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Microscopic aggregation index
A simple way to quantitatively characterize the clustering of the RBCs is based on the quantification of sedimented aggregates
within a certain area on a microscope slide. Chien and Jan1 defined a microscopic aggregation index (MAI) as the ratio of
the total number of cells to the total number of ”particles” (individual cells and aggregates), representing the average number
of cells per particle. Here, we investigate RBC aggregation by confocal microscopy and define the MAI as the the ratio of
the number of aggregated cells at the bottom of the well after sedimentation to the total number of cells, i.e. the fraction of
aggregated cells.

All observations were performed at a temperature of 23 ◦C with a hematocrit of 10 %. This concentration ensured an almost
fully covered bottom surface after 5 min of sedimentation for most sample solutions, with an average coverage of 2.9×104

cells/mm2. Imaging was performed using a confocal microscope (TSC SP5 II; Leica Microsystems, Mannheim, Germany) with
a laser of 633nm as the excitation wavelength. RBCs were classified as part of a cluster if the membranes of two cells were
optically indistinguishable over a distance of at least 4 pixels, which corresponds to 1 µm in our image with a size of 144 x 144
µm2. White-light microscopy was used as a control to exclude any possible influence of CellMask on aggregation (data not
shown). Fibrinogen and dextran solutions were compared to PBS as negative control. Due to the increase of viscosity with
increase in dextran or fibrinogen concentration, the sedimentation slows down, which leads to a lower total number of cells per
image at higher viscosities in comparison to RBCs in PBS.

Figure 1(a) shows representative images for various concentrations of dextran and fibrinogen.
In dextran solutions, the number of rouleaux and the MAI exhibit a bell shaped curve with a maximum around a concentration

of 50 mg/ml and almost no rouleaux at 120 mg/ml. (Fig. 1(b)). For fibrinogen, a monotonous increase of the MAI is seen up to
a concentration of 12mg/ml, which corresponds to the physiological range. Both results are reminiscent of the dependencies of
interaction energy, in-flow clustering and rheology on dextran concentration obtained in previous studies2, 3. Another qualitative
observation is that the dextran and fibrinogen induced rouleaux look slightly different with more interconnections in the
fibrinogen case.

Contact zone contour extraction
All measurements of contact zone shapes of RBC clusters were performed at 0.2% v/v hematrocrit. The procedure for extracting
interfacial shapes for further analysis is exemplified in Fig. 2. The contact zones of RBC clusters are first isolated. The images
are then thresholded and skeletonized to extract the interface shape on which a sine function can be fitted to measure the
amplitude of deformation.

Echinocyte clusters
When the doublets were allowed to sediment on the BSA treated cover slip, the cells remained in discocyte state for several
minutes but they were mostly oriented with their interface parallel to the coverslip which did prevent a characterization of the
thin interfacial membrane that was then oriented perpendicular to the z-axis of the point spread function. This was different for
the non-treated cover slips: due to the so called ”glass effect”, the RBCs transformed into the echinocyte state and we observed
only male-female and sigmoid shapes (Fig. 3(a)). A quantitative analysis of the distribution of the different interfacial shapes
for the different concentrations of dextran is shown in Fig. 3(b). For all different cases we observed an increase in the number
of sigmoid interfaces in the intermediate range of polymer concentrations, i.e. at larger interaction strengths. The sigmoid
shape allows for the largest contact zone, favorized by large interaction strength. At low and high concentrations of dextran we
observe only few sigmoid shapes and more parachute than male-female shapes for the cells in discocytic state. With fibrinogen,
mostly parachute shapes were observed. This is most likely related to the low (but physiological) concentrations of the protein.
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Figure 1. (a) Confocal images of RBCs at 10% hematocrit on the cover slip after 5 minutes of sedimentation at different
concentrations of dextran and fibrinogen. The second row of images shows enlargements of the first row indicated by the green
frames. (b) The microscopic aggregation index. Error bars represent the standard deviations.
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Figure 2. (a) Contact zone shape extraction from doublet clusters (b) Contact zone shape extraction from rouleaux.

For cells in echinocyte state no parachute shape was observes which is to be expected in view of the spherical shape of a single
echinocyte.

Modelling and numerical methods
2D numerical model
Based on several successful studies (especially equilibrium shapes and shape dynamics under external flow) that have shown
that 2D and 3D models capture the same essential features4–6, have restricted ourselves here to a 2D model. In 2D the notion of
in-plane shear elasticity looses its meaning and the vesicles and inextensible capsule model (often evoked to model RBC) are
equivalent. Vesicles consist of closed bilayer membranes enclosing an inner fluid and suspended in an outer fluid. Using the
typical reduced area (equivalent of the surface-to-volume ratio in three dimensions) of the RBC, the minimum energy shape of
an unstressed vesicle is the same as for an RBC despite the lack of a cytoskeleton. Indeed, the stress free shape is dictated by
the curvature energy and the rigidity of the cell. To describe the mechanical behavior of the vesicle, we employ (for each cell)
the two dimensional Helfrich free energy7, 8 (per unit length in the 3rd dimension):

EB =
∮

κB

2
(c− c0)

2dl (1)

where c is the mean curvature, dl is the arclength element along the membrane contour, κB is the membrane bending rigidity
modulus, and c0 is the spontaneous curvature that can be neglected in case of symmetrical membranes; actually in 2D the
spontaneous curvature plays no role. In order to fulfill the condition of membrane inextensibility we supplemented the curvature
energy with a term

∮
ζ dl, where ζ is a Lagrange multiplier that depends on the position along the membrane . The fluid inside

and outside the membrane is described by the Stokes equations (the inertial effect is small and is neglected) with boundary
conditions at the membrane and far away from the membrane. Far away from the membrane the flow vanishes (in the absence
of any imposed external flow). At the membrane we require velocity continuity, and force balance. In addition, the velocity
field along the membrane has to be divergence-free in order to enforce membrane incompressibility. This condition represents
an implicit equation that allows one to determine the still unknown Lagrange multiplier ζ ; the details of how this is achieved in
practice can be found in9. The hydrodynamics stress jump across is counterbalanced by the membrane force. This force is
composed of the bending force obtained as a functional derivative of the Helfrich free energy supplied with a tension-like force
to fulfill the condition of inextensibility of the membrane.

f(X) = κB[
∂ 2c
∂ l2 +

c3

2
]n− cζ n+

∂ζ

∂ l
t (2)

where n and t are the normal and tangent unit vectors. X designates the vector position of a given point on a given cell; the
curvature as well as the Lagrange multiplier are defined for each cell. In addition to this force we had to consider the force
due to cell-cell interaction (due to the presence of proteins or dextran). For this purpose we refer to the work of Neu and
Meiselman10. Neu and Meiselman have presented a model that takes into account the strong electrostatic repulsion due to
the negative charge of RBC membranes, and the weak osmotic forces of attraction due to the depletion effect induced by
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Figure 3. (a) Representative shapes of doublets in echinocytic state, placed on the cover slip without BSA treatment for
different concentrations of dextran (from left to right): male-female, S-shape, male-female. (b)Distribution of male-female and
S-shapes for echinocyte RBCs in dextran solutions in contact with the cover slip. Parachute shapes were not observed in this
case.

macromolecules surrounding RBCs10. This model contains several parameters depending on the physiochemical properties and
the concentration of the polymers. Often, the interaction energy between cells is described by a Morse potential (or alternatively
a Mie type potential), having an exponential form, which has proven to adequately describe experimental data11. As is the case
in many physical problems, a Morse potential can be well approximated by a Lennard-Jones potential, and we adopted this
form in the present study for practical reasons. At a mesoscopic scale (after integration over a distance greater than the cut-off
length of the microscopic interaction potential), this reduces to an adhesion energy per unit surface as we shall see below, or
as considered in other models (our analytical model and in Ziherl and Svetina12) and as can be measured in experiments2,
independent of microscopic details.

The interaction potential per unit (length of the 1st membrane × length of the 2nd membrane × length in the 3rd (invariant)
dimension) is

φ(r) = 4ε[(
σ

r
)12− (

σ

r
)6] (3)

where ε is a microscopic parameter with dimension [energy/length3].
This potential is minimum at distance r∗ = σ21/6 and the minimal interaction potential is equal to φ∗ =−ε .
The cell-cell force is given by

fφ (X) =−
∫

∑ j 6=i ∂Ω j

∂φ(r)
∂ r

r
r

dl(Y) (4)
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r = X−Y, r = ‖X−Y‖, and X and Y are two position vectors belonging to the ith and jth membrane (∂Ω) respectively.
In this formulation, ε is a microscopic parameter of interaction between surface elements. Given the range of the interaction

potential (typically a few times σ ), an integration of the potential over planar parallel surfaces of extension much larger than
this range must be performed in order to derive the macroscopic interaction energy per unit area εad .

The force per unit surface between two infinite parallel membranes at distance d is:

f (d) =
3πε

64

(
σ

d

)6
(

160−231
(

σ

d

)6
)

(5)

The zero force position is therefore d0 = (231/160)1/6σ , which is smaller than r∗. The interaction energy per unit surface
between infinite plates (i.e. whose extension is much larger than d0) is then:

εad =−
∫

∞

−∞

φ

(√
x2 +d2

0

)
dx =

48×55/6×61/6

11×775/6 πεσ ' 1.89εσ (6)

This gives the relation between the microscopic parameters of the potential ε and σ and the macroscopic interaction energy
per unit area εad .

Recently the RBC-RBC adhesion energy has been quantified using the atomic force microscopy-based single cell force
spectroscopy2. From these data, in principle, we can determine the adhesion energy εad and equilibrium distance d0 from which
the two parameters entering the Lennard-Jones potential can be determined, namely the minimal energy ε and the range of
the potential σ . However, here we chose to adapt the results from the numerical simulations, namely the amplitude of the
interfacial deformation, directly to the experimental data and use this to deduce the interaction energy. In this procedure, due to
numerical constraints, the zero force length (i.e. the length corresponding to minimal potential) was fixed in our simulations
to 489 nm. This was probably significantly larger than the experimental value but still in the order of the optical resolution
limit. In addition, note that as long as σ is small compared to the lateral extension of the membrane, the product εσ is the most
quantity here. The Stokes equations were solved using the boundary integral technique as presented in 6, 13

u(X0) =

1
2πµ1(1+λ )

∫
∑i ∂Ωi

G(X,X0)[f(X)+ fφ (X)]dl(X)

+
(1−λ )

2π(1+λ )

∫
∑i ∂Ωi

u(X) ·T(X,X0) ·n(X)dl(X) (7)

where u(X0) is the velocity of a vector position X0 belonging to the membrane ∂Ωi, λ is the viscosity contrast between
the inner and outer fluids with the respective viscosities µ2 and µ1, and G and T are the Green’s functions associated with the
velocity and the stress fields respectively.

To match the average values of a human RBC, the reduced area (τ) of the vesicle typically lies in the range (0.60,0.65), the
typical radius is R0 = 3µm, the membrane stiffness is κB = 4×10−19J. Here we did not investigate any dynamic effects and
we therefore fixed the viscosity ratio simply to unity, even if typically a factor of 5 was assumed. We considered doublets and
sets of 7 cells, separated by an initial surface-to-surface interdistance of 600 nm.

3D numerical model
The RBC is considered as a two-dimensional hyper-elastic membrane embedded with resistances to area dilatation, volume
changes, shear and bending deformations. The membrane is discretized using flat triangles and forces are evaluated on each
membrane node. We use 1620 triangles and 812 nodes to discretize each red blood cell.

The bending force is derived from the Helfrich free energy8 and reads as

fb = κb[2H{2H2−2K}+2∆SH]n (8)

where κb is the membrane stiffness, H and K are the main and Gaussian curvatures, ∆S is the Laplace-Beltrami operator and n
is the normal vector pointing outward. We use a discrete differential geometry operators approach proposed by14 to compute
numerically the Helfrich force. Detailed reviews on the accuracy and performance of different numerical methods for estimating
the bending force can be found in15, 16. The membrane strain energy obeys to the Skalak constitutive law17 given by

Ws =
∫

dA{Gs

4
[I2

1 +2I1−2I2]+
Gs

4
CI2

2} (9)
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where I1 = λ 2
1 +λ 2

2 − 2 and I2 = λ 2
1 λ 2

2 − 1 are the strain invariants, λ1 and λ2 are the principal stretch ratios, C > −1/2 is
a constant, Gs and Ks = [1−2C]Gs are the shear elastic and area dilatation modulii. The conservation of the RBC volume
corresponding to the impermeability of the membrane condition is fulfilled using a volume penalty function defined as

Wv =
κv

2
(V −V0)

2

V0
(10)

where κv is a volume modulus expressed in unit of energy per volume, V0 is the reference volume of the stress-free RBC and V
is its actual volume. The shear elastic and penalty volume forces are obtained following the principles of virtual work such that

fα =−∂Wα

∂X
(11)

where the subscript α can be substituted by v for the volume force or s for the shear elastic force. The details of the numerical
implementation of eq. (11) are described in18. Consider the nodes X ∈ ∂Ωi and Y ∈ Si where ∂Ωi is the surface of the ith
membrane and Si ∈ ∂Ω j (with j 6= i) is the area of membrane j that is within the cut-off distance of the interaction force from
node X. The force between one node of a membrane and the other whole membrane is derived from a Lennard-Jones potential
and reads:

fφ (X) = 24
∫

S(Y)

dS
r2 ε[2(

σ

r
)12− (

σ

r
)6]r (12)

where r = X−Y and r = ‖X−Y‖. We use in our code the dimensionless adhesion strength Γ≡ εR2
0/κb instead of ε which is

an energy per node of the considered membrane and per unit surface of the other membrane. In what follows the simulation
parameters are expressed in lattice units (l.u.). The zero force distance is fixed in all our simulations to σ = 1.5 l.u.. The other
parameters read as Gs = 10−2 l.u., κb = 1.5×10−3 l.u., κv = 1 l.u. and R0 = 8 l.u. We use a cubic domain with dimensions
of 80×80× 80. The cells are initialized as biconcave shapes with reduced volume fixed to ν = 0.65 and separated with a
mass-to-mass center distance of 6.5 l.u.. They are located initially in the middle of the box.

The Navier-Stokes equations are solved using the discretized form of the lattice Boltzmann D3Q1919–21 with a BGK
collision operator22.

fi(X′+ ci∆t, t +∆t)− fi(X′, t) =−
1
τ
[ fi(X′, t)− f (eq)

i (X′, t)]+∆t f ext
i (X′, t) (13)

where i = 1, ...,19, fi(r′, t) are the particle distribution functions, ci is the discrete velocity in the ith direction, and τ is the
relaxation time. The last term in the RHS of eq. (13) includes the contribution of the total membrane forces on the fluid and has
the unit of force per volume. The lattice constant ∆x, the timestep ∆t, the reference density ρ0 and the relaxation time are set to
unity.

We use the immersed boundary method (IBM)18, 23 to account for the fluid-structure coupling. The bending force comes in
the form of a surface force density and needs to be converted to a force before being plugged in the force spreading equation.
This is done by multiplying the density nodal force by its equivalent nodal area ∆Ai.

As for 2D simulations, the microscopic interaction parameter ε needs to be converted into a macroscopic adhesion energy
per unit surface εad . The force per unit surface between two infinite parallel membranes at distance d is:

f (d) =
48πε

5

(
σ

d

)6
(

1− 10
11

(
σ

d

)6
)

(14)

The equilibrium distance (zero force position) is d0 = (10/11)1/6σ and the interaction energy per unit surface between
infinite plates is:

εad =−
∫

∞

0
φ

(√
ρ2 +d2

0

)
2πρdρ =

15×112/3×21/3

58/3 πεσ
2 ' 3.75εσ

2 (15)

Analytical model
We provide here the details of the analytical model showing buckling of contact zones in symmetric RBC doublets. We suppose
that the shape of an RBC in a symmetric doublet (in 2D) is approximated as shown in Fig. 4, with two semi-circular caps of
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Figure 4. Notations

radius R, a roughly straight portion where curvature is negligible (length L1) and a contact zone with a sinusoidal shape of
curvilinear length L2 and amplitude A described by the equation:

y(x) = AL1 sin
2πx
L1

(16)

for −L1/2 < x < L1/2. The corresponding interaction energy of this contact zone is in expansion at order 4 in A:

L2 =
∫ L1/2

−L1/2

(
1+2(πA)2 cos2 2πx

L1

)
dx = L1

(
1+A2

π
2− 3

4
π

4A4
)

(17)

This corresponds to an interaction energy Ei:

Ei =−εadL1

(
1+A2

π
2− 3

4
π

4A4
)
. (18)

where εad is the interaction energy per unit surface.
The curvature energy of the system is concentrated in the circular caps Eb1 and the deformed contact zone Eb2. The circular

cap term is:

Eb1 =
κ

R2 2πR =
2πκ

R
(19)

The curvature of the contact zone is:

C(x) =− y′′(x)
(1+(y′(x))2)3/2 . (20)
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This leads to the energy term:

Eb2 = κ

∫ L1/2

−L1/2
C2(x)(1+(y′(x))2)1/2dx

= κ

∫ L1/2

−L1/2

16π4A2 sin2
(

2πx
L1

)
L2

1

(
4π2A2 cos2

(
2πx
L1

)
+1
)5/2 dx

' κ
8π4A2−20π6A4

L1

The total energy E = Ei +Eb1 +Eb2 therefore depends on A, R and L1 which are related through the constant area S and
constant perimeter L constraints

L = 2πR+L1(2+A2
π

2− 3
4

π
4A4) (21)

S = πR2 +2RL1 (22)

In the following we define a dimensionless energy E∗ = EL/κ , a rescaled interaction energy β = εadL2/κ , and rescale all
lengths by L: R∗= R/L and so on, and use the definition of the reduced area τ = 4πS/L2.

The constant perimeter and area constraints can then be written as the following (dropping the * for simplicity):

1 = 2πR+L1(2+A2
π

2− 3
4

π
4A4) (23)

τ/4π = πR2 +2RL1 (24)

and can be used to eliminate R and L1 as in equations 25 and 26.

R = −
π3A4

(
2τ +

√
1− τ−1

)
16
√

1− τ
+

1
4

A2
(

π−π
√

1− τ

)
+

1−
√

1− τ

2π
(25)

L1 =
1
2

√
1− τ− π2A2

4
+

A4π4
(
−τ +3

√
1− τ +2

)
16
√

1− τ
(26)

The total energy E∗ can then be derived and expanded at order 4 in A as in equation ??, dropping the ∗ for simplicity.

E =− 4π2
√

1− τ−1
− 1

2
β
√

1− τ

+A2
(
−1

2
π

2
β
√

1− τ +
π2β

4
+

16π4
√

1− τ
+

2π4
√

1− τ−1

)
+A4

(
− 5π4βτ

16
√

1− τ
+

π4β

4
√

1− τ
+

π4β

16
− 7π6τ

2
(
(
√

1− τ−1
)3√1− τ

+
2π6τ(√

1− τ−1
)3

3π6(√
1− τ−1

)3√1− τ

− 40π6
√

1− τ
+

8π6

1− τ
− 3π6(√

1− τ−1
)3

)

This energy has only a minimum for a finite, critical value of the rescaled interaction energy β .

8/10



If we solve ∂E/∂A = 0 to find the equilibrium configurations we get the two solutions whose expressions are given by 27,
which defines the bifurcation threshold βc corresponding to Aeq = 0 (Eq. 28)

A =


0 for β < βc

±

√
β(4
√

1−τ−2)+16π2
(

1
1−
√

1−τ
− 8√

1−τ

)
π

√
βτ(−5

√
1−ττ−τ+4

√
1−τ+1)+8π2(5(

√
1−τ+1)+(11−84

√
1−τ)τ)

(1−τ)τ

for β ≥ βc
(27)

βc =
8π2

(
9
√

1− τ−8
)

−2
√

1− ττ +3τ +3
√

1− τ−3
(28)
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