Appendix A. The foot of a propagated action potential

Propagation of a planar wavefront along a given direction *x* in a homogeneous medium can be described by the onedimensional monodomain equation given as

$$
\sigma_{\rm x} \frac{\partial^2 V_{\rm m}}{\partial x^2} = \beta \left(C_m \frac{\partial V_m}{\partial t} + I_{\rm ion} \right). \tag{37}
$$

Under such conditions a depolarization wavefront propagates at a sufficient distance to any tissue boundary uniformly at a constant velocity without any spatial variation in the shape of the wavefront. Mathematically, this can be expressed as

$$
V_{\rm m}(x,t) = V_{\rm m}(x - vt) \tag{38}
$$

or, equivalently, as a differential equation by

$$
\frac{\partial^2 V_{\rm m}}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 V_{\rm m}}{\partial t^2}
$$
 (39)

where *v* denotes the conduction velocity of the propagating wavefront. Under subthreshold conditions, that is, the range of transmembrane voltages V_m below the firing threshold, V_{th} , referred to as the foot of the action potential, the membrane behavior is characterized as passive and linear. The transmembrane current I_m is composed then of a capacitive current I_c

Fig. 10. Fitting of current *I_{foot}*. Shown are traces derived from a simulated propagated action potential (solid blue lines) and traces derived from the fitted current *I*_{foot} (red dashed lines). Fitting yielded *A* = 0.91 mV and τ_F = 0.25 ms. A) Trace of V_m , foot current $-I_{\text{foot}}/C_m$ and the step functions ε_{on} = $\varepsilon(t-t_a(x))$ and $\varepsilon_{\text{off}} = \varepsilon(t_{\text{th}}(x) - t)$. B) Phase plane trajectory of propagated action potential. During the foot of the action potential the ratio $\Delta V_{\text{m}}/\Delta V_{\text{m}}$ is ≈ constant. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

and an ionic current I_{ion} where $I_{\text{ion}} = G_m V_m$ is ohmic. Thus using [\(37\)](#page-0-0) with [\(39\)](#page-0-0) the time course of the action potential at any given point in space can be described by

$$
\frac{\sigma_{\rm x}}{\beta G_{\rm m} v^2} \frac{\partial^2 V_{\rm m}}{\partial t^2} - R_{\rm m} C_{\rm m} \frac{\partial V_{\rm m}}{\partial t} - V_{\rm m} = 0.
$$
\n(40)

Using the definition of the time constant of the membrane, τ_m , and the space constant along the direction *x*, λ_x ,

$$
\tau_{\rm m} = R_{\rm m} C_{\rm m}; \ \ \lambda_{\rm x} = \sqrt{\frac{\sigma_{\rm x}}{\beta G_{\rm m}}} \tag{41}
$$

yields the differential equation of the foot of a propagating action potential

$$
\left(\frac{\lambda_x}{v}\right)^2 \frac{\partial^2 V_m}{\partial t^2} - \tau_m \frac{\partial V_m}{\partial t} - V_m = 0
$$
\n(42)

for which an analytical solution is found as

$$
V_{\rm m} = A \cdot \exp\left[\left(\frac{\tau_{\rm m}v^2}{2\lambda_{\rm x}^2} + \frac{v}{2\lambda_{\rm x}}\sqrt{\frac{\tau_{\rm m}^2v^2}{\lambda_{\rm x}^2} + 4}\right)t\right] + B \cdot \exp\left[\left(\frac{\tau_{\rm m}v^2}{2\lambda_{\rm x}^2} - \frac{v}{2\lambda_{\rm x}}\sqrt{\frac{\tau_{\rm m}^2v^2}{\lambda_{\rm x}^2} + 4}\right)t\right].
$$
 (43)

In the case of a propagating depolarization wavefront the foot of the action potential traverses its rising phase implying that $B=0$ must hold. Further, in general the assumption $\tau_m^2 v^2/\lambda_x^2\gg 4$ holds, allowing to represent the foot of the action potential as a mono-exponential process

$$
V_{\rm m} = A e^{kt} \quad \text{with} \quad k = \frac{\tau_{\rm m} v^2}{\lambda_x^2} = \frac{1}{\tau_F},\tag{44}
$$

where τ_F denotes the time constant of the foot of the action potential. The time constant τ_F can be determined experimentally [\[40\]](#page--1-0) or from a simulated propagated action potential through phase plane analysis (Fig. 10). At the arrival time of a propagating depolarization wavefront at the location x in space, $t_a(x)$, the change in transmembrane voltage during the foot of the action potential is described by a function

$$
V_{\rm m}(x,t) = \left[A \cdot e^{\frac{t - t_a(x)}{\tau_{\rm F}}} + B\right] \cdot \varepsilon_{\rm on}(t - t_a(x)) \cdot \varepsilon_{\rm off}(t_{\rm th}(x) - t),\tag{45}
$$

where ε_{on} and ε_{off} are step functions delimiting the time interval $[t_a(x), t_{\text{th}}(x)]$ of the foot of the action potential marking the onset of the AP foot and the instant of *V*^m crossing a given transmembrane voltage threshold at location *x*. The change of *V*^m during the foot is driven by the foot current *I*foot given as

$$
I_{\text{foot}} = I_{\text{ion}} - \nabla \cdot \boldsymbol{\sigma} \nabla V_{\text{m}} = -C_{\text{m}} \frac{V_{\text{m}}}{dt} = -\frac{A}{\tau_{\text{F}}} \cdot e^{\frac{t - t_{\text{a}}(x)}{\tau_{\text{F}}}} \cdot \varepsilon (t - t_{\text{a}}(x)) \cdot \varepsilon (t_{\text{th}}(x) - t), \tag{46}
$$

which represents the combined effect of electronic currents due to diffusion, represented by $\nabla \cdot \boldsymbol{\sigma} \nabla V_{\text{m}}$, and the ionic currents, I_{ion} where $I_{\text{ion}} \approx 0$ can be assumed during the foot phase of an action potential. The constant *A* of the current *I*_{foot} can be determined by fitting the function in Eq. (46) to the foot of a propagated action potential [\(Fig. 10\)](#page-1-0).

According to Eq. (44) τ_F depends on the velocity of propagation, suggesting that the foot of the action potential may vary as a function of direction of propagation. However, taking into account the known proportionality relation for conduction velocity

$$
v_x \propto K \sqrt{\frac{\sigma_x}{\beta}} \tag{47}
$$

it becomes apparent, by inserting Eqs. (47) and [\(41\)](#page-1-0) into Eq. [\(44\)](#page-1-0) that the ratio *v*x*/λ*^x is a constant factor *K* [√]*G*m. Thus the potentially space-dependent terms cancel out in Eq. [\(44\)](#page-1-0) and the time course of the foot of the action potential is governed by local membrane properties, that is, the conductivity G_m of the membrane under subthreshold conditions.