Dysregulated Zn²⁺ homeostasis impairs cardiac type-2 ryanodine receptor and mitsugumin 23 functions, leading to sarcoplasmic reticulum Ca²⁺ leakage

Benedict Reilly-O'Donnell*¹, Gavin B. Robertson*¹, Angela Karumbi¹, Connor McIntyre¹, Wojciech Bal², Miyuki Nishi³, Hiroshi Takeshima³, Alan J. Stewart¹ & Samantha J. Pitt^{1#}

¹School of Medicine, University of St Andrews, St Andrews, KY16 9TF, UK. ² Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Science, Warsaw, 02-106 Poland. ³Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.

Supplemental Data

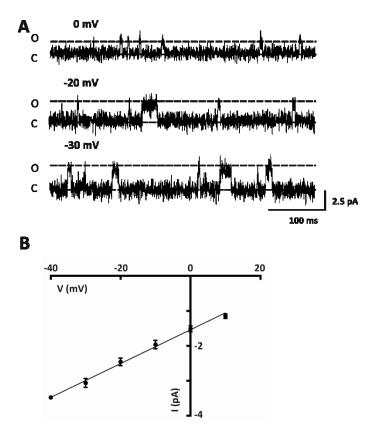


Figure S1. Single-channel properties of purified MG23. (A) Purified MG23 single-channel recordings using Ca^{2+} as the permeant ion at the indicated holding potential. The traces in this figure are not representative of Po but were chosen to show current amplitudes clearly. O and C show the fully open and closed states, respectively. (B) Current-voltage relationship of MG23 with Ca^{2+} as the permeant ion. Values are mean \pm SD (n = 6).

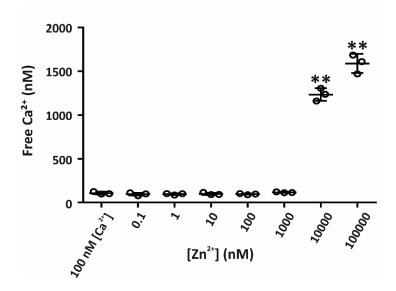


Figure S2. Effects of Zn^{2+} on Ca^{2+} levels in BAPTA treated recording solutions. The free $[Ca^{2+}]$ of our TRIS/HEPES solution prior to the addition of BAPTA was determined using a Ca^{2+} - selective electrode. In order to lower the $[Ca^{2+}]$ of our TRIS/HEPES solution, BAPTA was added until the measured free $[Ca^{2+}]$ was 100 nM. Incremental increase of Zn^{2+} in the range 100 pM - 100 μ M was added as ZnCl₂ to the BAPTA-treated solution and shown to have no significant effect until the $[Zn^{2+}] \ge 10 \ \mu$ M. Data are displayed as mean \pm SD, n=3. (**) indicates significance (p ≤ 0.01) when compared to 100 nM [Ca²⁺].

Calculated free [Zn ²⁺] and [Ca ²⁺] in BAPTA-treated TRIS/HEPES solutions		
Total [Zn ²⁺] (nM)	Free [Zn ²⁺] (nM)	Free [Ca ²⁺] (nM)
0.109	0.000204	91.3
1.009	0.0019	91.4
10	0.0188	91.6
50	0.0946	92.4
100	0.192	93.5
1000	2.43	118
10000	1290	2600

Table S1: Calculated free [Zn²⁺] and [Ca²⁺] in BAPTA-treated TRIS/HEPES solutions. Free Zn²⁺ calculations were performed using the MIQUV program. Calculations were performed using the ionic composition of TRIS/HEPES recording solutions at room temperature (22 ± 2 °C).

References

1. Bologni, L., Sabatini, A., and Vacca, A. (1983) Complex formation equilibria between 2amino-2(hydroxymethyl)-1,3,-propanediol (tris, tham) and nickel(II), copper(II), zinc(II) and hydrogen ions in aqueous solutions. *Inorg Chimica Acta* **69**, 71-75