Table of Contents

1. General Information	S2
2. Experimental Section	S 3
2.1 Evaluation of Directing Groups for meta-Arylation of Benzylsulfonamides	S 3
2.2 Optimization of Reaction Conditions	S4
2.3 General Procedure for Synthesis of of Benzylsulfonamide Substrates	S7
2.4 General Procedure for the meta-C-H Arylation/Alkylation of Benzylsulfonamides	S11
2.5 Procedure for Gram-Scale Arylation of 1k	S26
2.6 Procedure for Synthesis of 9	S27
2.7 Procedure for Synthesis of 10	S28
2.8 Procedure for Synthesis of 11 and 12	S29
2.9 Procedure for Synthesis of 13	S 30
2.10 Procedure for Synthesis of 14	S 31
3. Reference	S32
4. NMR Spectra	S33

1. General Information

Solvents and chemicals were obtained from Sigma-Aldrich, Acros and Alfa Aesar and used directly without further purification. 2-Carbomethoxynorbornene (NBE-CO₂Me) was synthesized following the known procedure.¹ Analytical thin layer chromatography was performed on 0.25 mm silica gel 60-F254. Visualization was carried out with UV light and Vogel's permanganate. Preparative TLC was performed on 1.0 mm silica gel (Analtech). NMR spectra were recorded on a Varian Inova 400 instrument (400 MHz for ¹H; 100 MHz for ¹³C), Bruker DRX-500 instrument (500 MHz for ¹H; 125 MHz for ¹³C), Bruker DRX-600 instrument (600 MHz for ¹H; 150 MHz for ¹³C). Chemical shifts were quoted in parts per million (ppm) referenced to 0.0 ppm for tetramethylsilane. The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. Coupling constants, J, were reported in Hertz unit (Hz). Chemical shifts were reported to the center line at 77.0 ppm of chloroform-d, 29.84 ppm of acetone-d⁶, 49.0 ppm of methanol-d⁴ or 39.52 ppm of DMSO-d⁶. High-resolution mass spectra (HRMS) were recorded on an Agilent Mass spectrometer using ESI-TOF (electrospray ionization-time of flight).

2. Experimental Section

2.1 Evaluation of Directing Groups for meta-Arylation of Benzylsulfonamides

\sim		Pd(O pyrid	Ac) ₂ (10 ine (20) mol%) mol%)		· `	. _c _NHR
	ý ``o +	NBE-C	O ₂ Me(1.5 equiv)	j o t	d d	ÿ``o
1	 Me 2a (3.0 e	AgO Dependent AgO AgO AgO AgO AgO AgO AgO AgO AgO AgO	Ac (3.0 CE (0.1	equiv) I M) 24 b	Ar' 8 _{mono}	Ar' 8 _{di}	
		vield (^{w)b}	24 11	Ar' = 4-MeC	₆ H ₄ vield (%) ^b
entry	R	mono	di	entry	R	mono	di
1	н	0	0	7	$4-FC_6H_4$	13	< 5
2	Ме	0	0	8	$4-NO_2C_6H_4$	9	< 5
3	<i>i</i> -Pr	0	0	9	$4-CF_3C_6H_4$	15	< 5
4	<i>t</i> -Bu	0	0	10	C_6F_5	0	0
5	Ph	0	0	11	3,5-diNO ₂ C ₆ H ₃	23	9
6	4-MeC ₆ H ₄	0	0	12	3,5-diCF ₃ C ₆ H ₃	34	16

^aReaction conditions: substrates **1** (0.1 mmol), **2a** (3.0 equiv), $Pd(OAc)_2$ (10 mol %), pyridine (20 mol%), NBE-CO₂Me (1.5 equiv), AgOAc (3.0 equiv), DCE (1.0 mL), 100 °C, 24 h. ^bThe yields were determined by ¹H NMR analysis of the crude products using CH₂Br₂ as the internal standard.

2.2 Optimization Reaction Conditions

Solvent Screening ^a Me S NHAr O O O $O1aAr = 3,5-diCF3C6H3$	+ Pd(OAc) ₂ (10 r pyridine (20 n NBE-CO ₂ Me (1. AgOAc (3.0 e solvent (0.1 100 °C, 24	mol%) nol%) 5 equiv) equiv) I M) 4 h $Ar' = 4-MeC_6H_4$
entry	solvent	yield of (%) ^b
1	TBME	24
2	1,4-dioxane	25
3	toluene	10
4	DMF	0
5	DMSO	0
6	CH ₃ CN	0
7	CH ₂ Cl ₂	21
8	CHCl ₃	37
9	CICH ₂ CH ₂ CI	42
10	HFIP	0
11	t-Amy-OH	0

^aReaction conditions: **1a** (0.1 mmol), **2a** (3.0 equiv), Pd(OAc)₂ (10 mol %), pyridine (20 mol%), NBE-CO₂Me (1.5 equiv), AgOAc (3.0 equiv), solvent (1 mL), 100 °C, 24 h. ^bThe yields were determined by ¹H NMR analysis of the crude products using CH₂Br₂ as the internal standard.

Ligand Evaluation^a

^aReaction conditions: **1a** (0.1 mmol), **2a** (3.0 equiv), Pd(OAc)₂ (10 mol %), ligand (20 mol%), NBE-CO₂Me (1.5 equiv), AgOAc (3.0 equiv), DCE (1 mL), 100 ^oC, 24 h. ^bThe yields were determined by ¹H NMR analysis of the crude products using CH₂Br₂ as the internal standard.

Control experiments

		Pd(OAc) ₂ (10 mol%) isoquinoline (20 mol%)	
0'0	+ Me	NBE-CO ₂ Me (1.5 equiv) AgOAc (3.0 equiv)	Ar'
1a	2a (3.0 equiv)	DCE (0.1 M)	3a
$Ar = 3,5 - diCF_3C_6H_3$		100 °C, 24 h	$Ar' = 4-MeC_6H_4$
entry	deviation from standard conditions		yield of (%) ^b
1	nor	94	
2	2.0 equi	89	
3	without	<5	
4	CsOAc ir	12	
5	2.0 equiv 2a		87
6	1.0 equiv	90	
7	norbornene ins	31	
8	11(93	
9	90	91	
10	5 mol% Pd(OAc)	77	

^aReaction conditions: **1a** (0.1 mmol), **2a** (3.0 equiv), $Pd(OAc)_2$ (10 mol %), isoquinoline (20 mol%), NBE-CO₂Me (1.5 equiv), AgOAc (3.0 equiv), DCE (1 mL), 100 °C, 24 h. ^bThe yields were determined by ¹H NMR analysis of the crude products using CH_2Br_2 as the internal standard.

2.3 General Procedure for Synthesis of Benzylsulfonamide Substrates.

General procedure for synthesis of benzylsulfonamide:² benzylsulfonyl chloride (1.0 mmol) was added to a solution of aniline (1.5 mmol) and Et_3N (151.5 mg, 1.5 mmol) in dry dichloromethane (5.0 mL) at room temperature. Then, the solution was stirred for 12 hours. After the reaction finished, the organic layer was washed with saturated aqueous sodium bicarbonate (10.0 mL), dried over sodium sulfate, filtered and concentrated. The residue was purified by column chromatography (ethyl acetate/hexane = 1/4) to yield the desired benzylsulfonamindes.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(*m*-tolyl)methanesulfonamide (1a)

1a was obtained as white solid (361.3 mg, 91%);¹H NMR (500 MHz, CDCl₃) δ 7.56 (s, 1H), 7.38 (s, 2H), 7.23 (s, 1H), 7.19–7.10 (m, 2H), 7.06–7.01 (m, 2H), 4.36 (s, 2H), 2.23 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 139.10, 139.03, 132.78 (q, *J* = 33.7 Hz), 131.40, 130.28, 128.99, 127.87, 127.12, 122.76 (q, *J* = 273.0 Hz), 118.87 (q, *J* = 3.2 Hz), 117.91–117.68 (m), 59.53, 20.95; HRMS (ESI-TOF) Calcd for C₁₆H₁₂F₆NO₂S⁻[M-H]⁻: 396.0498; found: 396.0500.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(3-methoxyphenyl)methanesulfonamide (1b)

1b was obtained as white solid (392.6 mg, 95%); ¹H NMR (600 MHz, CDCl₃) δ 7.57 (s, 1H), 7.38 (s, 2H), 7.24–7.20 (m, 1H), 6.89–6.86 (m, 1H), 6.82–6.79 (m, 2H), 6.74 (s, 1H), 4.39 (s, 2H), 3.74 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 160.03, 138.84, 132.84 (q, *J* = 33.9 Hz), 130.16, 128.71, 122.94, 122.73 (q, *J* = 272.9 Hz), 119.10 (q, *J* = 3.3 Hz, 2H), 118.10–117.84 (m), 116.42, 114.88, 59.53, 55.19; HRMS (ESI-TOF) Calcd for C₁₆H₁₂F₆NO₃S⁻[M-H]⁻: 412.0448; found: 412.0448.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(3-fluorophenyl)methanesulfonamide (1c)

1c was obtained as white solid (341.0 mg, 85%);¹H NMR (400 MHz, CDCl₃) δ 7.60 (s, 1H), 7.41 (s, 2H), 7.33–7.26 (m, 1H), 7.10–7.00 (m, 4H), 4.42 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 162.77 (d, J = 248.8 Hz), 138.63, 132.96 (q, J = 33.9 Hz), 130.71 (d, J = 8.4 Hz), 129.53 (d, J = 7.8 Hz), 126.53 (d, J = 3.1 Hz), 122.67 (q, J = 273.0 Hz), 119.05 (q, J = 3.1 Hz), 118.25–118.02 (m), 117.83 (d, J = 22.3 Hz), 116.67 (d, J = 20.9 Hz), 58.98; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.41, -111.57; HRMS (ESI-TOF) Calcd for C₁₅H₉F₇NO₂S⁻[M-H]⁻: 400.0248; found: 400.0249.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(3-chlorophenyl)methanesulfonamide (1d)

1d was obtained as white solid (380.1 mg, 91%); ¹H NMR (400 MHz, CDCl₃) δ 9.52 (s, 1H), 7.80 (s, 2H), 7.67 (s, 1H), 7.41 (s, 1H), 7.37–7.28 (m, 3H), 4.72 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 139.13, 134.90, 132.79 (q, J = 33.6 Hz), 130.88, 130.22, 129.54, 129.38, 129.02, 122.75 (q, J = 273.1 Hz), 118.98 (q, J = 3.2 Hz), 117.99–117.77 (m), 58.97; HRMS (ESI-TOF) Calcd for C₁₅H₉ClF₆NO₂S⁻[M-H]⁻: 415.9952; found: 415.9951.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(3-bromophenyl)methanesulfonamide (1e)

1e was obtained as white solid (315.9 mg, 90%); ¹H NMR (600 MHz, CDCl₃) δ 7.60 (s, 1H), 7.50–7.44 (m, 3H), 7.40 (s, 1H), 7.25–7.18 (m, 3H), 4.39 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 138.77, 133.70, 133.01 (q, *J* = 33.9 Hz), 132.62, 130.56, 129.60, 129.44, 122.97, 122.70 (q, *J* = 273.0 Hz), 119.03 (q, *J* = 3.1 Hz), 118.42–117.99 (m), 58.81; HRMS (ESI-TOF) Calcd for C₁₅H₉BrF₆NO₂S⁻[M-H]⁻: 459.9447; found: 459.9450.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(3-(trifluoromethyl)phenyl)methanesulfonamide (1f)

If was obtained as white solid (392.6 mg, 87%); ¹H NMR (400 MHz, CDCl₃) δ 7.66–7.57 (m, 2H), 7.56–7.44 (m, 3H), 7.41 (s, 2H), 7.07 (s, 1H), 4.49 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 138.55, 134.23, 133.09 (q, J = 33.9 Hz), 131.65 (q, J = 32.9 Hz), 129.73, 128.57, 127.45 (q, J = 3.5 Hz), 126.34 (q, J = 3.5 Hz), 123.33 (q, J = 272.6 Hz), 122.61 (q, J = 272.9 Hz), 118.79 (q, J = 3.3 Hz), 118.43–118.08 (m), 58.93; ¹⁹F NMR (376 MHz, CDCl₃) δ - 63.35, -63.49; HRMS (ESI-TOF) Calcd for C₁₆H₉F₉NO₂S⁻[M-H]⁻: 450.0216; found: 450.0218.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(o-tolyl)methanesulfonamide (1g)

1g was obtained as white solid (349.3 mg, 88%); ¹H NMR (400 MHz, Acetone-d⁶) δ 9.42 (s, 1H), 7.74 (s, 2H), 7.64 (s, 1H), 7.27 (d, *J* = 7.5 Hz, 1H), 7.22–7.13 (m, 2H), 7.13–7.05 (m, 1H), 4.71 (s, 2H), 2.41 (s, 3H); ¹³C NMR (125 MHz, Acetone-d⁶) δ 141.93, 139.39, 133.20, 132.88 (q, *J* = 33.3 Hz), 131.55, 129.89, 128.04, 124.19 (q, *J* = 272.2 Hz) 127.14–126.79 (m), 119.03 (q, *J* = 3.7 Hz), 117.30–116.97 (m), 57.56, 19.64; HRMS (ESI-TOF) Calcd for C₁₆H₁₂F₆NO₂S⁻[M-H]⁻: 396.0498; found: 396.0501.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(2-bromophenyl)methanesulfonamide (1h)

1h was obtained as white solid (383.6 mg, 83%);¹H NMR (400 MHz, Acetone-d⁶) δ 7.78 (s, 2H), 7.66–7.58 (m, 2H), 7.50 (d, J = 8.0 Hz, 1H), 7.36 (t, J = 7.4 Hz, 1H), 7.33–7.13 (m, 2H), 4.87 (s, 2H); ¹³C NMR (100 MHz, Acetone-d⁶) δ 141.56, 134.37, 133.93, 132.73 (q, J = 33.3 Hz), 131.66, 129.51, 128.76, 126.23, 124.14 (q, J = 272.1 Hz), 118.84 (q, J = 3.3 Hz), 117.29–116.96 (m), 59.43; HRMS (ESI-TOF) Calcd for C₁₅H₉BrF₆NO₂S⁻[M-H]⁻: 459.9447; found: 459.9447.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(2-fluorophenyl)methanesulfonamide (1i)

1i was obtained as white solid (333.0 mg, 83%);¹H NMR (400 MHz, CDCl₃) δ 7.55 (s, 1H), 7.46–7.37 (m, 3H), 7.34–7.26 (m, 1H), 7.13 (t, *J* = 7.5 Hz, 1H), 7.04 (s, 1H), 6.94 (t, *J* = 9.1 Hz, 1H), 4.52 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 160.99 (d, *J* = 249.3 Hz), 138.67, 132.69 (q, *J* = 33.8 Hz), 132.68 (d, *J* = 2.5 Hz), 131.75 (d, *J* = 8.4 Hz), 124.86 (d, *J* = 3.6 Hz), 122.73 (q, *J* = 273.0 Hz), 118.74 (q, *J* = 3.1 Hz), 118.02–117.80 (m), 115.76 (d, *J* = 21.3 Hz), 115.07 (d, *J* = 14.5 Hz), 52.67 (d, *J* = 2.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -63.39, -116.95; HRMS (ESI-TOF) Calcd for C₁₅H₉F₇NO₂S⁻[M-H]⁻: 400.0248; found: 400.0251.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(2-(trifluoromethyl)phenyl)methanesulfonamide (1j)

1j was obtained as white solid (383.6 mg, 85%); ¹H NMR (400 MHz, Acetone-*d*₆) δ 9.64 (s, 1H), 7.83–7.76 (m, 3H), 7.76–7.61 (m, 3H), 7.57 (t, *J* = 7.6 Hz, 1H), 4.88 (s, 2H); ¹³C NMR (100 MHz, Acetone-d⁶) δ 141.50, 134.84, 133.21 (d, *J* = 0.9 Hz), 132.97 (q, *J* = 33.3 Hz), 130.30, 130.25 (q, *J* = 30.0 Hz), 127.84–127.69 (m), 127.47 (q, *J* = 5.5 Hz), 125.10 (q, *J* = 273.6 Hz), 124.13 (q, *J* = 272.2 Hz), 119.39 (q, *J* = 3.5 Hz), 117.90–117.12 (m), 56.46; ¹⁹F NMR (376 MHz, Acetone-d⁶) δ -58.73, -63.99; HRMS (ESI-TOF) Calcd for C₁₆H₉F₉NO₂S⁻[M-H]⁻: 450.0216; found: 450.0218.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-phenylmethanesulfonamide (1k)

1k was obtained as white solid (367.1 mg, 96%); ¹H NMR (500 MHz, CDCl₃) δ 7.56 (s, 1H), 7.37 (s, 2H), 7.35–7.27 (m, 4H), 7.26–7.23 (m, 2H), 4.41 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 138.89, 132.80 (q, *J* = 33.7 Hz),

130.81, 129.56, 129.10, 127.28, 122.74 (q, J = 272.9 Hz), 118.93 (q, J = 3.2 Hz), 117.92–117.76 (m), 59.56; HRMS (ESI-TOF) Calcd for C₁₅H₁₀F₆NO₂S⁻[M-H]⁻: 382.0342; found: 382.0341.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(4-fluorophenyl)methanesulfonamide (11)

11 was obtained as white solid (361.0 mg, 90%); ¹H NMR (400 MHz, CDCl₃) δ 7.60 (s, 1H), 7.38 (s, 2H), 7.29–7.22 (m, J = 8.4, 5.4 Hz, 2H), 7.02 (t, J = 8.5 Hz, 2H), 6.89 (s, 1H), 4.41 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 163.39 (d, J = 250.7 Hz), 138.65, 132.97 (q, J = 33.9 Hz), 132.66 (d, J = 8.5 Hz), 123.30 (d, J = 3.3 Hz), 122.67 (q, J = 272.9 Hz), 119.00 (q, J = 3.4 Hz), 118.22–117.91 (m), 116.27 (d, J = 21.9 Hz), 58.69; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.44, -111.26; HRMS (ESI-TOF) Calcd for C₁₅H₉F₇NO₂S⁻[M-H]⁻: 400.0248; found: 400.0248.

1m

N-(4-fluorophenyl)-1-phenylmethanesulfonamide (1m)

1m was obtained as colorless crystal (238.5 mg, 90%); ¹H NMR (400 MHz, CDCl₃) δ 7.41–7.33 (m, 3H), 7.32–7.26 (m, 2H), 7.14–7.07 (m, 2H), 7.07–7.00 (m, 2H), 6.28 (s, 1H), 4.30 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 160.09 (d, *J* = 244.8 Hz), 132.72 (d, *J* = 2.7 Hz), 130.76, 128.97, 128.85, 128.28, 122.53 (d, *J* = 8.0 Hz), 116.25 (d, *J* = 22.9 Hz), 57.55; HRMS (ESI-TOF) Calcd for C₁₃H₁₁FNO₂S⁻[M-H]⁻: 264.0500; found264.0503.

1-Phenyl-N-(4-(trifluoromethyl)phenyl)methanesulfonamide (1n)

1n was obtained as colorless crystal (293.2 mg, 93%); ¹H NMR (500 MHz, CDCl₃) δ 7.55 (d, *J* = 8.5 Hz, 2H), 7.36–7.27 (m, 3H), 7.36–7.27 (m, 5H), 4.34 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 140.38, 130.78, 129.19, 128.94, 127.90, 126.79 (q, *J* = 3.7 Hz), 126.35 (q, *J* = 32.9 Hz), 123.92 (q, *J* = 271.6 Hz), 118.56, 58.20; HRMS (ESI-TOF) Calcd for C₁₄H₁₁F₃NO₂S⁻[M-H]⁻: 314.0468; found: 314.0469.

N-(3,5-Dinitrophenyl)-1-phenylmethanesulfonamide (10)

10 was obtained as yellow powder (300.0 mg, 89%);¹H NMR (500 MHz, DMSO-d⁶) δ 10.94 (s, 1H), 8.41 (t, J = 2.0 Hz, 1H), 8.16 (d, J = 2.0 Hz, 2H), 7.35–7.22 (m, 5H), 4.74 (s, 2H); ¹³C NMR (125 MHz, DMSO-d⁶) δ 148.39, 141.27, 131.17, 128.59, 128.49, 117.29, 111.79, 58.29; HRMS (ESI-TOF) Calcd for C₁₃H₁₀N₃O₆S⁻[M-H]⁻: 336.0296; found: 336.0301.

2.4 General Procedure for the *meta*-C-H Arylation/Alkylation of Benzylsulfonamides.

To a 10 mL sealed tube were added substrate **1a** (38.4 mg, 0.1 mmol), Pd(OAc)₂ (2.2 mg, 0.01 mmol), and AgOAc (50.0 mg, 0.3 mmol), isoquinoline (2.6 mg, 0.02 mmol, 2.4 μ L), NBE-CO₂Me (22.8 mg, 0.15 mmol), aryl halide **2a-t** (0.3 mmol), and DCE (1.0 mL). The reaction mixture was heated to 100 °C for 24 hours under vigorous stirring. Upon completion, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, and filtered through a pad of Celite. The filtrate was concentrated under vacuum, and the resulting residue was purified by preparative TLC using an eluent of ethyl acetate/hexanes (1/4) to give the desired products **3a-t**.

All remaining products 4a-h, 5a-l, and 7a-h were prepared using a procedure similar to that used to synthesize 3a-t.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(4',5-dimethyl-[1,1'-biphenyl]-3-yl)methanesulfonamide (3a)

3a was obtained as white solid (43.8 mg, 90%); ¹H NMR (500 MHz, CDCl₃) δ 7.51 (s, 1H), 7.38 (s, 2H), 7.34 (s, 1H), 7.26 (d, *J* = 8.0 Hz, 2H), 7.22 (s, 1H), 7.19 (s, 1H), 7.15 (d, *J* = 7.9 Hz, 2H), 6.93 (s, 1H), 4.38 (s, 2H), 2.35 (s, 3H), 2.29 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 142.19, 139.48, 139.09, 137.56, 136.82, 132.80 (q, *J* = 33.7 Hz), 129.93, 129.48, 128.77, 127.66, 126.68, 126.43, 122.72 (q, *J* = 273.1 Hz), 118.54 (q, *J* = 3.2 Hz), 117.81–117.60 (m), 59.26, 21.06, 21.00; HRMS (ESI-TOF) Calcd for C₂₃H₁₈F₆NO₂S⁻[M-H]⁻: 486.0968; found: 486.0972.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(5-methyl-[1,1':4',1''-terphenyl]-3-yl)methanesulfonamide (3b)

3b was obtained as white solid (48.3 mg, 88%); ¹H NMR (400 MHz, CDCl₃) δ 7.62–7.55 (m, 4H), 7.51 (s, 1H), 7.47–7.42 (m, 4H), 7.42–7.33 (m, 4H), 7.27–7.23 (m, 2H), 6.98 (s, 1H), 4.41 (s, 2H), 2.31 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 141.74, 140.57, 140.44, 139.64, 139.04, 138.56, 132.83 (q, *J* = 33.7 Hz), 130.29, 128.87, 128.82, 127.77), 127.48, 127.46, 127.21, 127.00, 126.53, 122.70 (q, *J* = 273.1 Hz), 118.55 (q, *J* = 3.2 Hz), 117.85–117.74 (m), 59.29, 21.11; HRMS (ESI-TOF) Calcd for C₂₈H₂₀F₆NO₂S⁻[M-H]⁻: 548.1124; found: 548.1125.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(4'-methoxy-5-methyl-[1,1'-biphenyl]-3-yl)methanesulfonamide (3c)

3c was obtained as white solid (35.7 mg, 71%); ¹H NMR (400 MHz, CDCl₃) δ 7.52 (s, 1H), 7.38 (s, 2H), 7.34–7.28 (m, 3H), 7.17 (s, 2H), 6.91 (s, 1H), 6.88 (d, *J* = 8.6 Hz, 2H), 4.38 (s, 2H), 3.82 (s, 3H), 2.29 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 159.45, 141.87, 139.48, 139.03, 132.83 (q, *J* = 33.6 Hz), 132.23 129.61, 128.56, 127.93, 127.69, 126.18, 122.71 (q, *J* = 273.1 Hz), 118.66 (q, *J* = 3.0 Hz), 117.92–117.75 (m), 114.22, 59.33, 55.30, 21.10; HRMS (ESI-TOF) Calcd for C₂₃H₁₈F₆NO₃S⁻[M-H]⁻: 502.0917; found: 502.0917.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(5-methyl-[1,1'-biphenyl]-3-yl)methanesulfonamide (3d)

3d was obtained as white solid (43.0 mg, 91%); ¹H NMR (400 MHz, CDCl₃) δ 7.52 (s, 1H), 7.41–7.28 (m, 8H), 7.22 (s, 1H), 7.10 (s, 1H), 6.98 (s, 1H), 4.41 (s, 2H), 2.31 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 142.30, 139.74, 139.56, 139.01, 132.85 (q, *J* = 33.8 Hz), 130.22, 129.04, 128.78, 127.74), 127.72, 126.88, 126.64, 122.70 (q, *J* = 273.1 Hz), 118.62 (q, *J* = 3.2 Hz), 117.90–117.78 (m), 59.31, 21.09; HRMS (ESI-TOF) Calcd for C₂₂H₁₆F₆NO₂S⁻[M-H]⁻: 472.0811; found: 472.0814.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(5-methyl-4'-(trifluoromethoxy)-[1,1'-biphenyl]-3-yl)methane-sulfonamide (3e)

3e was obtained as white solid (29.0 mg, 52%); ¹H NMR (400 MHz, CDCl₃) δ 7.52 (s, 1H), 7.41–7.34 (m, 4H), 7.32 (s, 1H), 7.23–7.11 (m, 4H), 7.00 (s, 1H), 4.41 (s, 2H), 2.31 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 148.90, 140.86, 139.83, 139.01, 138.41, 132.87 (q, *J* = 33.7 Hz), 130.60, 128.97, 128.20, 127.86, 126.60, 122.64 (q, *J* = 273.0 Hz), 121.21, 120.61 (q, *J* = 204.1 Hz), 118.42 (q, *J* = 3.3 Hz), 117.88–117.69 (m), 59.18, 21.05; ¹⁹F NMR (376 MHz, CDCl₃) δ -58.21, -63.44; HRMS (ESI-TOF) Calcd for C₂₃H₁₅F₉NO₃S⁻[M-H]⁻: 556.0634; found: 556.0638.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(4'-fluoro-5-methyl-[1,1'-biphenyl]-3-yl)methanesulfonamide (3f)

3f was obtained as white solid (40.3 mg, 82%); ¹H NMR (600 MHz, CDCl₃) δ 7.54 (s, 1H), 7.40–7.35 (m, 4H), 7.33 (s, 1H), 7.20 (s, 1H), 7.10–7.05 (m,2H), 7.01 (s, 1H), 6.86 (s, 1H), 4.43 (s, 2H), 2.34 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 162.69 (d, *J* = 247.4 Hz), 141.30, 139.65, 138.99, 135.94, 132.88 (q, *J* = 33.8 Hz), 130.26, 128.90, 128.54 (d, *J* = 8.1 Hz), 127.94, 126.53, 122.68 (q, *J* = 273.4 Hz), 118.80 (q, *J* = 3.2 Hz), 117.98–117.84 (m), 59.40, 21.11; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.36, -115.15; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.36, -115.15; HRMS (ESI-TOF) Calcd for C₂₂H₁₅F₇NO₂S⁻[M-H]⁻: 490.0717; found: 490.0720.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(4'-chloro-5-methyl-[1,1'-biphenyl]-3-yl)methanesulfonamide (3g)

3g was obtained as white solid (46.1 mg, 91%); ¹H NMR (400 MHz, CDCl₃) δ 7.55 (s, 1H), 7.40–7.32 (m, 7H), 7.22 (s, 1H), 7.03 (s, 1H), 6.74 (s, 1H), 4.44 (s, 2H), 2.34 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 141.04, 139.77, 139.03, 138.15, 133.89, 132.87 (q, *J* = 33.7 Hz), 130.52, 128.93, 128.83, 128.09, 127.85, 126.46, 122.68 (q, *J* = 273.1 Hz), 118.48 (q, *J* = 3.3 Hz), 117.87–117.73 (m), 59.26, 21.04; HRMS (ESI-TOF) Calcd for C₂₂H₁₅ClF₆NO₂S⁻[M-H]⁻: 506.0422; found: 506.0422.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(4'-bromo-5-methyl-[1,1'-biphenyl]-3-yl)methanesulfonamide (3h)

3h was obtained as white solid (50.2 mg, 91%); ¹H NMR (400 MHz, CDCl₃) δ 7.55 (s, 1H), 7.50 (d, J = 8.4 Hz, 2H), 7.37 (s, 2H), 7.33 (s, 1H), 7.27 (d, J = 8.4 Hz, 2H), 7.21 (s, 1H), 7.01 (s, 1H), 6.85 (s, 1H), 4.43 (s, 2H), 2.33 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 141.05, 139.75, 139.07, 138.69, 132.86 (q, J = 33.8 Hz), 131.91, 130.61, 128.76, 128.46, 128.00, 126.44, 122.69 (q, J = 273.0 Hz), 122.07, 118.62 (q, J = 3.3 Hz), 117.92–117.71 (m), 59.31, 21.07; HRMS (ESI-TOF) Calcd for C₂₂H₁₅BrF₆NO₂S⁻[M-H]⁻: 549.9917; found: 549.9919.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(4'-iodo-5-methyl-[1,1'-biphenyl]-3-yl)methanesulfonamide (3i)

3i was obtained as white solid (43.1 mg, 72%); ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.2 Hz, 2H), 7.54 (s, 1H), 7.37 (s, 2H), 7.32 (s, 1H), 7.20 (s, 1H), 7.13 (d, *J* = 8.2 Hz, 2H), 7.02 (s, 1H), 7.00 (s, 1H), 4.41 (s, 2H), 2.32 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 141.15, 139.79, 139.26, 138.95, 137.90, 132.89 (q, *J* = 33.8 Hz), 130.63,

128.75, 128.68, 127.96, 126.38, 122.67 (q, J = 273.2 Hz), 118.64 (q, J = 3.3 Hz), 117.97–117.83 (m), 93.60, 59.30, 21.08; HRMS (ESI-TOF) Calcd for C₂₂H₁₅F₆INO₂S⁻[M-H]⁻: 597.9778; found: 597.9778.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(5-methyl-4'-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)methane-sulfonamide (3j)

3j was obtained as white solid (50.9 mg, 94%); ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 8.2 Hz, 2H), 7.51 (s, 1H), 7.46 (d, J = 8.2 Hz, 2H), 7.37 (s, 2H), 7.36 (s, 1H), 7.28 (s, 1H), 7.22 (s, 1H), 7.01 (s, 1H), 4.42 (s, 2H), 2.31 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 143.18, 140.81, 139.98, 138.97, 132.92 (q, J = 33.7 Hz), 131.08, 129.78 (q, J = 32.5 Hz), 129.14, 127.97, 127.15, 126.77, 125.70 (q, J = 3.5 Hz), 124.08 (q, J = 272.0 Hz,), 122.64 (q, J = 273.0 Hz), 118.38 (q, J = 3.1 Hz), 117.91–117.76 (m), 59.17, 21.05; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.92, -63.41; HRMS (ESI-TOF) Calcd for C₂₃H₁₅F₉NO₂S⁻[M-H]⁻: 540.0685; found: 540.0686.

Methyl 3'-((*N*-(3,5-bis(trifluoromethyl)phenyl)sulfamoyl)methyl)-5'-methyl-[1,1'-biphenyl]-4-carboxylate (3k)

3k was obtained as white solid (46.2 mg, 87%); ¹H NMR (400 MHz, Acetone-d⁶) δ 9.39 (brs, 1H), 8.05 (d, *J* = 8.2 Hz, 2H), 7.75 (s, 2H), 7.64 (d, *J* = 8.2 Hz, 2H), 7.62 (s, 1H), 7.49 (s, 2H), 7.24 (s, 1H), 4.73 (s, 2H), 3.91 (s, 3H), 2.34 (s, 3H); ¹³C NMR (100 MHz, Acetone-d⁶) δ 167.00, 145.46, 142.10, 140.89, 139.95, 132.83 (q, *J* = 33.3 Hz), 132.57, 130.71, 130.54, 130.15, 128.97, 128.09, 127.70, 124.12 (q, *J* = 272.2 Hz), 119.07 (q, *J* = 3.3 Hz), 117.16 (m), 59.65, 52.37), 21.14; HRMS (ESI-TOF) Calcd for C₂₄H₂₀F₆NO₄S[M+H]⁺: 532.1012; found: 532.1016.

1-(4'-Acetyl-5-methyl-[1,1'-biphenyl]-3-yl)-*N*-(3,5-bis(trifluoromethyl)phenyl)methanesulfonamide (3)

31 was obtained as white solid (41.7 mg, 81%); ¹H NMR (400 MHz, Acetone-d⁶) δ 9.40 (s, 1H), 8.04 (d, *J* = 8.3 Hz, 2H), 7.75 (s, 2H), 7.65 (d, *J* = 8.3 Hz, 2H), 7.62 (s, 1H), 7.50 (s, 2H), 7.23 (s, 1H), 4.73 (s, 2H), 2.61 (s, 3H), 2.34 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 197.49, 145.31, 142.11, 140.96, 139.94, 137.18, 132.83 (q, *J* = 33.3 Hz), 132.55, 130.53, 129.71–129.58 (m), 128.96, 128.12, 127.74, 124.13 (q, *J* = 272.1 Hz), 119.05, 117.25, 59.68, 26.72, 21.14; HRMS (ESI-TOF) Calcd for C₂₄H₂₀F₆NO₃S[M+H]⁺: 516.1063; found: 516.1064.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(5-methyl-4'-nitro-[1,1'-biphenyl]-3-yl)methanesulfonamide (3m)

3m was obtained as white solid (42.5 mg, 82%); ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 8.7 Hz, 2H), 7.56 (d, *J* = 8.7 Hz, 2H), 7.54 (s, 1H), 7.39 (s, 3H), 7.30 (s, 1H), 7.10 (s, 1H), 7.04 (s, 1H), 4.47 (s, 2H), 2.35 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 147.28, 146.15, 140.14, 139.78, 138.94, 132.90 (q, *J* = 33.7 Hz), 131.83, 129.20, 128.31, 127.67, 126.88, 124.09, 122.62 (q, *J* = 273.0 Hz), 118.64 (q, *J* = 3.2 Hz), 118.00–117.86 (m), 59.30, 21.08; HRMS (ESI-TOF) Calcd for C₂₂H₁₅F₆N₂O₄S⁻[M-H]⁻: 517.0662; found: 517.0664.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(3',5-dimethyl-[1,1'-biphenyl]-3-yl)methanesulfonamide (3n)

3n was obtained as white solid (45.3 mg, 92%); ¹H NMR (400 MHz, CDCl₃) δ 7.51 (s, 1H), 7.37 (s, 2H), 7.34 (s, 1H), 7.28–7.20 (m, 3H), 7.20–7.09 (m, 3H), 6.94 (s, 1H), 4.39 (s, 2H), 2.35 (s, 3H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 142.41, 139.71, 139.46, 139.06, 138.41, 132.77 (q, *J* = 33.7 Hz), 130.10, 129.01, 128.64, 128.44, 127.61, 127.59, 126.65, 123.98, 122.70 (q, *J* = 273.1 Hz), 118.54 (q, *J* = 3.0 Hz), 117.82–117.59 (m), 59.33, 21.35, 21.06; HRMS (ESI-TOF) Calcd for C₂₃H₁₈F₆NO₂S⁻[M-H]⁻: 486.0968; found: 486.0971.

Methyl 3'-((*N*-(3,5-bis(trifluoromethyl)phenyl)sulfamoyl)methyl)-5'-methyl-[1,1'-biphenyl]-3-carboxylate (30)

30 was obtained as white solid (46.7 mg, 88%); ¹H NMR (500 MHz, CDCl₃) δ 8.06 (s, 1H), 7.95 (d, J = 7.4 Hz, 1H), 7.55 (d, J = 7.6 Hz, 1H), 7.50 (s, 2H), 7.45 (s, 2H), 7.41 (t, J = 7.7 Hz, 1H), 7.35 (s, 1H), 7.32 (s, 1H), 7.01 (s, 1H), 4.46 (s, 2H), 3.91 (s, 3H), 2.31 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 167.13, 140.81, 139.95, 139.65, 139.29, 132.71 (q, J = 33.6 Hz), 131.22, 130.76, 130.47, 128.88, 128.75, 128.71, 128.07, 127.89, 126.65, 122.72 (q, J = 273.0 Hz), 118.59 (q, J = 3.3 Hz), 117.71–117.57 (m), 59.27, 52.28, 21.03; HRMS (ESI-TOF) Calcd for C₂₄H₁₉F₆NNaO₄S[M+Na]⁺: 554.0831; found: 554.0832.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(5-methyl-3'-nitro-[1,1'-biphenyl]-3-yl)methanesulfonamide (3p)

3p was obtained as white solid (48.7 mg, 94%); ¹H NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 8.19 (d, J = 8.1 Hz, 1H), 7.73 (d, J = 7.7 Hz, 1H), 7.56 (t, J = 8.0 Hz, 1H), 7.53 (s, 1H), 7.40 (s, 1H), 7.37 (s, 2H), 7.30 (s, 1H), 7.10 (s, 1H), 7.00 (s, 1H), 4.48 (s, 2H), 2.36 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 148.60, 141.43, 140.19, 139.62, 139.05, 132.84 (q, J = 33.6 Hz), 132.78, 131.51, 129.79, 128.96, 128.27, 126.70, 122.64 (q, J = 273.3 Hz), 122.45, 121.70, 118.53 (q, J = 2.9 Hz), 117.89–117.75 (m), 59.39, 21.04; HRMS (ESI-TOF) Calcd for C₂₂H₁₅F₆N₂O₄S⁻[M-H]⁻: 517.0662; found: 517.0665.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(5-methyl-2'-nitro-[1,1'-biphenyl]-3-yl)methanesulfonamide (3q)

3q was obtained as white solid (50.8 mg, 98%); ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, *J* = 8.1 Hz, 1H), 7.61–7.54 (m, 2H), 7.49 (t, *J* = 7.8 Hz, 1H), 7.46 (s, 2H), 7.27–7.19 (m, 2H), 7.12 (s, 1H), 7.08 (s, 1H), 6.99 (s, 1H), 4.40 (s, 2H), 2.30 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 148.89, 139.66, 138.95, 138.49, 135.31, 132.83 (q, *J* = 33.7 Hz), 132.60, 131.60, 131.31, 129.59, 128.63, 128.01, 127.19, 124.27, 122.73 (q, *J* = 273.2 Hz), 118.97 (q, *J* = 3.4 Hz), 117.91–117.69 (m), 58.82, 20.99; HRMS (ESI-TOF) Calcd for C₂₂H₁₅F₆N₂O₄S⁻[M-H]⁻: 517.0662; found: 517.0663.

N-(3,5-Bis(trifluoromethyl) phenyl)-1-(3-methyl-5-(naphthalen-2-yl) phenyl) methanesulfon a mide (3r)-2-yl phenyl phenyl

3r was obtained as white solid (47.1 mg, 90%); ¹H NMR (400 MHz, CDCl₃) δ 7.88–7.73 (m, 4H), 7.56–7.41 (m, 5H), 7.37 (s, 3H), 7.18 (s, 1H), 6.95 (s, 1H), 4.42 (s, 2H), 2.32 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 142.14, 139.64, 138.99, 136.99, 133.42, 132.73 (q, *J* = 33.5 Hz), 132.66, 130.25, 129.22, 128.51, 128.10, 127.75, 127.57, 126.86, 126.38, 126.15, 125.71, 124.97, 122.65 (q, *J* = 273.0 Hz), 118.47 (q, *J* = 3.1 Hz), 117.78–117.58 (m), 59.26, 21.08; HRMS (ESI-TOF) Calcd for C₂₆H₁₈F₆NO₂S⁻[M-H]⁻: 522.0968; found: 522.0967.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(3',5,5'-trimethyl-[1,1'-biphenyl]-3-yl)methanesulfonamide (3s)

3s was obtained as white solid (45.1 mg, 90%); ¹H NMR (400 MHz, CDCl₃) δ 7.52 (s, 1H), 7.37 (s, 2H), 7.34 (s, 1H), 7.23 (s, 1H), 7.07 (s, 1H), 6.99 (s, 2H), 6.95 (d, *J* = 3.6 Hz, 2H), 4.40 (s, 2H), 2.35–2.28 (m, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 142.55, 139.77, 139.37, 139.02, 138.32, 132.76 (q, *J* = 33.6 Hz), 130.02, 129.34, 129.05, 127.57, 126.68, 124.79, 122.70 (q, *J* = 273.0 Hz), 118.66 (q, *J* = 2.9 Hz), 117.82–117.64 (m), 59.40, 21.23, 21.07; HRMS (ESI-TOF) Calcd for C₂₄H₂₀F₆NO₂S⁻[M-H]⁻: 500.1124; found: 500.1128.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(3-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-5-methylphenyl)methane-sulfonamide (3t)

3t was obtained as white solid (46.7 mg, 88%); ¹H NMR (400 MHz, CDCl₃) δ 7.52 (s, 1H), 7.37 (s, 2H), 7.28 (s, 1H), 7.18 (s, 1H), 7.15 (s, 1H), 6.92 (s, 1H), 6.90 (s, 1H), 6.88–6.81 (m, 2H), 4.38 (s, 2H), 4.25 (s, 4H), 2.28 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 143.69, 143.47, 141.61, 139.46, 139.07, 133.24, 132.79 (q, *J* = 33.8 Hz), 129.78, 128.56, 127.62, 126.28, 122.72 (q, *J* = 273.1 Hz), 119.86, 118.57 (q, *J* = 3.1 Hz), 117.85–117.69 (m), 117.54, 115.61, 64.41, 64.32, 59.36, 21.07; HRMS (ESI-TOF) Calcd for C₂₄H₂₀F₆NO₄S[M+H]⁺: 532.1012; found: 532.1012.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(3-(2-fluoropyridin-4-yl)-5-methylphenyl)methanesulfonamide (4a)

4a was obtained as white solid (31.0 mg, 63%); ¹H NMR (400 MHz, Acetone- d⁶) δ 9.39 (brs, 1H), 8.26 (d, J = 5.2 Hz, 1H), 7.73 (s, 2H), 7.63–7.55 (m, 3H), 7.47 (d, J = 5.2 Hz, 1H), 7.34 (s, 1H), 7.19 (s, 1H), 4.75 (s, 2H), 2.35 (s, 3H); ¹³C NMR (125 MHz, Acetone-d⁶) δ 165.48 (d, J = 235.2 Hz), 153.98, 153.92, 149.08 (d, J = 16.0 Hz), 142.11, 140.37, 137.97 (d, J = 3.4 Hz), 134.04, 132.83 (q, J = 33.1 Hz), 128.89, 128.08, 124.11 (q, J = 272.0 Hz), 120.26 (d, J = 3.9 Hz), 119.05 (q, J = 3.7 Hz), 117.43–117.17 (m), 107.32 (d, J = 39.3 Hz), 59.68, 21.08; ¹⁹F NMR (376 MHz, Acetone-d⁶) δ -63.94, -70.26; HRMS (ESI-TOF) Calcd for C₂₁H₁₆F₇N₂O₂S[M+H]⁺: 493.0815; found: 493.0816.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(3-(2-chloropyridin-4-yl)-5-methylphenyl)methanesulfonamide (4b)

4b was obtained as white solid (25.5 mg, 50%); ¹H NMR (400 MHz, Acetone-d⁶) δ 9.40 (s, 1H), 8.42 (d, J = 5.2 Hz, 1H), 7.71 (s, 2H), 7.61–7.54 (m, 4H), 7.52 (dd, J = 5.2, 1.5 Hz, 1H), 7.33 (s, 1H), 4.75 (s, 2H), 2.35 (s, 3H); ¹³C NMR (150 MHz, Acetone-d⁶) δ 152.80, 151.47, 151.13, 142.09, 140.41, 137.65, 134.03, 132.80 (q, J = 33.2 Hz), 130.92, 128.89, 128.09, 124.10 (q, J = 272.3 Hz), 122.28, 121.28, 119.03 (q, J = 3.3 Hz), 117.41–117.11 (m), 59.70, 21.06; HRMS (ESI-TOF) Calcd for C₂₁H₁₆ClF₆N₂O₂S[M+H]⁺: 509.0520; found: 509.0520.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(3-(2,6-dichloropyridin-4-yl)-5-methylphenyl)methanesulfonamide (4c)

4c was obtained as white solid (45.1 mg, 83%); ¹H NMR (400 MHz, CDCl₃) δ 7.56 (s, 1H), 7.39–7.34 (m, 3H), 7.28 (s, 3H), 7.17 (s, 1H), 7.15 (s, 1H), 4.47 (s, 2H), 2.34 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 152.60, 151.16, 140.56, 138.83, 136.85, 133.10, 132.99 (d, *J* = 32.7 Hz), 128.87, 128.67, 126.61, 122.60 (q, *J* = 273.0 Hz), 120.60, 118.67 (q, *J* = 3.1 Hz), 118.14–117.98 (m), 59.32, 21.03; HRMS (ESI-TOF) Calcd for C₂₁H₁₅Cl₂F₆N₂O₂S[M+H]⁺: 543.0130; found: 543.0133.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(3-methyl-5-(5-methylthiophen-2-yl)phenyl)methanesulfonamide (4d)

4d was obtained as white solid (35.0 mg, 71%); ¹H NMR (400 MHz, CDCl₃) δ 7.54 (s, 1H), 7.43 (s, 2H), 7.31 (s, 1H), 7.14 (s, 1H), 7.08 (s, 1H), 6.95 (d, *J* = 3.4 Hz, 1H), 6.86 (s, 1H), 6.66–6.63(m, 1H), 4.34 (s, 2H), 2.45 (s, 3H), 2.28 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 140.22, 140.19, 139.68, 139.00, 135.63, 132.88 (q, *J* = 33.7 Hz), 129.87, 127.95, 126.99, 126.24, 124.71, 123.39, 122.74 (q, *J* = 273.1 Hz), 118.63 (q, *J* = 3.1 Hz), 117.93–117.75 (m), 58.94, 21.03, 15.29; HRMS (ESI-TOF) Calcd for C₂₁H₁₆F₆NO₂S⁻[M-H]⁻: 492.0532; found: 492.0533.

1-(3-(5-Acetylthiophen-2-yl)-5-methylphenyl)-N-(3,5-bis(trifluoromethyl)phenyl)methanesulfonamide (4e)

4e was obtained as white solid (31.8 mg, 61%); ¹H NMR (400 MHz, Acetone-d⁶) δ 9.39 (s, 1H), 7.82 (d, *J* = 3.9 Hz, 1H), 7.75 (s, 2H), 7.61 (s, 1H), 7.54 (s, 1H), 7.51 (s, 1H), 7.42 (d, *J* = 3.9 Hz, 1H), 7.20 (s, 1H), 4.71 (s, 2H), 2.54 (s, 3H), 2.31 (s, 3H); ¹³C NMR (150 MHz, Acetone-d⁶) δ 190.77, 151.81, 144.41, 142.10, 140.27, 134.78, 134.55, 133.26, 132.81 (q, *J* = 33.3 Hz), 130.84, 127.75, 127.01, 125.43, 124.12 (q, *J* = 272.2 Hz), 119.07 (q, *J* = 1.8 Hz), 117.26, 59.56, 26.47, 20.99; HRMS (ESI-TOF) Calcd for C₂₂H₁₈F₆NO₃S₂[M+H]⁺: 522.0627; found: 522.0628.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(3-(5-formylfuran-2-yl)-5-methylphenyl)methanesulfonamide (4f)

4f was obtained as white solid (37.3 mg, 71%); ¹H NMR (400 MHz, Acetone-d⁶) δ 9.66 (s, 1H), 9.37 (s, 1H), 7.74 (s, 2H), 7.67 (s, 1H), 7.63 (s, 1H), 7.60 (s, 1H), 7.51 (d, J = 3.7 Hz, 1H), 7.23 (s, 1H), 7.05 (d, J = 3.7 Hz, 1H), 4.74 (s, 2H), 2.31 (s, 3H); ¹³C NMR (150 MHz, Acetone-d⁶) δ 177.89, 158.83, 153.34, 142.09, 140.15, 133.78, 132.77 (q, J = 33.3 Hz), 130.79, 130.4, 126.69, 125.89, 124.71, 124.10 (q, J = 272.1 Hz), 119.17 (q, J = 3.6 Hz), 117.37–117.16 (m), 109.18, 59.64, 21.00; HRMS (ESI-TOF) Calcd for C₂₁H₁₆F₆NO₄S[M+H]⁺: 492.0699; found: 492.0702.

1-(3-(Benzo[b]thiophen-2-yl)-5-methylphenyl)-N-(3,5-bis(trifluoromethyl)phenyl)methanesulfonamide (4g)

4g was obtained as white solid (22.7 mg, 43%); ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 7.5 Hz, 1H), 7.72 (d, *J* = 8.2 Hz, 1H), 7.52 (s, 1H), 7.48 (s,1H), 7.45 (s, 2H), 7.40 (s, 1H), 7.37–7.28 (m, 3H), 6.99 (s, 1H), 6.97 (s, 1H), 4.39 (s, 2H), 2.33 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 142.47, 140.38, 139.92, 139.40, 138.89, 135.29, 132.93 (q, *J* = 33.7 Hz), 131.15, 128.22, 128.10, 125.70, 124.67, 124.66, 123.69, 122.70 (q, *J* = 273.2 Hz), 122.22, 120.04, 118.71 (q, *J* = 3.1 Hz), 118.07–117.89 (m), 58.92, 21.06; HRMS (ESI-TOF) Calcd for C₂₄H₁₆F₆NO₂S₂⁻[M-H]⁻: 528.0532; found: 528.0534.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(3-methyl-5-(1-tosyl-1*H*-indol-6-yl)phenyl)methanesulfonamide (4h)

4h was obtained as white solid (34.0 mg, 51%); ¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 1H), 7.77 (s, 1H), 7.75 (s, 1H), 7.57 (d, J = 3.6 Hz, 1H), 7.50 (s, 1H), 7.49 (d, J = 7.9 Hz, 1H), 7.39 (s, 3H), 7.34 (s, 1H), 7.28–7.17 (m, 4H), 6.99 (s, 1H), 6.65 (d, J = 3.7 Hz, 1H), 4.47 (s, 2H), 2.33 (s, 3H), 2.31 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 145.12, 142.37, 139.53, 139.10, 136.73, 135.36, 135.18, 132.72 (q, J = 33.6 Hz), 130.23, 130.21, 129.94, 129.22, 127.88, 127.08, 126.99, 126.76, 122.69 (q, J = 273.0 Hz), 121.59, 118.82 (q, J = 3.1 Hz), 117.92–117.67 (m), 111.87, 108.88, 59.53, 21.50, 21.12; HRMS (ESI-TOF) Calcd for C₃₁H₂₅F₆N₂O₄S₂[M+H]⁺: 667.1154; found: 667.1151.

Methyl 3'-((*N*-(3,5-bis(trifluoromethyl)phenyl)sulfamoyl)methyl)-5'-methyl-[1,1'-biphenyl]-2-carboxylate (5a)

5a was obtained as white solid (52.0 mg, 98%); ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 7.8 Hz, 1H), 7.74 (s, 1H), 7.60–7.52 (m, 2H), 7.49–7.41 (m, 3H), 7.33 (d, *J* = 7.6 Hz, 1H), 7.27 (s, 1H), 7.18 (s, 1H), 6.66 (s, 1H), 4.41 (s, 2H), 3.85 (s, 3H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.25, 142.40, 141.84, 139.26, 138.94, 132.58 (q, *J* = 33.6 Hz), 131.98, 130.52, 130.43, 130.20, 129.76, 129.65, 127.6, 127.49, 127.18, 122.82 (q, *J* = 272.9 Hz),

119.62 (q, J = 2.5 Hz), 117.88–117.61 (m), 58.66, 52.61, 20.9; HRMS (ESI-TOF) Calcd for $C_{24}H_{19}F_6NNaO_4S[M+Na]^+$: 554.0831; found: 554.0832.

Methyl 3'-((*N*-(3,5-bis(trifluoromethyl)phenyl)sulfamoyl)methyl)-5'-methoxy-[1,1'-biphenyl]-2-carboxylate (5b)

5b was obtained as white solid (46.5 mg, 85%);¹H NMR (400 MHz, Acetone-d⁶) δ 9.36 (s, 1H), 7.81–7.73 (m, 3H), 7.66 (s, 1H), 7.59–7.53 (m, 1H), 7.50–7.44 (m, 1H), 7.22 (d, *J* = 7.6 Hz, 1H), 6.95 (s, 1H), 6.86 (s, 1H), 6.85–6.82 (m, 1H), 4.69 (s, 2H), 3.78 (s, 3H), 3.62 (s, 3H); ¹³C NMR (150 MHz, Acetone-d⁶) δ 169.25, 160.50, 143.78, 141.97, 141.90, 132.94 (q, *J* = 33.2 Hz), 132.22, 132.02, 131.20, 130.92, 130.37, 128.45, 124.39, 124.17 (q, *J* = 272.1 Hz), 119.28 (q, *J* = 3.4 Hz), 117.65–117.05 (m), 116.48, 115.04, 59.38, 55.66, 52.30; HRMS (ESI-TOF) Calcd for C₂₄H₁₉F₆NNaO₅S[M+Na]⁺: 570.0780; found: 570.0781.

Methyl 3'-((N-(3,5-bis(trifluoromethyl)phenyl)sulfamoyl)methyl)-5'-fluoro-[1,1'-biphenyl]-2-carboxylate (5c)

5c was obtained as white solid (43.9 mg, 82%); ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 7.8 Hz, 1H), 7.84 (s, 1H), 7.61–7.55 (m, 2H), 7.54–7.44 (m, 3H), 7.31 (d, *J* = 7.6 Hz, 1H), 7.21 (s, 1H), 7.07 (d, *J* = 9.0 Hz, 1H), 6.66 (d, *J* = 8.4 Hz, 1H), 4.42 (s, 2H), 3.85 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 168.80, 162.40 (d, *J* = 249.0 Hz), 144.13 (d, *J* = 8.2 Hz), 141.10, 138.97, 132.82 (q, *J* = 33.7 Hz), 132.21, 130.71, 130.35, 129.57, 129.53, 128.25, 126.15 (d, *J* = 2.4 Hz), 122.75 (q, *J* = 272.9 Hz), 119.55 (q, *J* = 2.9 Hz), 118.09–117.90 (m), 116.41 (d, *J* = 22.2 Hz), 116.15 (d, *J* = 21.8 Hz), 58.09, 52.69; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.46, -112.35; HRMS (ESI-TOF) Calcd for C₂₃H₁₆F₇NNaO₄S[M+Na]⁺: 558.0580; found: 558.0584.

Methyl 3'-((*N*-(3,5-bis(trifluoromethyl)phenyl)sulfamoyl)methyl)-5'-chloro-[1,1'-biphenyl]-2-carboxylate (5d)

5d was obtained as white solid (45.8 mg, 83%); ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 7.4 Hz, 1H), 7.84 (s, 1H), 7.62–7.56 (m, 2H), 7.54–7.46 (m, 3H), 7.35 (s, 1H), 7.34–7.30 (m, 2H), 6.90 (s, 1H), 4.40 (s, 2H), 3.86 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 168.76, 143.59, 141.02, 138.97, 134.61, 132.90 (q, J = 33.7 Hz), 132.27, 130.78, 130.40, 129.47, 129.30 (2C), 128.98, 128.54, 128.30, 122.76 (q, J = 273.0 Hz), 119.41 (q, J = 3.2 Hz), 118.16–117.97 (m), 57.93, 52.73; HRMS (ESI-TOF) Calcd for C₂₃H₁₆CIF₆NNaO₄S[M+Na]⁺: 574.0285; found: 574.0286.

Methyl 3'-((*N*-(3,5-bis(trifluoromethyl)phenyl)sulfamoyl)methyl)-5'-bromo-[1,1'-biphenyl]-2-carboxylate (5e)

5e was obtained as white solid (54.8 mg, 92%); ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 7.8 Hz, 1H), 7.81 (s, 1H), 7.63–7.55 (m, 2H), 7.52 (s, 2H), 7.51–7.46 (m, 2H), 7.37 (s, 1H), 7.31 (d, *J* = 7.8 Hz, 1H), 7.06 (s, 1H), 4.40 (s, 2H), 3.85 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 168.75, 143.73, 140.86, 138.96, 132.91 (q, *J* = 33.8 Hz), 132.25, 132.14, 131.85, 130.76, 130.42, 129.48, 129.04, 128.30, 122.76 (q, *J* = 273.0 Hz), 122.45, 119.32 (q, *J* = 3.1 Hz), 118.16–117.95 (m), 57.87, 52.72; HRMS (ESI-TOF) Calcd for C₂₃H₁₆BrF₆NNaO₄S[M+Na]⁺: 617.9780; found: 617.9782.

Methyl 3'-((*N*-(3,5-bis(trifluoromethyl)phenyl)sulfamoyl)methyl)-5'-(trifluoromethy)-[1,1'-biphenyl]-2-carboxylate (5f)

5f was obtained as white solid (50.3 mg, 86%); ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 7.8 Hz, 1H), 7.92 (s, 1H), 7.67 (s, 1H), 7.65–7.59 (m, 3H), 7.55–7.47 (m, 3H), 7.35 (d, J = 7.6 Hz, 1H), 7.15 (s, 1H), 4.50 (s, 2H), 3.85 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 168.69, 142.90, 140.92, 138.89, 133.67, 133.01 (q, J = 33.7 Hz), 132.44, 131.45 (q, J = 32.9 Hz), 130.93, 130.55, 129.41, 128.75, 128.51, 126.00 (q, J = 3.3 Hz), 125.70 (q, J = 3.1 Hz), 123.30 (q, J = 272.6 Hz), 122.71 (q, J = 272.9 Hz), 118.97 (q, J = 3.1 Hz), 118.13–117.92 (m), 57.89, 52.74; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.20, -63.53; HRMS (ESI-TOF) Calcd for C₂₄H₁₆F₉NNaO₄S[M+Na]⁺: 608.0549; found: 608.0545.

Methyl 3'-((*N*-(3,5-bis(trifluoromethyl)phenyl)sulfamoyl)methyl)-4'-methy-[1,1'-biphenyl]-2-carboxylate (5g)

5g was obtained as white solid (42.5 mg, 80%); ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, *J* = 7.7 Hz, 1H), 7.85 (brs, 1H), 7.60–7.54 (m, 2H), 7.47–7.41 (m, 4H), 7.33 (d, *J* = 7.4 Hz, 1H), 7.27 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.15 (d, *J* = 7.8 Hz, 1H), 4.49 (s, 2H), 3.87 (s, 3H), 1.90 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 169.43, 142.32, 139.36, 139.03, 136.62, 132.58 (q, *J* = 33.7 Hz), 132.11, 131.04, 130.63, 130.61, 130.58, 129.51, 128.85, 127.59, 126.29, 122.78 (q, *J* = 273.0 Hz), 119.88 (q, *J* = 3.3 Hz), 117.88–117.68 (m), 55.43, 52.70, 18.63; HRMS (ESI-TOF) Calcd for C₂₄H₁₉F₆NNaO₄S[M+Na]⁺: 554.0831; found: 554.0833.

Methyl 3'-((*N*-(3,5-bis(trifluoromethyl)phenyl)sulfamoyl)methyl)-4'-bromo-[1,1'-biphenyl]-2-carboxylate (5h)

5h was obtained as white solid (37.0 mg, 62%);¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.0 Hz, 1H), 7.90 (brs, 1H), 7.70 (s, 1H), 7.64–7.58 (m, 2H), 7.52–7.46 (m, 2H), 7.44–7.36 (m, 3H), 7.25 (d, *J* = 7.7 Hz, 1H), 4.73 (s, 2H), 3.92 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 169.22, 141.47, 140.98, 138.52, 133.25, 132.67 (q, *J* = 33.6 Hz), 132.48, 131.71, 131.09, 130.48, 130.19, 129.20, 128.16, 127.54, 124.93, 122.86 (q, *J* = 272.9 Hz), 119.99 (q, *J* = 3.2 Hz), 118.26–118.07 (m), 57.81, 52.90; HRMS (ESI-TOF) Calcd for C₂₃H₁₆BrF₆NNaO₄S[M+Na]⁺: 617.9780; found: 617.9780.

 $Methyl \ 3'-((N-(3,5-bis(trifluoromethyl)phenyl)sulfamoyl)methyl) - 4'-bromo-[1,1'-biphenyl] - 2-carboxylate\ (5i) - 2-carboxylate$

5i was obtained as white solid (41.2 mg, 77%); ¹H NMR (400 MHz, CDCl₃) δ 7.98 (dd, J = 7.8, 1.0 Hz, 1H), 7.74 (s, 1H), 7.63–7.52 (m, 3H), 7.51–7.44 (m, 3H), 7.39–7.31 (m, 2H), 6.98 (t, J = 9.0 Hz, 1H), 4.51 (s, 2H), 3.88 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 169.14, 160.10 (d, J = 249.8 Hz), 141.48, 138.62, 137.64 (d, J = 3.6 Hz), 132.66 (q, J = 33.5 Hz), 132.26, 131.86 (d, J = 1.5 Hz), 130.84, 130.72 (d, J = 8.5 Hz), 130.51, 129.53, 127.93, 122.80 (q, J = 272.9 Hz), 119.62 (q, J = 3.1 Hz), 118.18–117.97 (m), 115.64 (d, J = 22.5 Hz), 115.16 (d, J = 15.1 Hz), 52.74, 50.37 (d, J = 4.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -63.43, -120.78 HRMS (ESI-TOF) Calcd for C₂₃H₁₆F₇NNaO₄S[M+Na]⁺: 558.0580; found: 558.0579.

Methyl 3'-((*N*-(3,5-bis(trifluoromethyl)phenyl)sulfamoyl)methyl)-4'-(trifluoromethy)-[1,1'-biphenyl]-2carboxylate (5j)

5j was obtained as white solid (43.3 mg, 74%); ¹H NMR (500 MHz, CDCl₃) δ 8.07 (d, J = 7.9 Hz, 1H), 7.95 (s, 1H), 7.70–7.63 (m, 2H), 7.58 (s, 1H), 7.56–7.51 (m, 2H), 7.41 (d, J = 7.6 Hz, 1H), 7.36 (s, 2H), 4.66 (s, 2H), 3.93 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 169.27, 145.29, 141.25, 138.40, 132.71, 132.62 (q, J = 33.7 Hz), 131.98, 131.22, 130.80, 128.95, 128.60, 128.52, 128.01 (q, J = 30.3 Hz), 126.91 (q, J = 5.4 Hz), 126.15, 123.36 (q, J = 274.2 Hz), 122.79 (q, J = 272.9 Hz), 120.41 (q, J = 3.1 Hz), 118.46–118.23 (m), 54.86 (d, J = 2.6 Hz), 53.02; ¹⁹F NMR (376 MHz, CDCl₃) δ -59.61, -63.52; HRMS (ESI-TOF) Calcd for C₂₄H₁₆F₉NNaO₄S[M+Na]⁺: 608.0549; found: 608.0547.

5k was obtained as white solid (58.6 mg, 90%);¹H NMR (500 MHz, CDCl₃) δ 7.90 (dd, J = 7.6, 0.7 Hz, 2H), 7.62 (s, 2H), 7.55–7.50 (m, 3H), 7.46–7.41 (m, 2H), 7.29 (s, 1H), 7.26 (d, J = 7.3 Hz, 2H), 7.19 (d, J = 1.2 Hz, 2H), 4.46 (s, 2H), 3.79 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 168.73, 141.93, 141.64, 139.50, 132.73 (q, J = 33.6 Hz), 131.75, 130.61, 130.31, 130.0, 129.31, 128.99, 127.77, 127.71, 122.79 (q, J = 273.0 H), 119.33 (q, J = 3.4 Hz), 117.66–117.44 (m), 58.12, 52.41; HRMS (ESI-TOF) Calcd for C₃₁H₂₃F₆NNaO₆S[M+Na]⁺: 674.1042; found: 674.1043.

Dimethyl 5'-((*N*-(3,5-bis(trifluoromethyl)phenyl)sulfamoyl)methyl)-2'-fluoro-[1,1':3',1''-terphenyl]-2,2''-dicarboxylate (5l)

51 was obtained as white solid (62.9 mg, 94%); ¹H NMR (400 MHz, CDCl₃) δ 8.67 (brs, 1H), 8.00 (d, *J* = 7.7 Hz, 2H), 7.69 (s, 2H), 7.59–7.52 (m, 3H), 7.51–7.44 (m, 2H), 7.28 (s, 1H), 7.26 (s, 1H), 7.16 (d, *J* = 6.4 Hz, 2H), 4.39 (s, 2H), 3.81 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 167.83, 156.32 (d, *J* = 248.3 Hz), 139.46, 135.69, 132.84 (q, *J* = 33.5 Hz), 132.12 (d, *J* = 1.6 Hz), 132.03, 131.29, 130.43, 130.24, 129.60 (d, *J* = 17.8 Hz), 128.38, 123.68, 122.76 (q, *J* = 266.8 Hz), 119.41 (q, *J* = 2.2 Hz), 117.71–117.59 (m), 57.26, 52.39; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.43, -119.23; HRMS (ESI-TOF) Calcd for C₃₁H₂₂F₇NNaO₆S[M+Na]⁺: 692.0948; found: 692.0948.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(3,5-dimethylphenyl)methanesulfonamide (7a)

7a was obtained as white solid (26.7 mg, 65%); ¹H NMR (400 MHz, CDCl₃) δ 7.57 (s, 1H), 7.39 (s, 2H), 6.96 (s, 1H), 6.83 (s, 3H), 4.34 (s, 2H), 2.21 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 139.08, 138.94, 132.76 (q, *J* = 33.7 Hz), 131.10, 128.52, 127.05, 122.74 (q, *J* = 272.9 Hz), 118.94 (q, *J* = 3.2 Hz), 118.42–116.94 (m), 59.42, 20.86; HRMS (ESI-TOF) Calcd for C₁₇H₁₄F₆NO₂S⁻[M-H]⁻: 410.0655; found: 410.0656.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(3-butyl-5-methylphenyl)methanesulfonamide (7b)

7b was obtained as white solid (27.2 mg, 60%); ¹H NMR (600 MHz, CDCl₃) δ 7.56 (s, 1H), 7.37 (s, 2H), 7.08 (s, 1H), 6.96 (s, 1H), 6.86 (s, 1H), 6.81 (s, 1H), 4.34 (s, 2H), 2.46–2.42 (m, 2H), 2.22 (s, 3H), 1.47–1.40 (m, 2H), 1.32–1.24 (m, 2H), 0.87 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 144.08, 139.16, 138.93, 132.78 (q, *J* = 33.7 Hz), 130.43, 128.77, 127.89, 127.04, 122.77 (q, *J* = 273.0 Hz), 118.77 (q, *J* = 2.8 Hz), 117.80–117.60 (m), 59.50, 35.17, 33.40, 22.33, 20.93, 13.75; HRMS (ESI-TOF) Calcd for C₂₀H₂₀F₆NO₂S⁻[M-H]⁻: 452.1124; found: 452.1123.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(3-methyl-5-nonylphenyl)methanesulfonamide (7c)

7c was obtained as white solid (31.4 mg, 60%); ¹H NMR (500 MHz, CDCl₃) δ 7.57 (s, 1H), 7.37 (s, 2H), 6.97 (s, 1H), 6.87 (s, 1H), 6.83 (s, 2H), 4.34 (s, 2H), 2.51–2.41 (m, 2H), 2.24 (s, 2H), 1.51–1.38 (m,3H), 1.36–1.22 (m, 12H), 0.88 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 144.14, 139.06, 138.92, 132.78 (q, *J* = 33.6 Hz), 130.41, 128.77, 127.88, 127.11, 122.75 (q, *J* = 272.9 Hz), 118.92 (q, *J* = 3.1 Hz), 117.99–117.52 (m), 59.43, 35.51, 31.85, 31.37, 29.49, 29.37, 29.34, 29.28, 22.65, 20.97, 14.09; HRMS (ESI-TOF) Calcd for C₂₅H₃₀F₆NO₂S⁻[M-H]⁻: 522.1907; found: 522.1908.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(3-methyl-5-(3-phenylpropyl)phenyl)methanesulfonamide (7d)

7d was obtained as white solid (24.2 mg, 47%); ¹H NMR (400 MHz, CDCl₃) δ 7.55 (s, 1H), 7.36 (s, 2H), 7.31–7.23 (m, 2H), 7.20–7.08 (m, 3H), 6.96 (s, 2H), 6.84 (d, *J* = 8.6 Hz, 2H), 4.33 (s, 2H), 2.59 (t, *J* = 7.6 Hz, 2H), 2.53–2.45 (m, 2H), 2.22 (s, 3H), 1.88–1.75 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 143.47, 141.89, 139.07, 139.01, 132.78 (q, *J* = 33.8 Hz), 130.42, 128.93, 128.35, 128.32, 127.92, 127.13, 125.82, 122.75 (q, *J* = 272.9 Hz), 118.86 (q, *J* = 3.1 Hz), 117.88–117.69 (m), 59.44, 35.40, 34.91, 32.68, 20.93; HRMS (ESI-TOF) Calcd for C₂₅H₂₂F₆NO₂S⁻[M-H]⁻: 514.1281; found: 514.1282.

TBSO

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(3-((*tert*-butyldimethylsilyl)oxy)propyl)-5-methylphenyl)methanesulfonamide (7e)

7e was obtained as white solid (41.0 mg, 72%); ¹H NMR (400 MHz, CDCl₃) δ 7.55 (s, 1H), 7.37 (s, 2H), 7.15 (s, 1H), 6.97 (s, 1H), 6.86 (s, 1H), 6.84 (s, 1H), 4.34 (s, 2H), 3.56 (t, *J* = 6.2 Hz, 2H), 2.60–2.40 (m, 2H), 2.21 (s, 3H), 1.72–1.62 (m, 2H), 0.89 (s, 9H), 0.03 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 143.49, 139.18, 138.95, 132.76 (q, *J* = 33.5 Hz), 130.52, 128.87, 127.96, 127.08, 122.76 (q, *J* = 273.0 Hz), 118.74 (q, *J* = 3.2 Hz), 117.78–117.57 (m),

62.13, 59.50, 34.17, 31.65, 25.88, 20.90, 18.28, -5.39; HRMS (ESI-TOF) Calcd for $C_{25}H_{32}F_6NO_3SSi^{-}[M-H]^{-}$: 568.1782; found: 568.1784.

1-(3-(2-(Benzyloxy)ethyl)-5-methylphenyl)-N-(3,5-bis(trifluoromethyl)phenyl)methanesulfonamide (7f)

7f was obtained as white solid (23.9 mg, 45%); ¹H NMR (400 MHz, CDCl₃) δ 7.55 (s, 1H), 7.33 (s, 2H), 7.32–7.20 (m, 5H), 7.02 (s, 1H), 6.94–6.80 (m, 3H), 4.46 (s, 2H), 4.30 (s, 2H), 3.62 (t, *J* = 6.7 Hz, 2H), 2.78 (t, *J* = 6.6 Hz, 2H), 2.24 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 140.23, 139.07, 139.02, 138.16, 132.71 (q, *J* = 33.5 Hz), 130.76, 129.47, 128.45, 128.35, 127.76, 127.70, 127.40, 122.78 (q, *J* = 273.0 Hz), 118.97 (q, *J* = 3.1 Hz), 117.76–117.62 (m), 72.88, 70.66, 59.05, 35.75, 20.95; HRMS (ESI-TOF) Calcd for C₂₅H₂₂F₆NO₃S⁻[M-H]⁻: 530.1230; found: 530.1229.

Ethyl 2-(3-((N-(3,5-bis(trifluoromethyl)phenyl)sulfamoyl)methyl)-5-methylphenyl)acetate (7g)

7g was obtained as white solid (21.7 mg, 45%); ¹H NMR (400 MHz, CDCl₃) δ 7.57 (s, 1H), 7.49 (s, 2H), 7.41 (s, 1H), 7.04 (s, 1H), 6.95 (d, *J* = 4.5 Hz, 2H), 4.33 (s, 2H), 4.14 (q, *J* = 7.2 Hz, 2H), 3.50 (s, 2H), 2.24 (s, 3H), 1.26 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 171.83, 139.31, 139.24, 134.87, 132.71 (q, *J* = 33.6 Hz), 131.12, 130.44, 128.83, 127.91, 122.82 (q, *J* = 273.0 Hz), 119.14 (q, *J* = 3.4 Hz), 117.78–117.63 (m), 61.21, 58.87, 40.52, 20.90, 14.06; HRMS (ESI-TOF) Calcd for C₂₀H₂₀F₆NO₄S[M+H]⁺: 484.1012; found: 484.1010.

N-(3,5-bis(trifluoromethyl)phenyl)-1-(5-butyl-2-fluorophenyl)methanesulfonamid (7h)

7h was obtained as white solid (25.1 mg, 55%); ¹H NMR (500 MHz, CDCl₃) δ 7.55 (s, 1H), 7.43 (s, 2H), 7.15 (dd, J = 7.0, 2.0 Hz, 1H), 7.11–7.05 (m, 1H), 6.95 (s, 1H), 6.88–6.79 (m, 1H), 4.48 (s, 2H), 2.59–2.41 (m, 2H), 1.54–1.44 (m, 2H), 1.35–1.25 (m, 2H), 0.90 (t, J = 7.3 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 159.26 (d, J = 246.7 Hz), 139.74 (d, J = 3.4 Hz), 138.76), 132.66 (q, J = 33.8 Hz), 132.19 (d, J = 1.9 Hz), 131.47 (d, J = 8.0 Hz), 122.74 (q, J = 273.0 Hz), 118.77 (q, J = 3.3 Hz), 118.03–117.66 (m), 115.40 (d, J = 21.5 Hz), 114.52 (d, J = 14.5 Hz), 52.81 (d, J = 2.6 Hz), 34.50, 33.42, 22.23, 13.77; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.37, -121.95; HRMS (ESI-TOF) Calcd for C₁₉H₁₇F₇NO₂S⁻[M-H]⁻: 456.0874; found: 456.0876.

2.5 Procedure for Gram-Scale Arylation of 1k.

Substrate **1k** (1.15 g, 3.0 mmol), Pd(OAc)₂ (33.6 mg, 0.15 mmol), and AgOAc (7.5 mmol, 1.25 g) were weighed in air and placed in a sealed tube (100 mL) with a magnetic stir bar. To the reaction mixture, isoquinoline (38.7 mg, 0.3 mmol), NBE-CO₂Me (456 mg, 3.0 mmol), aryl iodide **2a** (1.64 g, 7.5 mmol), and DCE (30 mL) were added. The reaction mixture was heated to 100 °C for 48 hours under vigorous stirring. Upon completion, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, and filtered through a pad of celite. The filtrate was concentrated in vacuo, and the residue was purified by column chromatography (ethyl acetate/hexane = 1/4) to yield the **8**_{di} (1.54 g, 91%) and **8**_{mono} (85 mg, 5%).

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(4'-methyl-[1,1'-biphenyl]-3-yl)methanesulfonamide (8_{di})

8_{*di*} was obtained as white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (s, 1H), 7.49 (s, 1H), 7.39 (s, 2H), 7.35 (d, J = 8.0 Hz, 4H), 7.32 (s, 2H), 7.19 (d, J = 8.0 Hz, 4H), 7.03 (s, 1H), 4.47 (s, 2H), 2.37 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 142.79, 138.95, 137.79, 136.84, 132.91 (q, J = 33.8 Hz), 129.58, 128.32, 127.78, 126.82, 126.65, 122.66 (q, J = 273.1 Hz), 118.31 (q, J = 3.0 Hz), 117.85–117.67 (m), 59.11, 21.05; HRMS (ESI-TOF) Calcd for C₂₉H₂₂F₆NO₂S⁻[M-H]⁻: 562.1281; found: 562.1280.

N-(3,5-Bis(trifluoromethyl)phenyl)-1-(4'-methyl-[1,1'-biphenyl]-3-yl)methanesulfonamide (8_{mono})

8_{*mono*} was obtained as white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.58–7.52 (m, 2H), 7.42 (s, 1H), 7.40–7.34 (m, 3H), 7.31 (d, J = 8.0 Hz, 2H), 7.22–7.14 (m, 3H), 6.99 (brs, 1H), 4.45 (s, 2H), 2.37 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 142.29, 138.87, 137.74, 136.73, 132.87 (q, J = 33.8 Hz), 129.60, 129.50, 129.25, 129.22, 128.03, 127.88, 126.73, 122.69 (q, J = 273.1 Hz), 118.71 (q, J = 3.2 Hz), 117.96–117.73 (m), 59.35, 21.04; HRMS (ESI-TOF) Calcd for C₂₂H₁₆F₆NO₂S⁻[M-H]⁻: 472.0811; found: 472.0812.

2.6 Procedure for Synthesis of 9

 $\mathbf{8}_{di}$ (563.6 mg, 1.0 mmol) was added to a solution of (Boc)₂O (262.2 mg, 1.2 mmol) and DMAP (12.2 mg, 0.1 mmol) in dry dichloromethane (10 mL). The solution was stirred for 24 h at room temperature. After the reaction finished, the organic layer was washed with saturated aqueous sodium bicarbonate (10.0 mL), dried over sodium sulfate, filtered and concentrated. The residue was purified by column chromatography (ethyl acetate/hexane = 1/5) to yield the desired product **9** (663.5 mg, 99%) as white solid.

tert-Butyl (3,5-bis(trifluoromethyl)phenyl)(((4,4''-dimethyl-[1,1':3',1''-terphenyl]-5'-yl)methyl)sulfonyl)-carbamate (9)

¹H NMR (500 MHz, CDCl₃) δ 7.91 (t, *J* = 1.5 Hz, 1H), 7.66 (s, 1H), 7.57 (d, *J* = 1.6 Hz, 2H), 7.47 (d, *J* = 8.1 Hz, 4H), 7.24 (d, *J* = 7.8 Hz, 4H), 6.80 (s, 2H), 5.01 (s, 2H), 2.39 (s, 6H), 1.35 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 150.50, 142.99, 137.86, 137.23, 136.94, 132.04 (q, *J* = 34.1 Hz), 129.86 (q, *J* = 2.7 Hz), 129.59, 128.81, 127.95, 127.21, 126.97, 122.49–122.33 (m), 122.44 (q, *J* = 273.1 Hz), 86.08, 59.39, 27.72, 21.11; HRMS (ESI-TOF) Calcd for C₃₄H₃₀F₆NO₄S⁻[M-H]⁻: 662.1805; found: 662.1809.

2.7 Procedure for Synthesis of 10

To a dried flask equipped with a magnetic stir bar was added LDA solution (0.3 mL, 2.0 M in THF), and dry THF (5.0 mL) under N₂. A solution 4-chlorobenzaldehyde (56.2mg, 0.4 mmol) and **9** (199.1 mg, 0.3 mmol) in THF (2.0 mL) was added slowly to the LDA/THF solution around 1 hour at -78 °C. The reaction mixture was stirred overnight while warming to room temperature. After the reaction mixture was quenched on saturated NH₄Cl solution and extracted with ethylacetate (3×10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under vacuum. The resulting mixture was purified by column chromatography using ethyl acetate/hexane (1/20) as the eluent to yield the desired product **10** (101.9 mg, 86%) as white solid.

(E)-5'-(4-chlorostyryl)-4,4''-dimethyl-1,1':3',1''-terphenyl (10)

White solid, ¹H NMR (400 MHz, CDCl₃) δ 7.67 (s, 1H), 7.64 (s, 2H), 7.56 (d, *J* = 8.0 Hz, 4H), 7.45 (d, *J* = 8.5 Hz, 2H), 7.32 (d, *J* = 8.4 Hz, 2H), 7.28 (d, *J* = 7.9 Hz, 4H), 7.19 (d, *J* = 16.4 Hz, 1H), 7.14 (d, *J* = 16.4 Hz, 1H), 2.41 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 142.13, 138.11, 137.80, 137.35, 135.75, 133.24, 129.53, 129.25, 128.85, 127.84, 127.70, 127.09, 125.46, 123.92, 21.13.

2.8 Procedure for Synthesis of 11

9 (199.1 mg, 0.3 mmol) was added to a solution of MeONa (35.6 mg, 0.66 mmol) in dry MeOH (3 mL). The solution was stirred for 24 h at room temperature. After the reaction finished, the reaction mixture was quenched with H₂O (10 mL) and extracted with ethylacetate (3×10 mL). The aqueous portion was concentrated under reduced pressure to afford a white solid. The resulting solid was washed with cold MeOH (0.2 mL) and ethyl acetate (5 mL). After washing, sodium sulfonate **11** was obtained (95.5 mg, 85%) as white solid. The combined organic portion was dried over anhydrous Na₂SO₄. The crude mixture was concentrated under reduced pressure and purified by column chromatography using ethyl acetate/hexane (1/10) as the eluent to yield the desired product **12** (89.8 mg, 91%) as white solid.

Sodium (4,4"-dimethyl-[1,1':3',1"-terphenyl]-5'-yl)methanesulfonate (11)

¹H NMR (400 MHz, CD₃OD) δ 7.69 (t, *J* = 1.6 Hz, 1H), 7.63 (d, *J* = 1.5 Hz, 2H), 7.58 (d, *J* = 8.1 Hz, 4H), 7.26 (d, *J* = 7.9 Hz, 4H), 4.18 (s, 2H), 2.38 (s, 6H); ¹³C NMR (150 MHz, CD₃OD) δ 142.84, 139.55, 138.24, 135.49, 130.4, 128.93, 128.06, 125.30, 58.56, 21.14; HRMS (ESI-TOF) Calcd for C₂₁H₂₀NaO₃S[M+H]⁺: 375.1025; found: 375.1027.

tert-Butyl (3,5-bis(trifluoromethyl)phenyl)carbamate (12)

¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 2H), 7.52 (s, 1H), 6.78 (s, 1H), 1.54 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 152.08, 139.88, 132.32 (q, *J* = 33.4 Hz), 123.13 (q, *J* = 272.8 Hz), 117.96, 117.09–114.66 (m), 81.94, 28.18.

2.9 Procedure for Synthesis of 13

To a solution of morpholine (9.0 μ L, 0.1 mmol) in THF (0.3 mL) under N₂ was added n-BuLi (0.45 mL, 2.7 M) at room temperature. After 10 mins, a solution of **9** (33.2 mg, 0.05 mmol) in THF (0.7 mL) was added, and then the mixture was stirred for 5 hours. Then the mixture was concentrated in vacuum, and the crude products were purified by the PTLC using EA/Hexane (1/2) as eluent to afford sulfonamide **13** as a light yellow solid (19.3 mg, 91%). The Boc-protected 3,5-bis(trifluoromethyl)aniline **12** was isolated as a white solid (16.0 mg, 97%).

4-(((4,4''-Dimethyl-[1,1':3',1''-terphenyl]-5'-yl)methyl)sulfonyl)morpholine (13)

white solid, ¹H NMR (600 MHz, CDCl₃) δ 7.78 (t, *J* = 1.7 Hz, 1H), 7.57 (d, *J* = 1.7 Hz, 2H), 7.54 (d, *J* = 8.0 Hz, 4H), 7.28 (d, *J* = 7.8 Hz, 4H), 4.33 (s, 2H), 3.62 (t, *J* = 4.6 Hz, 4H), 3.18 (t, *J* = 4.6 Hz, 4H), 2.41 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 142.26, 137.69, 137.34, 129.62, 129.37, 127.79, 127.03, 126.12, 66.70, 56.72, 46.26, 21.13; HRMS (ESI-TOF) Calcd for C₂₅H₂₈NO₃S[M+H]⁺: 422.1784; found: 422.1786.

2.10 Procedure for Synthesis of 14

A solution of **9** (33.2 mg, 0.05 mmol), and PhONa (11.6 mg, 0.1 mmol) in DMF (1.0 mL) was stirred at room temperature for 24 hours. The mixture was diluted by EA (2 mL) and pass through a pad of Celite to remove the insoluble salt. After concertation under vacuum, the crude products were purified by the PTLC using DCM/Hexane (1/1) as eluent to afford sulfonate ester **14** as a white solid (19.6 mg, 90%). The Boc-protected 3,5-bis(trifluoromethyl)aniline **12** was isolated as a white solid (15.6 mg, 93%).

Phenyl (4,4"-dimethyl-[1,1':3',1"-terphenyl]-5'-yl)methanesulfonate (14)

White solid, ¹H NMR (600 MHz, CDCl₃) δ 7.80 (t, *J* = 1.7 Hz, 1H), 7.60 (s, 2H), 7.52 (d, *J* = 7.8 Hz, 4H), 7.36 (t, *J* = 7.8 Hz, 2H), 7.30–7.25 (m, 5H), 7.18 (d, *J* = 7.9 Hz, 2H), 4.62 (s, 2H), 2.40 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 149.31, 142.46, 137.65, 137.37, 129.90, 129.59, 128.02, 127.99, 127.15, 127.09, 126.59, 121.98, 56.88, 21.13; HRMS (ESI-TOF) Calcd for C₂₇H₂₅O₃S[M+H]⁺: 429.1519; found: 429.1523.

3. References

- 1. P. Wang, G.-C. Li, P. Jain, M. E. Farmer, J. He, P.-X. Shen, J.-Q. Yu, J. Am. Chem. Soc. 2016, 138, 14092.
- 2. H.-X. Dai, A. F. Stepan, M. S. Plummer, Y.-H. Zhang, J.-Q. Yu, J. Am. Chem. Soc. 2011, 133, 7222.

S36

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

-10 -20 -30 -40 -60 -70 -190 -2 -50 -80 -180 -90 -100 fl (ppm) -110 -120 -130 -140 -150 -160 -170

S45

— -63.443

S49

-70 -10 -20 -30 -40 -190 -2 -50 -60 -80 -170 -180 -90 -100 fl (ppm) -110 -120 -130 -140 -150 -160

-10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 fl (ppm)

110 100 90 80 fl (ppm) 150 140 130 120

S64

S70

110 100 f1 (ppm) 90 80 210 200 140 130 120

-10 -20 -190 -2 -30 -40 -50 -60 -70 -80 -180 -90 -100 fl (ppm) -110 -120 -130 -140 -150 -160 -170

S84

-10 -20 -30 -190 -2 -40 -50 -60 -70 -80 -180 -90 -100 fl (ppm) -110 -120 -130 -140 -150 -160 -170

S91

-10 -70 -2 -20 -30 -40 -60 -190 -50 -80 -90 -100 fl (ppm) -110 -120 -130 -140 -150 -160 -170 -180

f1 (ppm)

