Physicochemical parameters affecting the perception of borehole water quality in Ghana

Alexandra V. Kulinkina,^{a,*} Jeanine D. Plummer,^b Kenneth K. H. Chui,^c Karen C. Kosinski,^d Theodora Adomako-Adjei,^e Andrey I. Egorov,^f Elena N. Naumova^{a, c, g}

^a Tufts University School of Engineering, Medford, MA, USA

^b Water Quality & Treatment Solutions, Inc., Brookfield, MA, USA

^c Tufts University School of Medicine, Boston, MA, USA

^d Tufts University School of Arts and Sciences, Medford, MA, USA

^e Community Water and Sanitation Agency, Accra, Ghana

^f U.S. Environmental Protection Agency, Chapel Hill, MA, USA

^g Tufts University Friedman School of Nutrition Science and Policy, Boston, MA, USA

* Correspondence to Alexandra V. Kulinkina Email: alexandra.kulinkina@tufts.edu Address: 200 College Avenue, Medford, MA, USA 2155

SUPPLEMENTAL INFORMATION

Table S1. Spearman's rank correlation matrix for measured water quality parameters
Table S2. Kendall's Tau correlation matrix for reported water quality problems
Table S3. Logistic regression model results stratified by season
Fig. S1. Boxplot comparison of water quality values by presence/absence of salty taste
Fig. S2. Boxplot comparison of water quality values by presence/absence of particles
Fig. S3. Boxplot comparison of water quality values by presence/absence of scent
Fig. S4. Boxplot comparison of water quality values by presence/absence of oily sheen
Fig. S5. Boxplot comparison of water quality values by presence/absence of food staining
Fig. S6. Map of geological formations and interpolated surfaces for iron and TDS

	pН	TDS	Turb	Ca ²⁺	Mg^{2+}	TotH	TotA	Cl	Na^+	\mathbf{K}^+	NO ₃ -N	NO ₂ -N	NH ₃ -H	\mathbf{F}	SO_4^{2-}	PO_4^{3-}	Mn	Fe
pН		0.60	0.03	0.72	0.66	0.70	0.82	0.27	0.42	0.28	-0.15	0.17	0.60	0.42	0.41	0.09	0.47	0.35
TDS	< 0.001		0.01	0.76	0.76	0.85	0.69	0.72	0.81	0.62	-0.08	0.17	0.41	0.21	0.67	-0.10	0.49	0.03
Turb	0.620	0.851		0.06	0.01	0.03	0.21	-0.21	0.05	0.07	-0.38	-0.01	-0.01	-0.05	-0.10	0.05	0.21	0.45
Ca ²⁺	< 0.001	< 0.001	0.297		0.71	0.84	0.77	0.45	0.54	0.41	-0.13	0.20	0.47	0.26	0.47	0.09	0.51	0.26
${\rm Mg}^{2+}$	< 0.001	< 0.001	0.871	< 0.001		0.88	0.71	0.54	0.57	0.43	-0.11	0.36	0.41	0.21	0.55	-0.04	0.49	0.18
TotH	< 0.001	< 0.001	0.643	< 0.001	< 0.001		0.75	0.52	0.58	0.42	-0.07	0.26	0.41	0.21	0.57	-0.04	0.54	0.23
TotA	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		0.30	0.61	0.43	-0.29	0.23	0.39	0.34	0.31	0.12	0.49	0.32
Cl	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		0.71	0.66	0.11	0.34	0.31	0.07	0.66	-0.28	0.23	-0.33
Na^+	< 0.001	< 0.001	0.361	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		0.78	-0.15	0.27	0.30	0.22	0.57	-0.06	0.36	-0.13
K^+	< 0.001	< 0.001	0.257	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		-0.20	0.27	0.20	0.16	0.54	-0.22	0.22	-0.23
NO ₃ -N	0.010	0.187	< 0.001	0.030	0.057	0.241	< 0.001	0.054	0.009	< 0.001		-0.03	-0.01	-0.07	0.04	-0.10	-0.19	-0.24
NO ₂ -N	0.003	< 0.001	0.822	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.631		0.14	-0.08	0.24	-0.23	0.16	0.03
NH ₃ -H	< 0.001	< 0.001	0.889	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.923	0.016		0.21	0.42	0.16	0.42	0.29
F	< 0.001	< 0.001	0.378	< 0.001	< 0.001	< 0.001	< 0.001	0.259	< 0.001	0.007	0.242	0.149	< 0.001		0.22	-0.02	0.21	0.17
$\mathrm{SO_4}^{2}$	< 0.001	< 0.001	0.081	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.470	< 0.001	< 0.001	< 0.001		-0.14	0.32	-0.09
PO4 ³⁻	0.11	0.070	0.386	0.103	0.475	0.535	0.033	< 0.001	0.329	< 0.001	0.086	< 0.001	0.007	0.764	0.019		0.18	0.19
Mn	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.001	0.005	< 0.001	< 0.001	< 0.001	0.003		0.51
Fe	< 0.001	0.577	< 0.001	< 0.001	0.002	< 0.001	< 0.001	< 0.001	0.029	< 0.001	< 0.001	0.565	< 0.001	0.003	0.135	< 0.001	< 0.001	

Table S1. Spearman's rank correlation matrix for measured water quality parameters. Correlation coefficients are shown in the top and p-values in bottom portions of the matrix. Statistically significant values (p < 0.05) are bolded.

	Scent	Salty taste	Particles	Oily sheen	Food staining
Scent		0.09	0.27	0.47	0.44
Salty taste	0.14		0.06	0.15	0.24
Particles	< 0.001	0.34		0.18	0.17
Oily sheen	< 0.001	0.01	0.002		0.60
Food staining	< 0.001	< 0.001	0.004	< 0.001	

Table S2. Kendall's Tau correlation matrix for reported water quality problems. Correlation coefficients are shown in the top and p-values in bottom portions of the matrix. Statistically significant values (p<0.05) are bolded.

Table S3. Logistic regression models stratified by season

Complaint	WQ	Unit Δ (mg/L)	OR (CI _{95%})	p-value	R^2					
Dry season										
Salty taste	TDS	100	2.53 (1.64, 3.89)	< 0.001	0.29					
Scent	Iron	1.00	4.93 (2.03, 11.9)	< 0.001	0.19					
Oily sheen	Iron	1.00	9.39 (3.21, 27.4)	< 0.001	0.33					
Food staining	Iron	1.00	4.25 (1.98, 9.12)	< 0.001	0.21					
Rainy season										
Salty taste	TDS	100	1.68 (1.35, 2.10)	< 0.001	0.12					
Scent	Iron	1.00	2.47 (1.63, 3.73)	< 0.001	0.09					
Oily sheen	Iron	1.00	24.7 (8.06, 75.5)	< 0.001	0.33					
Food staining	Iron	1.00	5.91 (3.21, 10.9)	< 0.001	0.23					

Fig. S1. *Boxplots comparing the distribution of water quality values (y-axis) by presence or absence of the salty taste complaint (x-axis) in the dry (red) and rainy (blue) season samples.*

Fig. S2. *Boxplots comparing the distribution of water quality values (y-axis) by presence or absence of the particles complaint (x-axis) in the dry (red) and rainy (blue) season samples.*

Fig. S3. *Boxplots comparing the distribution of water quality values (y-axis) by presence or absence of the scent complaint (x-axis) in the dry (red) and rainy (blue) season samples.*

Fig. S4. *Boxplots comparing the distribution of water quality values (y-axis) by presence or absence of the oily sheen complaint (x-axis) in the dry (red) and rainy (blue) season samples.*

Fig. S5. *Boxplots comparing the distribution of water quality values (y-axis) by presence or absence of the food staining complaint (x-axis) in the dry (red) and rainy (blue) season samples.*

Fig. S6. *Map of geological formations (A) and interpolated surfaces for iron (B) and TDS (C); map of Ghana is shown in the bottom right corner with the insets specified. Geological formations were digitized from maps in Schluter, 2008.*

