
^a These results were	reported from Adikesava	an et al using <i>recA</i> -defici	ent E. co	oli strains harbor	ing mutant RecA	expression plasmid	l (Adikesavan et al., 201	1). UV sensitivity and
recombination activ	ity were estimated by U	V survival assay and P-1	transdu	ction assay, respo	ectively (Adikesav	'an et al., 2011). Ro	ecA upregulation, LexA	cleavage induction and
UmuD cleavage ind	uction were analyzed by	Western blotting (Adike	savan e	t al., 2011). The	cultures of RecA-	wild type or mutan	t E. coli strains were ad	ded nalidixic acid (100
μ g/ml) and then inc	ubated for 60 min at 37°C	C (Adikesavan et al., 201	1).					
	• •• • • • • •	•						

Table S4 Summary of the phenotypes observed for RecA variants in recA-deficient E. coli harboring mutant RecA expression plasmid and isogenic

Stx2 production were analyzed by Western blotting. The cultures of wild-typeEHEC or mutant EHEC strains were treated with or without DETA-NONOate (200 µM) and then ^bThese results were indicated in this study using isogenic mutant recA EHEC strains (ERG22Y, ERG24Y, ERE123A, ERG204S, ERD224A and ERG288Y). RecA upregulation and

incubated for 18 h at 37°C under anaerobic conditions.