
Appendix A. The foot of a propagated action potential

Propagation of a planar wavefront along a given direction x in a homogeneous medium can be described by the one-
dimensional monodomain equation given as

σx
∂2 V m

∂x2
= β

(
Cm

∂Vm

∂t
+ I ion

)
. (37)

Under such conditions a depolarization wavefront propagates at a sufficient distance to any tissue boundary uniformly at a 
constant velocity without any spatial variation in the shape of the wavefront. Mathematically, this can be expressed as

V m(x, t) = V m(x − vt) (38)

or, equivalently, as a differential equation by
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where v denotes the conduction velocity of the propagating wavefront. Under subthreshold conditions, that is, the range of 
transmembrane voltages V m below the firing threshold, V th, referred to as the foot of the action potential, the membrane 
behavior is characterized as passive and linear. The transmembrane current Im is composed then of a capacitive current Ic



Fig. 10. Fitting of current Ifoot . Shown are traces derived from a simulated propagated action potential (solid blue lines) and traces derived from the fitted
current Ifoot (red dashed lines). Fitting yielded A = 0.91 mV and τF = 0.25 ms. A) Trace of V̇ m, foot current −Ifoot/Cm and the step functions εon =
ε(t − ta(x)) and εoff = ε(tth(x) − t). B) Phase plane trajectory of propagated action potential. During the foot of the action potential the ratio �V̇ m/�V m is 
≈ constant. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

and an ionic current I ion where I ion = Gm V m is ohmic. Thus using (37) with (39) the time course of the action potential at 
any given point in space can be described by
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Using the definition of the time constant of the membrane, τm , and the space constant along the direction x, λx,
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yields the differential equation of the foot of a propagating action potential(
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for which an analytical solution is found as
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In the case of a propagating depolarization wavefront the foot of the action potential traverses its rising phase implying 
that B = 0 must hold. Further, in general the assumption τ 2

m v2/λ2
x � 4 holds, allowing to represent the foot of the action 

potential as a mono-exponential process
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where τF denotes the time constant of the foot of the action potential. The time constant τF can be determined experimen-
tally [40] or from a simulated propagated action potential through phase plane analysis (Fig. 10). At the arrival time of a 
propagating depolarization wavefront at the location x in space, ta(x), the change in transmembrane voltage during the foot 
of the action potential is described by a function
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where εon and εoff are step functions delimiting the time interval [ta(x), tth(x)] of the foot of the action potential marking 
the onset of the AP foot and the instant of V m crossing a given transmembrane voltage threshold at location x. The change 
of V m during the foot is driven by the foot current Ifoot given as
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which represents the combined effect of electronic currents due to diffusion, represented by ∇ · σ∇V m, and the ionic 
currents, I ion where I ion ≈ 0 can be assumed during the foot phase of an action potential. The constant A of the current 
Ifoot can be determined by fitting the function in Eq. (46) to the foot of a propagated action potential (Fig. 10).

According to Eq. (44) τF depends on the velocity of propagation, suggesting that the foot of the action potential may vary 
as a function of direction of propagation. However, taking into account the known proportionality relation for conduction 
velocity
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it becomes apparent, by inserting Eqs. (47) and (41) into Eq. (44) that the ratio vx/λx is a constant factor K
√

Gm. Thus the 
potentially space-dependent terms cancel out in Eq. (44) and the time course of the foot of the action potential is governed 
by local membrane properties, that is, the conductivity Gm of the membrane under subthreshold conditions.


